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Abstract
We continue the study of freezing sets for digital images introduced in [L. Boxer and P.C.
Staecker, Fixed point sets in digital topology, 1, Applied General Topology 2020; L. Boxer,
Fixed point sets in digital topology, 2, Applied General Topology 2020; L. Boxer, Convexity
and Freezing Sets in Digital Topology, Applied General Topology, 2021]. We prove methods
for obtaining freezing sets for digital images (X, ci) for X ⊂ Z2 and i ∈ {1, 2}. We give
examples to show how these methods can lead to the determination of minimal freezing
sets.
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1. Introduction
A digital image is a graph typically used to model an object in Euclidean space that it

represents. Researchers in digital topology have had much success using methods inspired
by classical topology to show that digital images have properties such as connectedness,
continuous function, homotopy, fundamental group, homology, automorphism group, Eu-
ler characteristic, et al., analogous to those of the objects represented.

However, the fixed point properties of a Euclidean object and its digital representative
are often quite different. If f : X → X is a continuous function on a Euclidean space,
knowledge of the fixed point set of f , Fix(f), often tells us little about f |X\Fix(f). By
contrast, if f : (X, κ) → (X, κ) is a digitally continuous function, knowledge of Fix(f)
often tells us much [2–4] about f |X\Fix(f).

The study of freezing sets [2,3] helps us deal with the following question: If f : (X, κ) →
(X, κ) is a digitally continuous function and A ⊂ Fix(f), must f = idX? In this paper,
we expand our knowledge of freezing sets in digital images.

2. Preliminaries
Much of this section is quoted or paraphrased from [2,3] and other references.
We use Z to indicate the set of integers.
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2.1. Adjacencies
The cu-adjacencies are commonly used in digital topology. Let x, y ∈ Zn, x ̸= y, where

we consider these points as n-tuples of integers:

x = (x1, . . . , xn), y = (y1, . . . , yn).

Let u ∈ Z, 1 ≤ u ≤ n. We say x and y are cu-adjacent if
• there are at most u indices i for which |xi − yi| = 1, and
• for all indices j such that |xj − yj | ̸= 1 we have xj = yj .

Often, a cu-adjacency is denoted by the number of points adjacent to a given point in Zn

using this adjacency. E.g.,
• In Z1, c1-adjacency is 2-adjacency.
• In Z2, c1-adjacency is 4-adjacency and c2-adjacency is 8-adjacency.
• In Z3, c1-adjacency is 6-adjacency, c2-adjacency is 18-adjacency, and c3-adjacency

is 26-adjacency.
For κ-adjacent x, y, we write x ↔κ y or x ↔ y when κ is understood. We write x -κ y

or x - y to mean that either x ↔κ y or x = y.
We say {xn}k

n=0 ⊂ (X, κ) is a κ-path (or a path if κ is understood) from x0 to xk if
xi -κ xi+1 for i ∈ {0, . . . , k − 1}, and k is the length of the path.

A subset Y of a digital image (X, κ) is κ-connected [9], or connected when κ is under-
stood, if for every pair of points a, b ∈ Y there exists a κ-path in Y from a to b.

We define
N(X, κ, x) = {y ∈ X | x ↔κ y}.

N∗(X, κ, x) = {y ∈ X | x -κ y} = N(X, κ, x) ∪ {x}.

Definition 2.1 ([3]). Let X ⊂ Zn. The boundary of X with respect to the ci adjacency,
i ∈ {1, 2}, is

Bdi(X) = {x ∈ X | there exists y ∈ Zn \ X such that y ↔ci x}.

Note Bd1(X) is what is called the boundary of X in [8]. However, for this paper, Bd2(X)
offers certain advantages.

2.2. Digitally continuous functions
Material in this section is quoted or paraphrased from [2].
The following generalizes a definition of [9].

Definition 2.2 ([1]). Let (X, κ) and (Y, λ) be digital images. A function f : X → Y is
(κ, λ)-continuous if for every κ-connected A ⊂ X we have that f(A) is a λ-connected subset
of Y . If (X, κ) = (Y, λ), we say such a function is κ-continuous, denoted f ∈ C(X, κ). 2

When the adjacency relations are understood, we may simply say that f is continuous.
Continuity can be expressed in terms of adjacency of points:

Theorem 2.3 ([1,9]). A function f : (X, κ) → (Y, λ) is continuous if and only if x ↔κ x′

in X implies f(x) -λ f(x′).

Similar notions are referred to as immersions, gradually varied operators, and gradually
varied mappings in [5, 6].

For a positive integer n and i ∈ {1, . . . , n} let pi : Zn → Z be the ith projection function
defined as follows. For x = (x1, . . . , xn) ∈ Zn, pi(x) = xi.
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2.3. Digital disks and bounding curves
Material in this section is largely quoted or paraphrased from [3].
A c2-connected set S = {xi}n

i=1 ⊂ Z2 is a (digital) line segment if the members of S are
collinear.

