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ABSTRACT: Enzymes can be used in various biotechnological applications due to the easy and cheap 

production. Since xylanase enzymes are preferred in various industries, researchon this enzyme is extensively 

being carried out.  In this study, the β-xylanase gene was cloned from Thermotoga naphthophila, a thermophilic 

organism. The expression vector pET21a(+) was expressed in Escherichia coli BL21 (DE3). As a result of the 

studies, the pH, temperature and IPTG concentration of the enzyme were optimized to obtain highest expression. 

Dinitrosalicylic acid (DNS) was used to determine sugar content of the enzyme. The molecular mass of the 

purified β-xylanase enzyme was determined using sodium dodecyl sulfate (SDS) polyacrylamide gel 

electrophoresis. The molecular mass of the enzyme was calculated to be 38 kDa. Enzymatic hydrolysis of 

hazelnut shell, rhododendron branch and rhododendron leaves was performed. Released reducing sugar contents 

from the enzymatic hydrolysis were calculated as 0.8461 mg mL-1, 0.6976 mg mL-1 and 0.3605 mg mL-1 for 

hazelnut shell, rhododendron branch, and rhododendron leaf respectively. In conclusion, β-xylanase enzyme can 

be an effective source for enzymatic hydrolysis to produce fermentable sugars from such biomasses.  
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INTRODUCTION 

Enzymes are biological catalysts that have important roles in shaping the life. They are also 

important for industrial processes. They are being used in paper, leather, textile, cleaning, food, feed, 

medicine, cosmetics, and biofuel industries (Jegannathan and Nielsen, 2013). It is advantageous to use 

enzymes of microbial origin, as opposed to enzymes obtained from animal and plant sources. Animal 

and plant tissues are limited but enzymes obtained from microbial sources are very diverse (Topal, 

1985).  

Lignocelluloses are mainly composed of cellulose, hemicellulose, and lignin. Specifically, lignin 

forms a physical barrier, limiting enzymes' accessibility to cellulose. Thus, removal of lignin from the 

structure is necessary to release fermentable sugars; thus, a pre-treatment process is required. The 

enzymatic hydrolysis processes are preferred to break down cellulose into simple sugars (Phitsuwan et 

al., 2016). According to Sun and Cheng (2002), the pretreatment method should increase the formation 

of fermentable sugar, without causing carbohydrate degradation, prevent the formation of by-products 

that will cause inhibition of hydrolysis and fermentation stages, and should be affordable. Xylan is used 

as a major biopolymer in practical applications, and by the degradation of xylan, many important 

products are obtained in varying amounts (Zafar et al., 2016). Xylanase are enzymes that carry out the 

hydrolysis of xylan, which is present together with the cellulose and lignin structure in the plant cell 

wall. For this reason, wood shavings, corn cobs, hazelnut shells, wheat and other plant waste sources are 

being used as substrates in bacterial enzyme production methods. Xylan is an important structural 

polymer of a plant. Xylanases and some microorganisms are being used for ethanol production by 

hydrolyzing xylan (Rani and Nand, 1996). It contains plenty of hemicellulose in its xylan structure. 

Therefore, it is of great importance to ensure the separation of xylan into sugars by bacteria that produce 

ethanol and efficient use of plant biomass for biofuel production (Dodd and Cann, 2009).  

Thermotoga naphthophila is an anaerobic, hyperthermophilic gram-negative bacterium that can 

be obtained from underground reserves in Japan. The suitable temperature for the growth of bacteria 

ranges between 48-86°C. The optimum pH for the growth is in the range of 5.4-9.0. However, it shows 

the best activity at pH 7.0 (Hamid and Aftab, 2019). Lignocellulosic biomass such as wood, plant, and 

agricultural industry is a renewable resource that is abundant in the world and less agricultural work is 

required for the production of these biomasses (Hoşgün et al., 2017). Secondly, generation of biomass 

is made with raw materials that have no effect on the food chain, namely woody biomass. Therefore, 

second generation bioethanol production has a very high potential. Hazelnut, whose cultivation dates 

back to ancient times in our country, has found the most suitable growing environment in the Black Sea 

region. Hazelnut shells consist of 43.1% lignin, 27.5% hemicellulose, 24.7% cellulose, 3.4% alcohol-

benzene extracts and 1.4% ash (Arslan and Saraçoğlu, 2010).  On the other hand, rhododendron is 

included in the Rhododendron genus, and has many different flower and leaf structures that grow from 

the west to the east of the Black Sea forests. Some of the types of rhododendrons having a fairly wide 

spread in the world, especially east of the Black Sea in Turkey is common (Özbucak et al., 2009). 

