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Abstract—Smartwatches and smartphones are extensively used 

in human activity recognition, particularly for step counting and 

daily sports applications, thanks to the motion sensors integrated 

into these devices. Machine learning algorithms are often utilized 

to process sensor data and classify the activities. There are many 

studies that explore the use of traditional classification algorithms 

in activity recognition, however, recently, deep learning 

approaches are also receiving attention. In this paper, we utilize a 

dataset that particularly consists of smoking-related activities and 

explore the recognition performance of three deep learning 

architectures, namely Long-Short Term Memory (LSTM), 

Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CNN). We evaluate their performances according to 

different hyperparameters, different sensor types and device 

types. The results exhibit that the performance of LSTM is much 

higher than that of CNN and RNN.  Moreover, the use of 

magnetometer and gyroscope together with accelerometer data 

improves the performance. Use of data from smartphone sensors 

also enhances the performance results and the final accuracy with 

the best parameter combinations is observed to be 98.2%. 

Index Terms—Activity recognition, deep learning, wearable 

computing, motion sensors. 

I. INTRODUCTION

EARABLE DEVICES such as smartwatches and smart

glasses, that are integrated with a variety of sensors, are

commonly used in human activity recognition studies [1,2]. 

Particularly, motion sensors available on these devices make it 

easy to collect and analyze data for sports and well-being 

applications. In some studies [2], classification of general 

activities is targeted for monitoring the activity levels, for 

example, for fitness purposes, while in some others, more 

specific activities are monitored, such as fall detection [3]. 
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Particularly, activities related to wrist and hand movements 

can easily be recognized with smartwatches. Smoking is one of 

the activities that users may be interested in tracking. 

Especially, for smoking cessation programs, it may be practical 

to automatically track the number of cigarettes smoked instead 

of self-reporting which puts a burden on the user [4]. 

In this paper, we utilize a dataset [5] that specifically consists 

of smoking-related activities. Smoking activity is more difficult 

to detect than simpler activities such as sitting since it can be 

done in a variety of postures (sitting, standing, and walking) and 

in parallel with other activities such as while chatting in a group 

or while drinking coffee.  Other activities that include similar 

hand movements, such as eating and drinking, can easily be 

confused with smoking. 

In human activity recognition studies, mostly, data from 

motion sensors is collected and processed with machine 

learning techniques to classify the activity types. Survey papers 

[1,2] provide a taxonomy on devices, sensors, activities and 

machine learning algorithms that are commonly used in human 

activity recognition with wearable devices. There exist many 

studies that focus on the use of simple machine learning 

techniques, such as Support Vector Machine (SVM), K-Nearest 

Neighbors, Decision Trees, etc. [2]. However, the use of deep 

learning approaches is recently receiving attention [6,7]. First 

of all, training and running deep learning models are costly on 

these resource-limited devices. However, a model can be 

trained offline, for example a cloud-based model would be a 

feasible solution. Moreover, unlike traditional machine learning 

algorithms, we do not have to deal with the feature extraction 

steps and can directly use the raw sensor data. 

In this paper, we investigate the use of different deep learning 

algorithms, namely Long-Short Term Memory (LSTM), 

Recurrent Neural Networks (RNN) and Convolutional Neural 

Networks (CNN) on activity recognition with mobile and 

wearable devices. As mentioned, we use a dataset that was 

collected in our previous work [5]. This dataset was analyzed 

using general machine learning models, particularly with 

Random Forest (RF), Decision Trees, SVM and Multilayer 

Perceptron (MLP) [4]. Moreover, CNN model was also applied 

to the same dataset [8] by other researchers. However, the 

performance analysis of LSTM and RNN models on this dataset 

was not investigated before. LSTM and RNN are mostly used 
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with sequential data, such as text. In this paper, we also work 

on a dataset which consists of sequences of activities. 

Moreover, these three algorithms are the most widely used deep 

learning architectures in the literature in human activity 

recognition studies [7]. Hence, our contribution is to explore the 

performance of different deep learning architectures on a 

challenging dataset. 

We perform different evaluations according to different 

hyperparameters for different architectures, two types of 

devices (smartwatch and smartphone) and three types of 

sensors (accelerometer, gyroscope, and magnetometer). The 

results show that we achieve the highest accuracy scores, 92.0% 

with the LSTM architecture when only the accelerometer data 

from a smartwatch is used. If smartphone data is also used, 

96.9% accuracy is obtained, again only with the accelerometer 

data. If other sensors are used together with an accelerometer, 

we could achieve 95.6% accuracy with the only a smartwatch, 

and 98.2% accuracy when both devices and three sensors are 

used. We can summarize our contributions as follows:  

- We explore the performance of different deep learning 

architectures on a challenging dataset, which contains 

smoking activities in different postures and other 

activities that are similar to smoking. We also explore 

different values for hyper- parameters for different 

architectures 

- We investigate the use of different sensors and devices 

used alone and in combination with others. We 

conclude that when both devices, smartwatch, and 

smartphone, are used together, the recognition 

performance increases by 3 percent, however the use 

of only the smartwatch also performs well, 95% 

accuracy.  

- In comparison to the related studies that utilize deep 

learning algorithms for human activity recognition, we 

observe that in most of the studies, the CNN 

architecture was used, a smaller number of activities 

were targeted and accelerometer and gyroscope 

sensors were used, however in this paper, we focus on 

three different architectures, more than ten different 

types of activities, three sensors, including 

magnetometer besides other two sensors, and two 

devices.  

 

The rest of the paper is organized as follows: In Section II., 

we summarize the related studies, in Section III. we present our 

methodology, particularly the details of the applied models. In 

Section IV, we present the performance analysis of three 

different deep learning architectures and finally in Section V, 

we draw the conclusions. 

II. RELATED WORK 

In our previous work [4], the same dataset was used and the 

effects of the parameters were analyzed using 4 different 

window sizes, 63 features which are calculated separately for 

each sensor, 4 different sensors, 2 different sensor 

combinations, 3 classification algorithms (SVM, RF, MLP)). 