Remark 2.4 ([3]). A digital line segment must be vertical, horizontal, or have slope of
±1. We say a segment with slope of ±1 is slanted.

A (digital) κ-closed curve is a path S = {si}m−1
i=0 such that s0 = sm−1, and 0 < |i − j| <

m − 1 implies si ̸= sj . If si ↔κ sj implies |i − j| mod m = 1, S is a (digital) κ-simple
closed curve. For a simple closed curve S ⊂ Z2 we generally assume

• m ≥ 8 if κ = c1, and
• m ≥ 4 if κ = c2.

These are necessary for the Jordan Curve Theorem of digital topology, below, as a c1-simple
closed curve in Z2 must have at least 8 points to have a nonempty finite complementary
c2-component, and a c2-simple closed curve in Z2 must have at least 4 points to have a
nonempty finite complementary c1-component. Examples in [8] show why it is desirable
to consider S and Z2 \ S with different adjacencies.

Theorem 2.5 ([8]). (Jordan Curve Theorem for digital topology) Let {κ, κ′} = {c1, c2}.
Let S ⊂ Z2 be a simple closed κ-curve such that S has at least 8 points if κ = c1 and such
that S has at least 4 points if κ = c2. Then Z2 \ S has exactly 2 κ′-connected components.

One of the κ′-components of Z2 \ S is finite and the other is infinite. This suggests the
following.

Definition 2.6 ([3]). Let S ⊂ Z2 be a c2-closed curve such that Z2 \ S has two c1-
components, one finite and the other infinite. The union D of S and the finite c1-
component of Z2\S is a (digital) disk. S is a bounding curve of D. The finite c1-component
of Z2 \ S is the interior of S, denoted Int(S), and the infinite c1-component of Z2 \ S is
the exterior of S, denoted Ext(S).

Definition 2.7 ([3]). Let X ⊂ Z2 be a digital disk. We say X is thick if the following are
satisfied. For some bounding curve S of X,

• for every slanted segment S of Bd2(X), if p ∈ S is not an endpoint of S, then
there exists c ∈ X such that (see Figure 1)

c ↔c2 p ̸↔c1 c, (2.1)

and
• if p is the vertex of a 90◦ (π/2 radians) interior angle θ of S, then there exists

q ∈ Int(X) such that
– if θ has horizontal and vertical sides then q ↔c2 p ̸↔c1 q (see Figure 2);
– if θ has slanted sides then q ↔c1 p (see Figure 3);

and
• if p is the vertex of a 135◦ (3π/4 radians) interior angle θ of S, there exist b, b′ ∈ X

such that b and b′ are in the interior of θ and (see Figure 4)

b ↔c2 p ̸↔c1 b and b′ ↔c1 p.

2.4. Tools for determining fixed point sets
Material in this section is largely quoted or paraphrased from [3] and other references

as indicated.
The following assertions are useful in determining fixed point and freezing sets.
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Figure 1. [3] p ∈ uv in a bounding curve, with uv slanted. Note u ̸↔c1 p ̸↔c1 v,
p ↔c2 c ̸↔c1 p, {p, c} ⊂ N(Z2, c1, b) ∩ N(Z2, c1, d). If X is thick then c ∈ X. (Not
meant to be understood as showing all of X.)

Figure 2. [3] ∠apb is a 90◦ (π/2 radians) angle of a bounding curve of X at
p ∈ A1, with horizontal and vertical sides. If X is thick then q ∈ Int(X). (Not
meant to be understood as showing all of X.)

Figure 3. [3] ∠apb is a 90◦ (π/2 radians) angle between slanted segments of a
bounding curve. If X is thick then q ∈ Int(X). (Not meant to be understood as
showing all of X).

Figure 4. [3] ∠apq is an angle of 135◦ degrees (3π/4 radians) of a bounding curve
of X at p, with ap∪pq a subset of the bounding curve. If X is thick then b, b′ ∈ X.
(Not meant to be understood as showing all of X.)

Proposition 2.8 (Corollary 8.4 of [4]). Let (X, κ) be a digital image and f ∈ C(X, κ).
Suppose x, x′ ∈ Fix(f) are such that there is a unique shortest κ-path P in X from x to
x′. Then P ⊂ Fix(f).

Lemma 2.9 below is in the spirit of “pulling" as introduced in [7]. We quote [2]:
The following assertion can be interpreted to say that in a cu-adjacency,
a continuous function that moves a point p also [pulls along] a point that
is “behind" p. E.g., in Z2, if q and q′ are c1- or c2-adjacent with q left,
right, above, or below q′, and a continuous function f moves q to the left,
right, higher, or lower, respectively, then f also moves q′ to the left, right,
higher, or lower, respectively.
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Lemma 2.9 ([2]). Let (X, cu) ⊂ Zn be a digital image, 1 ≤ u ≤ n. Let q, q′ ∈ X be such
that q ↔cu q′. Let f ∈ C(X, cu).