Hazelnut shell, rhododendron branch and rhododendron leaves can be used as renewable, low-cost, high-

yield raw materials for producing fermentable sugars as lignocellulosic biomass. In addition, converting 

agricultural wastes into energy increases the value of waste materials and prevents air pollution.  

Thus, the present study aimed to use hazelnut shell, rhododendron branch and rhododendron leaves 

as lignocellulosic biomass and investigate the saccharification potential of β-xylanase from Thermotoga 

naphthophila on these biomasses.  
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MATERIALS AND METHODS 

Cloning and Expression of the Recombinant β-xylanase 

Cloning and expression of recombinant β-xylanase enzyme was re-performed as described 

previously (Hamid and Aftab, 2019). Briefly, genomic DNA of Thermotoga naphthophila was used as 

template to amplify β-xylanase gene by PCR.  and purified by Thermo Scientific GeneJET gel extraction 

kit. β-xylanase gene was then ligated into pET21a(+) vector using restriction site of HindШ.  

For cloning, E. coli BL21 was used after making the competent cells. Transformation of cloned β-

xylanase gene was performed in the competent cells. The transformation was performed at 42°C by 

applying heat shock for 90 seconds. For confirmation of transformation, colony PCR was performed.  

Pretreatment of Biomasses with Acid-Alkaline Method 

The pre-treatment of biomass was carried out to remove the undesired structures in biomass. The 

pretreatment was applied to three different biomasses (hazelnut shell, rhododendron branch and 

rhododendron leaves). For the Acid-Alkaline method; 100 mL double distilled water was added in 2 g 

NaOH and dissolved. A 2 g of each biomass was weighed and taken into 50 ml falcon tubes. NaOH 

solution was added in the tubes and shaken to make the contents uniform. The bottles were closed and 

autoclaved at 121 ° C for 15 minutes. In a separate bottle, 100 mL distilled water was added to 6.27 mL 

37% HCl. The sterilized plant biomass was filtered through a Whatman filter paper. The supernatant 

was discarded and the solid contents were washed several times with distilled water. The HCl solution 

prepared to neutralize the NaOH mixture was taken into 20 mL shake flask and washed with double 

distilled water and shaken and kept for 30 minutes. The plant-HCl mixtures were washed with distilled 

water and filtered biomass was allowed to dry at room conditions for two days. Dried biomasses were 

crushed in pestle and placed in a 50°C oven for 15 minutes (Hoşgün et al., 2017). 

Saccharification of Pre-Treated Biomasses 

The amount of sugar released by the hydrolysis of the pretreated biomasses with the β-xylanase 

enzyme was analyzed. For saccharification of pre-treated biomasses, 0.1 g pre-treated biomass and 20 

mL β-xylanase enzyme were added into three beakers for each biomass. A 9 µl chloramphenicol (0.1 

mg mL-1) antibiotic was added in beakers to prevent microbial growth. The beakers were kept in a 

shaking incubator at 60ºC at 80 rpm for 72 hours. Then biomasses were centrifuged at 3200 rpm for 15 

minutes. Supernatants were transferred to falcon tubes. 

DNS was used to stop the enzyme's activity and to determine amount of sugar (Miller, 1959). In 

each flask, 1 g DNS was dissolved in 1.6 g NaOH. In another flask, 37.66 g of sodium potassium tartrate 

(Rochella salt) was dissolved in 50 mL distilled water. The content of the two flasks were mixed 

together, then heated and shaken until it became homogeneous. 

1 mL supernatants were added to empty falcon tubes and 1 mL prepared DNS was added. The 

tubes were kept in a water bath at 100°C for 5 minutes. The content was then allowed to cool at room 

temperature and later 8 mL distilled water was added in the tubes. Measurements were noted at 540 nm 

using a spectrophotometer. The calibration plot was made by measuring absorbances of different 

concentrations of glucose to adjust the sugar content of the unknown sample. 

RESULTS AND DISCUSSION 

Recombinant Production of β-xylanase 

The recombinant colony was cultured in LB medium containing ampicillin, then sonicated and 

centrifuged. Since the recombinant β-xylanase enzyme was intracellular, cells were sonicated to release 
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the intracellular enzyme. The partial purification of β-xylanase enzyme was carried out using the thermal 

method that also denatured host proteins.  