The results showed that simple features including median, 

standard deviation, minimum, maximum, range, and mean can 

be useful in recognizing smoking activities. Besides, it was 

concluded that only time-based features provided better 

performance and using the only accelerometer is sufficient to 

recognize simple activities, whereas for complex activities the 

combination of accelerometer and gyroscope performs better. 

The performance of different classifiers was compared, and the 

results were similar when effective features were used. We 

observed that on average of 10 activities, the recognition 

performance achieved by using simple features extracted from 

accelerometer and gyroscope sensors was 83% (in terms of F1-

score) with the RF classifier. In that study, we did not make use 

of the data collected from the phones, only the smartwatch data 

was used. Moreover, we did not evaluate the performance with 

deep learning algorithms. In this paper, we observe a much 

higher accuracy, between 92-98% in terms of F1-score with 

LSTM. 

In [8], it was proposed to use CNN as a deep learning method, 

to recognize smoking and the other activities on the same 

dataset, as in our study. A comparison of using smartwatch 

versus smartphone data and accelerometer versus gyroscope 

data was performed. The dataset was divided into 3 parts which 

are 70% training, 15% validation and 15% testing.  The F1-

score was used as a performance metric of the model. Raw data 

and extracted features (4 time-domain features: maximum, 

minimum, skewness and kurtosis) were given into the system. 

Relu was selected as the activation function and SoftMax was 

selected to calculate the probability distribution. The model was 

trained to minimize the use of cross-entropy using the Adam 

gradient descent optimization with a logarithmic loss function. 

The CNN model produced significant results to differentiate 

smoking from concurrent activities. For concurrent activities, 

two inputs were compared; for feature input, it was observed 

that similar activities were confused, and raw input achieved the 

highest F1-score. Although the performance of the model is 

reduced when only smartphone data is used for the smoking 

activity, it is observed that this has little impact on classification 

performance. On the other hand, high F1-scores were obtained 

when smartwatches data were used alone. Using the 

accelerometer and gyroscope data, it was concluded that the 

performance of the CNN model was independent of the sensor. 

The CNN model surpassed previous studies and got a very high 

F1-score of 92-96% for recognition of smoking activity. 

In [9] deep RNN and LSTM learning algorithms were used 

and models were integrated into an Android application for 

real-time predictions. The tri-axial accelerometer of 

smartphone is used to measure the acceleration. WISDM 

Dataset ([10]), which contains approximately 1.098.207 

samples of data was used. 80% of the data was used for training 

and 20% for testing. They tried to build a deep network using 2 

RNNs fully connected with 2 LSTM layers stacked on top of 

each other with 64 hidden units in total. To calculate the loss, 

they use the L2 standard loss function, also  called   the   Least
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TABLE I 

COMPARATIVE ANALYSIS OF RELATED STUDIES 

Reference Architecture Activities Performances 

[4] SVM, RF, MLP SST, SSD, DST, DSD, E, ST, SD, SG, SW, W 83% F1-score 

[8] CNN SST, SSD, DST, DSD, E, ST, SD, SG, SW, W 92-96% F1-score 

[9] RNN-LSTM WUS, WDS, Jg, SD, ST, W 97% Accuracy 

[12] CNN R, W, CW, CCW, MUD, MLR 82.8% Accuracy 

[11] RF, HMMs, CNN-MLP, CNN-LSTM SD, ST, B, WUS, WDS, W 98.1% F-score 

[13] CNN F, R, J, W, WS, WQ, WUS, WDS  93.8% Accuracy 

This Study CNN, RNN, LSTM SST, SSD, DST, DSD, E, ST, SD, SG, SW, W 98.2% Accuracy 

 

Squared Error (LSE). For model optimization, the Adam 

Optimization algorithm, which is an extension of stochastic 

gradient descent, was used as the best choice for the deep 

learning model. As the learning model, the Tensorflow was 

used with 50 epochs and the batch size was 1024 (32 x 32). 

After training the model, the accuracy of the test was greater 

than 97%.  RNN and LSTM achieved 97% overall test 

accuracy. 

In [11], various techniques were used to develop a human 

activity recognition system using accelerometer sensors of 

smartwatches (LG G and Samsung Galaxy Gear) and 

smartphones (LG Nexus 4, Samsung Galaxy S+, Samsung 

Galaxy S3 and S3 mini). Six activities were targeted: sitting, 

standing, biking, walking, walking upstairs and walking 

downstairs. They evaluated two architectures for this study. The 

first one is an architecture composed of pre-processing, feature 

extraction and activity recognition/segmentation (RF and 

Hidden Markov Models (HMMs)). The second is an 

architecture with deep learning methods which are CNN-MLP 

and CNN-LSTM. For smartphones, modelling time sequences 

using HMM showed lower performance than the RF algorithm. 

The use of CNN-LSTM for modelling gave the best results for 

smartphones. In addition to the six activities, it was observed 

that the degradation for HMM or CNN-LSTM was lower when 

an additional "Null" class was included when the user switched 

between the two activities or did not perform any of these 

activities. 

In [12] CNN was applied on a dataset collected from a 

smartphone. Firstly, they analyzed the performance of machine 

learning algorithms. The data collected from the accelerometer 

and the gyroscope sensors were first pre-processed with noise 

filters and then sampled with a fixed size window for 2.5 

seconds for the extraction of features. 60% of the data was used 

for training and 40% for testing. A Support Vector Machine 

classifier with Linear kernel (LibSVM) and Fisher Linear 

Discriminants (FLD) were used to detect error percentages. It 

was observed that LibSVM was better than FLD in terms of 

classification accuracy. Besides, results show that the 

accelerometer data contributed more to the accuracy results 

than those of the gyroscope sensor. Secondly, the data was 

analyzed using CNN. According to the test results, the accuracy 

of the prediction using the accelerometer data was 82.8% and 

for the gyroscope data was 78%. As a result, it was concluded 

that the use of both could increase the accuracy of recognition. 

In [13] acceleration-based human activity recognition using 

the CNN deep architecture was investigated. CNN is commonly 

 
1 SST: smoking while sitting, SSD: smoking while standing, DST: drinking while 

sitting, DSD: drinking while standing, E: eating, ST: sitting, SD: standing, SG: 
smoking while talking in a group, SW: smoking while walking, W: walking, 

WUS: walking upstairs, WDS: walking downstairs, Jg: jogging, R: running, CW: 

used for image data, and they emphasized that the biggest 

difference between the three-axis accelerometer data and the 

image data is the size of the data and this considerably limits 

the construction of the CNN architecture. Therefore, it was 

determined that the size of the convolution core was 2 with the 

lowest error rate. The best parameters for activity recognition 

were determined and the model was trained. An Android 

application was developed for data collection. The data were 

collected from 100 healthy people (68 men and 32 women) in a 

natural environment and at different accelerometer positions. 

The activities were falling, running, jumping, walking, walking 

quickly, step walking, walking upstairs and walking 

downstairs. After pre-processing, 31.688 of labelled instances 

were obtained. 27.395 of them were used for the training and 

the rest 4.293 for testing phases. The CNN structure used in this 

study is composed of 3 convolution layers and 3 pooling. The 

CNN model performed better than the results of the manual 

extraction of time and frequency-based features (Fast Fourier 

transform and Discrete cosine transform coefficients) and SVM 

and an 8-layer deep belief network classification algorithm. As 

a result, based on the confusion matrix, it was determined that 

recognizing walking activity was the most difficult activity 

because it was often mixed with walking quickly, walking 

upstairs and downstairs. However, CNN achieved 93.8% 

accuracy on average. 

A comparison of related studies in terms of architectures, 

activities and best performance results are summarized in Table 

I1. In most of the studies, the CNN architecture is used [8,11-

13]. The studies that use a different dataset than ours focus on 

a smaller number of activities. As mentioned, in [8], the same 

dataset was used but only the CNN architecture was evaluated. 

In contrast, in this paper, we evaluate the impact of the three 

popular deep learning architectures, which are CNN, RNN and 

LSTM.  Moreover, we investigate the use of magnetometer 

sensor in combination with accelerometer and gyroscope 

sensors whereas some of the studies only focus on the use of 

accelerometer [9,11,13] or accelerometer and gyroscope 

[4,8,12]. 

III. METHODOLOGY 

A. Dataset Details 

In this paper, we focus on a dataset which was collected in our 

previous work [5]. 11 participants were involved in the data 

collection stage performing 10 different activities. A 

smartwatch (LG Watch R, LG Watch Urbane and Sony Watch 

clockwise movement, CCW: counterclockwise movement, MUD: moving up-

down, MLR: moving left-right, B: biking, F: falling, J: jumping, WS: step 

walking, WQ: walking quickly. 
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3 models) and a smartphone (Samsung Galaxy S2 and S3, 

placed in trousers’ pocket) were used to collect the data. A 

logger application was used to collect time-stamp, 

accelerometer, gyroscope and magnetometer readings in three 

dimensions from a smartwatch and a smartphone. All data was 

sampled at 50 Hz. However, based on the results of previous 

studies [4,5], since 10 Hz gives a good enough accuracy to 

recognize such human activities, we used a down-sampled 

version of the dataset at 10 Hz. 
TABLE II 

TYPES OF SCENARIOS 

Scenario 

type 
Sequence of activities in one cycle 

T1 SSD, W, SG, DST, SD, SW, SD, E, ST, SST, SD, DSD, W 

T2 SSD, ST, SG, ST, DST, SD, E, ST, SST, SD, DSD 

T3 SSD , ST, DST, SD, E, , ST, SST, SD, DSD, SD 

 

 

Fig. 1: The sample distribution according to the activities 

 

The dataset contains 10 different activities, which are four 

types of smoking (while sitting, standing, walking and in a 

group conversation), three activities with similar wrist 

movements (drinking while sitting, drinking while standing and 

eating) and three simple activities (sitting, standing and 

walking) without smoking. Each activity was performed for 5 

minutes by each participant and was repeated at least five times 

(not consecutively, at different times). The dataset contains 45 

hours of data, in which 17 hours are related to smoking and 28 

hours are related to the other activities. Smoking in a group 

conversation, smoking while walking and walking activities are 

performed by 8, 3 and 3 participants, respectively. The 

remaining 7 activities are performed by all 11 participants. 

Table II of [5] contains more detailed information about the 

dataset. Thus, the dataset consists of approximately 2.4 million 

lines (sensor readings), but the data was reshaped in the 

preprocessing step (or in other words we used windowing) and 

ts size was reduced to approximately 118000 by using timestep 

information. Figure 1 also shows the sample distribution 

according to the activities. 

 

The dataset file is transformed into a scenario file with the 

aim of making the order of activity sessions more realistic and 

similar to everyday life patterns. A scenario (sequence of 

activities) was created for each participant, as presented in 

Table II. For example, in the second column of T2 row in Table 

II, for one scenario cycle of participant 4 (P4), we assume that 

the participant starts smoking while standing, then sits and 

smokes in a group conversation. After that, she/he sits again and 

drinks a cup of coffee, then she/he stands and so on. As 

mentioned before, all participants were not performed all 

activities. Therefore, there are some differences in scenarios 

(see Table II and III for more details of differences). 

 

B. Deep Learning Architectures 

In this section, we briefly explain the deep learning 

architectures and the associated hyperparameters that are 

utilized in the paper. Further details about the deep learning 

architectures can be found in [14]. 

 

1) CNN 

Convolutional neural networks, CNN, is simply a neural 

network that uses convolution instead of the general matrix 

product in at least one of its layers. In CNN terminology, the 

first convolution variable is usually called an entry and the 

second variable is called a kernel. Convolution is applied to the 

input data with kernels to determine the features of the input. 

The output is called a feature map. The CNN is composed of 

one or more convolution layers, pooling layers, then after, one 

or more fully connected layers, such as a standard multi-layer 

neural network. CNN is used widely in many fields such as 

natural language processing, biomedical, image, video and 

audio processing. 