Molecular mass determination of the purified β-xylanase enzyme was performed using SDS-

PAGE. Precision Plus Ladder (10-250 kDa) was used as a protein marker. As shown in Fig. 1, the 

molecular mass of β-xylanase samples with different amounts was examined. Protein samples were 

observed after staining with the gel staining solution containing Brilliant Blue dye. As a result of SDS-

PAGE, it was observed that the mass of β-xylanase was 38 kDa. 

 

 

Figure 1. SDS-PAGE of partially purified β-xylanase. 1) protein marker 2) 5 µl β-xylanase 3) 10 µl β- 

xylanase 4) 15 µl β- xylanase 5) 20µl β- xylanase 

 

Saccharification potential of β-xylanase over Biomasses 

DNS was used to measure the amount of sugar released after treatment of different biomass (nut 

cob, rhododendron branch, rhododendron leaves) with β-xylanase enzyme. The optical densities of 

hazelnut shell, rhododendron branch and rhododendron leaf biomasses measured at 540 nm in the 

spectrophotometer were 0.4604, 0.3796 and 0.1962 respectively. The sugar content of the biomass was 

determined as a result of the calibration graph drawn with different concentrations of glucose (Fig. 2). 

Sugar content of biomass according to the calibration curve is given in Table 1. The highest 

reducing sugar amount was obtained for hazelnut shell (0.8461 mg mL-1), followed by rhododendron 

branch (0.6976 mg mL-1) and Rhododendron leaf (0.3605 mg mL-1).  
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Figure 2. Calibration curve using glucose as standard reducing sugar. 

Table 1. Sugar amounts of hazelnut shell, rhododendron branch and rhododendron leaf biomass after 

enzymatic saccharification by β-xylanase 

 Absorbance (OD540) Concentration (mg mL-1) 

Hazelnut shell 0.4604 0.8461 

Rhododendron branch 0.3796 0.6976 

Rhododendron leaf 0.1962 0.3605 

The hydrolysis of hemicelluloses was carried out by enzymatic process is a very complex process. 

Among the enzymes that carry out hydrolysis, the enzyme β-xylanase plays an important role. The β-

xylanase enzyme is a thermophilic enzyme and utilized in many biotechnological applications due to 

their ability to withstand high temperatures (Frock et al., 2010). 

In the previous study, it was reported that the β-xylanase enzyme of Thermotoga naphthophila 

showed maximum activity at pH 7.0 and 37°C (Hamid and Aftab, 2019). Shi et al. (2013) found that the 

β-xylanase enzyme cloned from Thermotoga thermarum was expressed by Escherichia coli BL21 

recombinant strain was active at 95°C and pH 7.0, and by adding 5 mM Ca2+ but active at temperatures 

55-90°C and pH ranges from 4.0-8.5. 

Zverlov et al. (1996) obtained the xylanase A gene from Thermotoga neapolitana and expressed 

in Escherichia coli. They reported that xylanase enzyme acts as endo-1,4/3-xylanase and this enzyme 

showed the highest activity at pH 5.5 at 102°C. Furthermore, xylanase was also stable at 90°C but 50% 

reduction in enzyme activity was observed when incubated at 100°C for 2 hours. 

Simpson et al. (1991) isolated the endo-1,4-beta-xylanase enzyme from Thermotoga sp. The best 

activity for the purified xylanase was reported in the range of pH 5.0-5.5 at 80°C. They observed that 

substances such as sorbitol and xylan increase the thermal stability of the enzyme. 

The molecular mass of β-xylanase obtained using SDS-PAGE was calculated to be 38 kDa. The 

mass analysis of the enzyme was appeared similar to the results observed in other studies. Zhou et al. 
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(2011) had reported the molecular mass determination of the endo-1,4 β-xylanase enzyme obtained from 

the organism Streptomyces sp., was 34 kDa. At the same time, they had found that the best activity of 

this enzyme was observed at 50°C and pH 7.0. Similarly, Shi et al. (2014) found the molecular mass of 

the endo-1,4-β-xylanase enzyme cloned from Thermotoga thermarum and expressed in Escherichia coli 

as 40 kDa. It has also been reported that the temperature and pH values were 80°C and 6.0 respectively.  

The most important feature of the β-xylanase enzyme was its stability at high temperatures. Due 

to its stable structure, xylanases are being used in many industries and protein engineering. Studies have 

shown that β-xylanase enzymes cloned from various organisms have activities at high temperatures. 