 

2) RNN 

RNN evaluates its input not only instantaneously, but based 

on previous inputs, unlike the feed-forward neural networks. In 

other words, the decision made for the input at time t-1 in RNN 

has an impact on the decision to be made at time t. Hence, in 

such networks, inputs combine current and previous 

information to generate the output. In other words, recurrent 

networks have a memory. Therefore, these networks are 

generally used to understand the structure of incoming data 

where it exists an order in data, such as in text, speech, time-

dependent sensors or statistical data. In recurrent networks, in 

order to correctly classify the inputs, the backpropagation 

method is used to calculate the gradient descent on the network 

and the weight matrices are updated. 

In this study, we use Vanilla RNN (VRNN). It has a simple 

architecture, but it may face problems related to gradient 

calculations. Gradient is an important metric used to adjust the 

weights of the network. However, in long connected networks, 

the effect of the error may decrease notably and therefore, the 

gradients may begin to be very close to zero. In other words, 

they begin to disappear. This is called the “vanishing gradient 

problem”. The other problem is that due to the structure of the 

network, all derivatives are constantly multiplied with each 

other. Values obtained by multiplications can grow enormously 

and even explode. This is called “exploding gradient problem”.
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Fig.2. The utilized LSTM architecture 

3) LSTM 

LSTM that is invented to avoid the vanishing gradient 

problem is used in backpropagation to limit error values from 

layers.  Instead of a single neural network layer, the repeating 

module in the LSTM structure has four gates that are specially 

interacted. This structure receives information outside.  The 

cells decide what to store, when to read, write or delete 

information via the gates. These gates have a network structure 

and activation function. Just like in neurons, they allow to pass 

or stop the incoming information according to the weights.  The 

cell learns to receive or release data thanks to the structure that 

uses these weights calculated during the learning process of the 

recurrent network. 

In Figure 2, the architectural details of the used LSTM model 

are presented.  Firstly, the global variables (hyperparameters, 

class number, number of features, time step, etc.) are defined. 

Different values are assigned to hyperparameters to investigate 

their impact as discussed in Section IV. The number of classes 

is 10 and the number of attributes is 9, including data from three 

sensors (accelerometer, gyroscope and magnetometer) and 

from three dimensions (x, y and z-axis).  The data is divided 

into two subsets: 80% for training and the remaining 20% for 

testing. A deep network was built by stacking multiple layers of 

LSTM memory units with 2 fully connected RNN layers. LSE 

or L2-norm was used as the loss function to minimize the loss 

and AdamOptimizer is used as the optimization algorithm. The 

model is formed with the specified hyperparameters and the 

accuracy value for each epoch was computed, as explained in 

Section IV. 

 
TABLE III 

DETAILS OF THE DATA COLLECTED PER PARTICIPANT 

Participant id 
Type of 

Scenario 

Number of 

scenario cycles 

Total duration  

(minutes) 

1 T1 9 630 

2 T1 10 700 

3 T1 10 700 

4 T2 8 480 

5 T2 4 240 

6 T2 4 240 

7 T2 4 240 

8 T2 5 300 

9 T3 5 250 

10 T3 4 200 

11 T3 4 200 

 

C. Hyperparameters 

Like other machine learning techniques, deep learning 

algorithms also include many hyperparameters that impact 

performance. Some of these hyperparameters affect the cost of 

time and memory when the algorithm is executed, while some 

others affect the ability of the trained model to achieve the 

correct results on test data. In this study, we investigated the 

following hyperparameters and their effect on success and loss 

rates: 

 Epoch number: While creating a model, not all of the 

data is included in the training at the same time. The 

first part is trained, after the performance of the model 

is tested, backpropagation is updated according to the 

successful results. Then, the weights are updated again 

by retraining the model with the new training set.  This 

process is repeated at each training step, called epoch, 

until the optimal weight values for the model are 

calculated. The epoch numbers used in this study are 

30, 60 and 50. 

 Batch size: In deep learning applications, learning by 

processing all the data in the dataset is a costly task in 

terms of time and memory because of the 

backpropagation. In this process, the gradient descent 

on the network is calculated and the weight values are 

updated accordingly. The larger the amount of data in 

this calculation, the longer the calculation takes. To 

solve this problem, the dataset is splitted into small 

groups and the learning process is performed on them. 

The value specified as a batch size means how much 

data the model can process at the same time. The batch 

sizes used in this study are 512, 1024 and 2048. 

 Number of hidden layers: The most significant 

parameter that separates deep learning approaches 

from the other neural networks is the number of hidden 

layers. This is the concept of depth. As the number of 

hidden layers increases, the model learns better, at 

some point, however, as the number of hidden layers 

increases, the backpropagation effect is less than the 

first few layers. The number of hidden layers used in 

this study are 32 and 64. 

 Learning rate: In deep learning methods, the 

parameters are updated by the backpropagation 

process. In the backpropagation process, this update is 

performed by calculating the new weight value by 

subtracting the result from the weight values and 

finding the difference by taking backward derivative 

called chain rule and multiplying the difference value 

by learning rate parameter. This parameter can be set 

as a fixed value, or as a step-by-step incremental value, 

depending on the momentum value or can be learned 

by adaptive algorithms during learning. The values of 

learning rates used in this study are 0.0001 and 0.0025. 

 Optimization algorithm: In deep learning 

applications, the learning process is basically an 

optimization problem. To solve nonlinear problems by 

choosing the optimum value, optimization methods 

are used. Optimization algorithms such as stochastic 

gradient descent, adamax, adagrad, are generally used 

in deep learning applications. There are differences in 

performance and speed between these algorithms. In 
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this study, AdamOptimizer is used as the optimization 

algorithm. 

 Activation function: In multilayer artificial neural 

networks, activation functions are used for nonlinear 

transformation operations. The output of the hidden 

layers is normalized by using different activation 

functions such as sigmoid, tanh, ReLu, and others to 

obtain back derivative in the hidden layers. In this 

study, Relu is selected as the activation function. 

 Time step: RNNs have a recurring hidden state, the 

activation of which is determined by the previous 

activation. They can be utilized in sequential data 

because they share parameters for different time steps.  

The length of the input sequence is called time step. 

The time steps values used in this study are 10, 25, 50, 

100 and 200. 

We investigate the impact of these parameters in Section IV. 

 
TABLE IV 

IMPACT OF HYPERPARAMETERS ON THE PERFORMANCE OF LSTM 
(WITH ACCELEROMETER AND GYROSCOPE, SMARTWATCH) 

Epoch 
Hidden 

Layer 

Batch 

Size 

Learning 

Rate 

Time 

Steps 
Accuracy Loss 

Run 

Time  

30 32 512 0.0001 200 0.85 0.90 19:28.1 

30 32 512 0.0025 200 0.92 0.40 17:52.0 

30 32 1024 0.0001 200 0.83 0.98 09:37.7 

30 32 1024 0.0025 200 0.91 0.42 10:03.7 

30 32 2048 0.0001 200 0.82 1.06 05:56.3 

30 32 2048 0.0025 200 0.90 0.52 05:45.4 

30 64 512 0.0001 200 0.90 1.09 18:46.0 

30 64 512 0.0025 200 0.93 0.39 17:57.6 

30 64 1024 0.0001 200 0.88 1.32 10:09.4 

30 64 1024 0.0025 200 0.93 0.42 10:40.3 

50 32 512 0.0001 200 0.87 0.76 28:52.2 

50 32 512 0.0025 200 0.92 0.37 34:22.1 

50 32 1024 0.0001 200 0.86 0.83 0:21:37 

50 32 1024 0.0025 200 0.93 0.38 0:19:07 

50 64 1024 0.0025 200 0.93 0.38 0:17:02 

50 64 1024 0.0025 100 0.89 0.46 09:22.0 

50 64 1024 0.0025 50 0.86 0.54 04:58.2 

60 32 512 0.0001 200 0.88 0.70 35:27.2 

60 32 512 0.0025 200 0.93 0.36 34:39.9 

60 32 1024 0.0001 200 0.83 0.90 10:59.9 

60 32 1024 0.0025 200 0.89 0.46 09:51.1 

60 32 2048 0.0001 200 0.83 0.93 05:56.1 

60 32 2048 0.0025 200 0.88 0.51 05:49.4 

60 64 1024 0.0025 200 0.90 0.43 10:41.3 

IV. PERFORMANCE ANALYSIS 

In this section, we present the performance of the deep learning 

algorithms in terms of different parameters. We use four 

performance metrics: i) accuracy, also known as the true 

positive rate, ii) F1-score which is the harmonic mean of 

precision and recall, iii) run time which is time spent to train 

and test an algorithm and iv) loss  (LSE or L2-norm was used). 

As mentioned, we performed the experiments with scenario 

data to make the experiments similar to daily life patterns where 

activities are performed sequentially. But in our previous work 

 
2  Although the accuracy values are presented between 0 and 1 in the table, 

we refer to the values in percentage in the text, for ease of reading and 

comparing with the results of the related work. 

[4], we applied different machine learning algorithms on the 

dataset without considering a scenario. For the experiments, we 

used Python programming language and TensorFlow [15] an 

open-source machine learning library developed by Google. 

Evaluations are performed on a computer that has four NVidia 

Tesla P100 GPUs, but only one GPU was reserved for the runs. 

A. Performance of LSTM 

In this section, we present the results obtained with different 

combinations of hyperparameters using data from the 

accelerometer and the gyroscope sensors of smartwatches. 

Then, we examine the impact of also using data from the phone 

on the recognition performance of activities. Finally, we 

perform tests using accelerometer, gyroscope, and 

magnetometer sensors to better understand the impact of the 

sensor type when they are used alone or in combination. 

 

1) Impact of hyperparameters 

  In this section, we evaluate the performance of LSTM 

according to different hyperparameter values that were 

explained in Section III.C. In Table IV, we present the results: 

3 different values for epoch, 2 values for the number of hidden 

layers, 3 values for batch size, 2 values for learning rate and 3 

values for time steps are evaluated. The values are selected 

according to the values used in similar studies that were 

presented in Section II. Accuracy and loss results and also Run 

Time values, presented in hour:minute:second.millisecond 

format, are also shown in the table. In the following, we 

summarize our findings for different hyperparameters: 

 Epoch number: In [9] the authors obtained an 

accuracy of 97% with an epoch number of 50 using an 

LSTM model. Taking this into account, we started 

with epoch number 30 and increased the value till 60. 

According to the results, if the other hyperparameters 

are kept constant and only the epoch numbers are 

changed, for example when the number of hidden 

layers is 32, the batch size is 512, the learning speed is 

0.0001, the time step is 200 and the epoch number is 

30, the accuracy value is obtained as 84%.2 When the 

epoch number is increased to 50, 1 the accuracy is 

87%. If we further increase the epoch number to 60, 

the accuracy is 87%. We observed that increasing the 

number of epochs generally increases success to a 

certain extent, but after a point, success remains 

constant or begins to decrease. According to this result 

and the other values presented in Table IV, the results 

with epoch number as 50 are better than 30. Since the 

success rates did not increase for the epoch number of 

60 and the execution time was extended, we did not 

further increase the number of epochs. 

 Number of hidden layers: Based on the results, 

increasing the number of hidden layers has a positive 

effect on the performance, up to a certain success rate, 

but does not affect that. For our experiments, this rate 

is 92% of accuracy. For example, when epoch number 
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is 30, the number of hidden layers is 32, the batch size 

is 512, the learning rate is 0.0001, and the time step is 

200, the accuracy is 84% and when the number of 

hidden layers is increased to 64, the accuracy increases 

to 89%. However, when the epoch number is 50, the 

batch size is 1024, the learning rate is 0.0025 and the 

time step is 200, the increase in the number of layers 

hidden from 32 to 64 does not change the accuracy 

result of 92%. 