After β-xylanase enzyme was cloned from Thermotoga naphthophila and expressed in E. coli 

BL21, the biomasses were pre-treated before being treated with the enzyme. Biomass can prevent sugar 

production due to their structure. Lignin, which is present in the structure of the biomass, limits sugar 

production. So biomasses like lignin were pre-treated to remove undesired structures. In our study, acid-

alkaline method was used for the pretreatment stage. 

Singh et al. (2015) compared the acid-alkali pre-treatment method with other existing pre-

treatment processes. It has been emphasized that the alkaline pretreatment is very effective in removing 

the lignin structure present in biomass and at the same time increases the digestibility of cellulose. Luo 

et al. (2014) investigated many pre-treatment methods. When these studies were examined, the most 

effective pre-treatment method was selected in our study. 

In the present study, after the optical densities of the hazelnut shell, rhododendron branch and 

rhododendron leaf biomass to be saccharified after the pretreatment stage, the amount of sugar produced 

was calculated. Different amounts of concentrations of glucose were used as standard. Biomasses of rice 

straw, wheat straw, sawdust, and Saccharum munja were treated with β-xylanase enzyme by Hamid and 

Aftab (2019) and then saccharified to examine concentration of sugar obtained from the biomasses. The 

amounts of sugar released were reported as 1.52 mg mL-1, 3.2 mg mL-1, 1.92 mg mL-1, 2.96 mg mL-1 

and 1.16 mg mL-1 respectively. The difference from our study is that they use xylose as a standard. 

In our study, amount of sugar released was calculated as 0.8461 mg mL-1 in hazelnut cob, 0.6976 

mg mL-1 rhododendron branch and 0.3605 mg mL-1 rhododendron leaf. Similar to our study, Zafar et al. 

(2016) treated the xylanase enzyme obtained from Bacillus licheniformis with straw, rice straw, and 

sugarcane substrates. It was reported that the amount of sugar released was wheat straw 1.95 mg mL-1 

rice straw 1.92 mg mL-1 suggarcane bagasse 2.20 mg mL-1. The method they used to determine the sugar 

produced in the confectionery process was the same as we used in our study. 

Haq et al. (2012) obtained xylanase enzyme by cloning endo-1,4-β-xylanase gene from 

Thermotoga petrophila organism. Birchwood was used as a substrate for the xylanase enzyme. The 

activity of the enzyme on the substrate was measured as 3.5 mg mL-1. 

Pinar et al. (2017) have studied the effect on the enzymatic hydrolysis of the nut shell, one of the 

most abundant woody cellulosic agricultural residues produced in Turkey. The enzyme used was not 

produced from any organism and was purchased commercially. Cellulase enzyme activity on the 

hazelnut shell has been reported to be 1.32 ± 0.11 g L-1. 

There is no significant difference in the amount of sugar obtained in our study compared to 

different biomass or the same biomass. The reason why it differs from other results is due to the 

difference in methods that utilized total amount of enzymes and substrates. 

Hosgun et al. (2017) reported that the cellulase enzyme is active against the pretreated nutshell 

substrate. The researchers also mentioned that the sugar released from the nut shell is very efficient for 

producing bioethanol. In order to carry out the hydrolysis phase of various biomass, they need enzymes 

that hydrolyze these biomasses. This step will be a cost-cutting step for biofuel production. 
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CONCLUSION 

The most preferred feature in the industrial enzyme production stage is thermotolerance of the 

enzymes. The reason for this preference is that enzymes are generally used in processes with high 

temperatures. Among the various thermophilic enzymes, xylanase enzymes are of great importance in 

various industries and there are many studies for production and purification of these enzymes. 

In the present study, cloning of β-xylanase was re-produced in Esherichia coli and lignocellulosic 

biomasses of hazelnut shell, rhododendron branch, and rhododendron leaf were used as substrates for 

this recombinant β-xylanase enzyme. We showed that β-xylanase enzyme can be an effective source for 

enzymatic hydrolysis to produce fermentable sugars from such biomasses. 

Hazelnut shells and rhododendron are renewable, low-cost, high-yield raw materials for producing 

fermentable sugars as lignocellulosic biomass. When the results of the study are evaluated, as the- β-

xylanase enzyme has thermophilic property and the substrates we use produce a certain sugar release, it 

can be recommended to use the β-xylanase enzyme in various industrial processes and biofuel industry. 
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