 Batch size: In our study, 3 different batch sizes, which 

are 512, 1024 and 2048, were used. Generally, when 

we increase the batch size, we found that the accuracy 

did not change or decrease. For the values of 512 and 

1024, when we increase the batch size, accuracy 

decreases for learning rate 0.0001, accuracy 

sometimes decreases and sometimes remains constant 

for 0.0025. For example, when the batch size of 512 

for the epoch number of 30, the number of hidden 

layers of 32, the learning rate of 0.0001 and the time 

step value of 200 the accuracy value was 84% while 

for a batch size of 1024 the accuracy was 82%. For the 

same values, there was no difference in accuracy 

results depending on the batch size of 1024 and 2048. 

Besides, increasing the batch size from 1024 to 2048 

at learning rate 0.0001 and 0.0025 for epoch number 

of 60, hidden layer of 32, time step of 200 decreased 

1% the accuracy value. 

 Learning rate: We selected two different learning 

rate values which are 0.0001 and 0.0025. As can be 

seen in Table IV, for the LSTM model, better results 

are obtained for the learning rate of 0.0025. 

 Time step: We used this hyperparameter at a constant 

value of 200 at the beginning. However, we also 

worked on the RNN model and observed that 

decreasing the time step in the RNN model had a 

positive effect. For this reason, also for LSTM, we 

tested the epoch number as 50, the number of hidden 

layers as 64, the batch size as 1024 and the learning 

rate as 0.0025 by decreasing the time step parameter. 

Consequently, we have determined that the best value 

of this hyperparameter is 200 for the LSTM model 

because we obtain smaller accuracy values compared 

to the RNN model by decreasing this value. 

 

Based on the results of LSTM, we observe the best 

combination of hyperparameters as follows: the epoch number 

as 50, the number of hidden layer as 64, batch size as 1024, 

learning rate as 0.0025 and time step as  200 are best values 

which have approximately an accuracy of 0.92, or in other 

words 92%, and a loss value of 0.35. Run times are also often 

less than 30 minutes, only in three cases, it was observed to be 

more. 

Figure 3a shows the accuracy and loss curves in the training and 

testing phases with the best hyperparameter combination. It was 

found that when the number of epochs increases, the accuracy 

increases and the loss decreases. Besides, the curves of the test 

data show that the model does not overfit. The actual and 

predicted values for each activity is shown in a confusion 

matrix in Figure 3b with the best performing parameter 

combination. It was observed that the most confusing activity 

couples are smoking in a group (smokeGroup) and smoking 

while standing (smokeSD), drinking while sitting (drinkST) 

and smoking while sitting (smokeST), drinking while sitting 

(drinkST) and drinking while standing (drinkSD), drinking 

while standing (drinkSD) and smoking while standing 

(smokeSD). This was also reported in our previous work [5]. 

 

2) Impact of using watch and/or phone 

Considering the activities included in the dataset, it was 

important to distinguish smoking activity from the other 

activities which have similar wrist movements, such as drinking 

activities. That is why we mainly used the data collected from 

a smartwatch,  but  users  also  carried  a smartphone  in   their  
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smokeSD 1516 29 0 115 7 7 10 4 5 198 

smokeST 34 1640 11 30 145 12 8 0 0 12 

eat 0 1 1847 26 5 11 4 0 0 3 

drinkSD 18 8 22 1638 134 0 17 1 5 49 

drinkST 1 126 15 138 1546 49 11 0 0 6 

sit 0 6 5 1 12 4402 0 0 0 6 

stand 0 2 3 13 3 0 5609 2 0 1 

smokeWalk 0 0 0 4 0 0 1 803 6 11 

walk 0 0 0 0 0 0 0 21 1633 2 

smokeGroup 187 9 8 41 5 4 0 21 9 1209 

(a) Accuracy and loss for LSTM               

 (b) Confusion matrix for LSTM 

Fig. 3: Results with the best hyperparameter combination for LSTM (with 
accelerometer and gyroscope, smartwatch) 

pockets, and in this section, we explore whether smartphone 

sensors also have an impact on the performance of activity 

recognition. Additionally, we investigate the performance with 

different sensor combinations here and also in Section IV.A.3. 
 

TABLE V 
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EVALUATION RESULTS (%) WITH DIFFERENT SENSOR AND 

DEVICE COMBINATIONS USING LSTM (ACC: ACCELEROMETER, 

GYR: GYROSCOPE AND MAG: MAGNETOMETER) 

 Smartwatch  Smartphone 
 Smartwatch + 

Smartphone 

 

 A
cc

u
ra

cy
 

 F
1

- 
sc

o
re

 

P
re

ci
si

o
n

 

R
ec

a
ll

 

 A
cc

u
ra

cy
 

F
1

- 
sc

o
re

 

P
re

ci
si

o
n

 

R
ec

a
ll

 

 A
cc

u
ra

cy
 

F
1

- 
sc

o
re

 

P
re

ci
si

o
n

 

R
ec

a
ll

 

Acc 92.0 92.0 92.2 92.0 88.9 88.8 88.8 88.9 96.9 96.9 96.9 96.9 

Acc+Gyr 92.7 92.7 92.7 92.7 90.6 90.5 90.5 90.6 96.9 96.9 96.9 96.9 

Acc+Mag 94.7 94.7 94.7 94.7 96.1 96.1 96.3 96.1 97.6 97.6 97.7 97.6 

Acc+Gyr+Mag 95.6 95.6 95.6 95.6 96.2 96.2 96.2 96.2 98.2 98.2 98.3 98.2 

 

Table V shows the accuracy, precision, recall and F1-scores 

(in percentage) obtained by these devices and sensors. Device-

based comparison shows that the success rate is higher when 

using smartwatch data as expected since most of the activities 

include wrist motions. Besides, the achieved success rates with 

smartphone data are observed to be the highest using 

accelerometer-magnetometer and accelerometer- gyroscope-

magnetometer sensor data, which is about 95-96%. However, 

the success rates for the smartwatch with different sensor 

combinations are not very different and it is above 92%. When 

the data of the two devices are used together, there is an increase 

of at least 4% in F1-scores in case of using only accelerometer 

and accelerometer-gyroscope. There is a slight increase when 

accelerometer-magnetometer and accelerometer-gyroscope-

magnetometer combinations are used. We observe that we can 

achieve slightly higher success rates when the two devices are 

used together. 

 

3) Comparison of sensors 

As mentioned, results according to the different sensor and 

device combinations are presented in Table V. If a smartwatch 

or a smartphone is used alone, the minimum success rates are 

observed with using only the accelerometer sensor. When two 

other sensors are used together with the accelerometer, we 

observe that the addition of magnetometer increases the success 

rates more than using gyroscope, especially when using the 

only smartphone. When all the sensors are used together, results 

are very similar to using accelerometer and magnetometer 

combination.  

When two devices are used together, even with using only 

accelerometer data, we achieve more than 96.9% accuracy and 

F1-score. If the magnetometer data is fused with the 

accelerometer data, there is a slight increase, about 0.7%, both 

in accuracy and F1-scores. Using all the sensors brings a similar 

increase in the results which is about 0.6%. 

Sampling more sensors may increase battery consumption, 

particularly for the smartwatch. In this case, rather than using 

other sensors, it may be a better option to use smartwatch and 

smartphone together, especially considering the fact that 

smartwatches are usually used in combination with a 

smartphone. If it is not preferred to use both devices due to 

resource consumption, then the only smartwatch can be used 

considering the target activities. 

 

 

 

TABLE VI 

IMPACT OF HYPERPARAMETERS ON THE PERFORMANCE OF RNN 

(WITH ACCELEROMETER AND GYROSCOPE, SMARTWATCH) 

Epoch 
Hidden 

Layer 

Batch 

Size 

Learning 

Rate 

Time 

Steps 
Clip Accuracy Loss Run Time 

30 32 512 0.0001 200 --- 0.549 1.604 0:06:38.128 

30 32 512 0.0025 200 --- 0.24 2.311 0:06:31.41 

30 32 1024 0.0001 200 --- 0.492 1.67 0:03:41.9 

30 32 1024 0.0025 200 --- 0.49 1.514 0:03:53.9 

30 32 2048 0.0001 200 --- 0.374 2.077 0:02:32.45 

30 32 2048 0.0025 200 --- 0.576 1.405 0:02:13.6 

30 64 512 0.0001 200 --- 0.473 2.208 0:06:55.286 

30 64 512 0.0025 200 --- 0.311 2.079 0:06:57.55 

30 64 1024 0.0001 200 --- 0.504 2.172 0:03:44.2 

50 64 1024 0.0001 50 --- 0.757 1.421 0:01:38.724 

50 64 1024 0.0025 100 5 0.789 0.768 0:03:33.774 

50 64 1024 0.0025 100 10 0.832 0.622 0:03:25.44 

50 64 1024 0.0025 200 --- 0.551 1.476 0:06:34.59 

50 64 1024 0.0025 200 5 0.773 0.868 0:06:04.45 

100 32 1024 0.0025 100 -- 0.72 0.88 0:06:29. 

100 64 512 0.0001 10 --- 0.769 1.079 0:01:42.704 

100 64 512 0.0001 25 --- 0.774 1.049 0:03:30.680 

100 64 512 0.0001 25 5 0.788 1.076 03:49.52332 

100 64 512 0.0025 100 --- 0.827 0.572 0:11:34.07 

100 64 1024 0.0001 25 --- 0.762 1.268 0:01:44.53 

100 64 1024 0.0025 50 5 0.836 0.543 0:03:09.547 

100 64 1024 0.0025 100 -- 0.769 0.844 0:06:00 

100 64 1024 0.0025 100 5 0.84 0.542 0:06:50.76 

300 64 256 0.0001 25 5 0.811 0.768 0:23:41.8066 

 

B. Performance of RNN 

We present the results obtained using the VRNN model with 

different hyperparameter values in Table VI. The columns 

include the hyperparameters. Clip column includes the values 

used in gradient clipping which is a method to prevent 

exploding gradients deep architectures. As we will explain, 

RNN model experienced the gradient problem and these values 

are used to solve the problem. 

To compare the results with the results of the LSTM model 

(presented in Table IV), for example, the accuracy of VRNN at 

50 epochs, 64 hidden layers, 1024 batch sizes and 0.0025 

learning rate and 50 time steps (as mentioned, these values were 

the best performing combination in LSTM), is about 77%, 

which was observed to be 92% accuracy and 0.38 loss for 

LSTM. In general, lower accuracy values and higher loss values 

are obtained. As mentioned, when we are dealing with large sets 

of sequential series of data, we frequently encounter the 

gradient disappearance problem in VRNN. While the weight 

matrix is being updated in the backtracking during the training 

phase, its effect on the result is slow because the gradient values 

are too small, and we think that the model could not be well 

trained. 

In Figure 4 we present the learning curve for VRNN. 

Compared to Figure 3a, a smoother curve was obtained for 

LSTM. After each training phase, it was observed that certain 

values of the weight matrix were very small. To solve the 

problem of disappearing gradient and to optimize the results, 

we first reduced the parameter time step because VRNN may 

not follow the previous information. At the same time, we have 

increased the number of epochs. Thanks to these improvements, 

we obtained the best accuracy result (about 84%) and loss result 
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(about 0.54) while using 100 epochs, 64 hidden layers, 1024 

batch sizes, 0.0025 learning rate and 50 time steps. However, 

recognition results of the LSTM model are still higher than 

RNN because, as we mentioned above, it can be difficult to train 

RNN models due to the problems that require learning long-

term dependencies with the gradient problems. As LSTM 

actually prevents problems that arise in RNNs, thanks to the 

cells in its structure, the trained model predicts the new test data 

more accurately. On the other hand, run times are often less than 

the run times observed with the LSTM architectures. 

Fig. 4: Accuracy and loss for RNN with the best hyperparameter combination 

(with accelerometer and gyroscope, smartwatch) 

 

C. Performance of CNN 

In [8], CNN was applied on the same dataset but the dataset 

was divided into 3 groups according to the types of activities 

unlike the organization of the scenarios in this study, as 

presented in Table II. In that study, an F1-score of 92-96% was 

reported. In this study, we achieved F1-scores close to these 

results and even higher with the LSTM model. However, we 

wanted to compare the performance of LSTM and CNN also on 

the scenario data. 

CNNs have different structures than RNNs. For example, in 

CNNs, instead of the time step parameter, the window size 

parameter determines the size of the input. Besides, the 

convolution process in CNNs is performed using kernels. 

Therefore, kernel size and stride of this kernel are important 

parameters. Epoch number, hidden layer number, batch size, 

learning rate, activation function and optimization algorithm 

parameters are similar. The CNN architecture consists of a 

convolution layer with the Relu activation function, max 

pooling layer with a stride of 2 and a convolution layer. One 

fully connected layer and an output layer with Softmax 

complete the structure of the model.  

In the analysis, when we used the whole scenario dataset, we 

encountered a resource shortage error. Accordingly, we reduced 

the data size and tested the model with only 509,170 rows 

(about 14.14 hours) from the dataset (original dataset has 

2,349,970 rows, about 65.27 hours). We included less 

repetitions of activities in the dataset. As in RNN models, this 

dataset is divided into two groups: 80% training and 20% 

testing. The accuracy-loss graph of this model is given in Figure 

5a and the confusion matrix is given in Figure 5b. The highest 

accuracy obtained for the CNN model was approximately 71% 

using 50 epochs, 1000 hidden layers, 16 batch sizes, 0.0001 

learning rate, 300 window sizes and 60 kernel sizes. As it can 

be seen in the confusion matrix and the loss values, the 

prediction results are not bad except for smokeGroup, smokeSD 

and smokeWalk activities. Specifically, the number of false 

predictions for smokeGroup-smokeSD and smokeGroup-

smokeWalk activities is greater than the number of correct 

predictions. Compared to the results reported in [8], there is a 

20% difference in terms of accuracy. We think that the 

difference could be due to the fact that we used a reduced 

version of the scenario data while they used parts of the data 

organized differently. As future work, CNN experiments should 

be repeated considering the whole dataset after eliminating the 

resource shortage error. 

  

 

 
a) Accuracy and loss for CNN                       (b) Confusion matrix for CNN 

Fig. 5: Results with the best hyperparameter combination for CNN (with accelerometer and gyroscope, smartwatch) 
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smokeSD 25 0 0 0 1 0 1 7 1 17 

smokeST 5 27 4 7 2 1 1 0 0 1 

eat 0 5 35 5 3 0 0 0 0 0 

drinkSD 1 8 3 22 9 1 0 1 2 1 

drinkST 4 2 0 5 36 1 0 2 0 2 

sit 1 0 0 1 6 82 1 2 2 0 

stand 0 1 0 0 0 0 141 0 0 1 

smokeWalk 10 2 1 1 1 0 0 18 4 12 

walk 0 0 0 0 0 0 0 5 90 0 

smokeGroup 13 5 1 2 1 0 1 13 3 10 
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D. Summary 

 

To summarize our findings, when we consider the three deep 

learning architectures, we observe that the recognition 

performance with LSTM is much higher than that of CNN and 

RNN. LSTM works better with sequential data and with the cell 

structure in the architecture, it models the data better than RNN. 

CNN is mostly used for image recognition problems or with 

sensor data it is used in the feature extraction step in some 

studies [7]. One could also use a combination of different 

algorithms or ensemble methods [16], however since LSTM 

achieved a high recognition accuracy, we did not further 

evaluate the performance with other algorithms. We also 

explored the performance with different hyper-parameters and 

analyzed how selecting different values for epoch number, 

batch size, number of hidden layers, learning rate, may affect 

the performance. We report the values where we achieved the 

highest recognition accuracies and did not consider training 

time or memory limitations. For example, using 64 hidden 

layers instead of 32 will increase the training time and if 

training time is an important parameter than this tradeoff should 

be analyzed. It may be argued that training and running deep 

learning models are costly on resource-limited wearable and 

mobile devices. However, recent mobile deep learning 

platforms, such as TensorFlow Lite, CoreML make it possible 

to train and run deep learning algorithms on mobile devices.       

One of the questions that we focused on was the effect of 

using different sensors, accelerometer alone and together with 

gyroscope and magnetometer. Using other sensors besides 

accelerometer slightly increases the success rates, however 

sampling three sensors increases battery consumption. Hence, 

only accelerometer can be used if battery level is critical. 

Another question was whether to use phone sensors besides the 

smartwatch sensors. Again, we observe a slight increase in 

success rates when the two devices are used together. However, 

using smartwatch alone also exhibits good performance. As 

mentioned, rather than using the three sensors, it may be a better 

option to use a smartwatch and a smartphone together, since 

smartwatches are usually used in combination with a 

smartphone.  

 

V. CONCLUSION 

In this paper, we studied the problem of sensor-based 

smoking recognition using three deep learning architectures 

(LSTM, RNN and CNN) with different hyperparameter 

settings. We use a dataset of 10 different activities collected 

from 11 participants with the accelerometer, gyroscope and 

magnetometer sensors embedded in smartphones and 

smartwatches. Experiment results show that the performance of 

LSTM is much higher than that of CNN and RNN. The best 

hyperparameters are observed as 50 epochs, 64 hidden layers, 

1024 batch size, 0.0025 learning rate and 200 time step for 

LSTM. When the performance of sensors and devices are 

compared, the highest performance, 98.2% accuracy, is 

achieved using the fusion of accelerometer, gyroscope and 

magnetometer data of smartphone and smartwatch. It is 

observed that the magnetometer improves performance much 

more than the gyroscope when used with the accelerometer. 

The maximum F1-score for all types of devices and sensors is 

observed to be about 98.2% with a combination of three sensors 

from smartwatch and smartphone data. 

In this study, we focused specifically on smoking activity 

recognition. However, this study can be extended to different 

types of activities and also real-time activity recognition can be 

considered. Moreover, we focused on the usage of deep 

learning architectures separately, however different 

combinations of the architectures or ensemble methods can also 

be evaluated. 
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