(1) If pi(f(q)) > pi(q) > pi(q′) then pi(f(q′)) > pi(q′).
(2) If pi(f(q)) < pi(q) < pi(q′) then pi(f(q′)) < pi(q′).

Figure 5. [3] Illustration of Lemma 2.9. Arrows show the images of q, q′ under
f ∈ C(X, c2). Since f(q) is to the right of q and q′ ↔c1,c2 q with q′ to the left of
q, f pulls q′ to the right so that f(q′) is to the right of q′.

Figure 5 illustrates Lemma 2.9.
Theorem 2.10 ([3]). Let D be a digital disk in Z2. Let S be a bounding curve for D.
Then S is a freezing set for (D, c1) and for (D, c2).
Lemma 2.11. Let X ⊂ Z2 and let a, b ∈ X be such that a and b are endpoints of a
slanted digital line segment P ⊂ X. Let f ∈ C(X, c2) such that {a, b} ⊂ Fix(f). Then
P ⊂ Fix(f).
Proof. This assertion was proven in the proof of Theorem 4.2 of [3]. �

We will use the following.
Definition 2.12 ([3]). Let (X, κ) be a digital image. Let p, q ∈ X such that

N(X, p, κ) ⊂ N∗(X, q, κ).
Then q is a close κ-neighbor of p.

We say X ⊂ Z2 is
• symmetric with respect to the x-axis if (x, y) ∈ X implies (x, −y) ∈ X;
• symmetric with respect to the y-axis if (x, y) ∈ X implies (−x, y) ∈ X;
• symmetric with respect to the origin if (x, y) ∈ X implies (−x, −y) ∈ X.

Proposition 2.13. Let X be a digital image.
• Suppose X ⊂ Z2 is symmetric with respect to the x-axis. If p = (x, y) ∈ X has a

close ci-neighbor in X, then p′ = (x, −y) has a close ci-neighbor, i ∈ {1, 2}.
• Suppose X ⊂ Z2 is symmetric with respect to the y-axis. If p = (x, y) ∈ X has a

close ci-neighbor in X, then p′ = (−x, y) has a close ci-neighbor, i ∈ {1, 2}.
• Suppose X ⊂ Zn is symmetric with respect to the origin and 1 ≤ u ≤ n. If

p = (x, y) ∈ X has a close ci-neighbor in X, then p′ = (−x, −y) has a close
ci-neighbor in X, i ∈ {1, 2}.

Proof. These assertions follow easily from Definition 2.12. �
Note these assertions are easily generalized to symmetry with respect to an arbitrary

horizontal line, vertical line, or point, respectively.
Example 2.14. A point p with a close κ-neighbor q need not be κ-adjacent to q. In the
disk shown in Figure 7, (1, 1) is a close c1-neighbor of (0, 0) but (0, 0) and (1, 1) are not
c1-adjacent. In the c2-curve

X = {(1, 0), (0, 1), (−1, 0), (0, −1)},

(−1, 0) is a close c2-neighbor of (1, 0), but (1, 0) and (−1, 0) are not c2-adjacent.
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Lemma 2.15 ([3, 4]). Let (X, κ) be a digital image. Let p, q ∈ X such that q is a close
κ-neighbor of p. Then p belongs to every freezing set of (X, κ).

However, in general a point of a freezing set for (X, κ) need not have a close κ-neighbor
in X, as shown by the following.

Example 2.16. Let X = [0, 1]3Z. Let
A = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.

See Figure 6. Then A is a minimal freezing set for (X, c1) [2]. However, it is easily seen
that no member of A has a close c1-neighbor in X.

Figure 6. The unit 3-cube X, image of Example 2.16. Circled points make up a
minimal c1-freezing set, no member of which has a close c1-neighbor in X.

3. c1 results
In this section, we obtain results for freezing sets (X, c1), with X ⊂ Z2.

Theorem 3.1 ([3]). Let X be a thick convex disk with a bounding curve S. Let A1 be
the set of points x ∈ S such that x is an endpoint of a maximal horizontal or a maximal
vertical edge of S. Let A2 be the union of slanted line segments in S. Then A = A1 ∪ A2
is a minimal freezing set for (X, c1) (see Figure 7(ii)).

Figure 7. [3] The convex disk D = [0, 4]2Z \ {(0, 3), (0, 4), (1, 4)}. The dashed
segment from (0, 2) to (2, 4) shown in (i) and (ii) indicates part of a bounding
curve and not c1-adjacencies.
(i) D with a c2 bounding curve.
(ii) (D, c1) with members of a minimal freezing set A marked “a" - these are the
endpoints of the maximal horizontal and vertical segments of the bounding curve,
and all points of the slanted segment of the bounding curve, per Theorem 3.1.
(iii) (D, c2) with members of a minimal freezing set B marked “b" - these are the
endpoints of the maximal slanted edge and all the points of the horizontal and
vertical edges of the bounding curve, per Theorem 4.1.
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Theorem 3.2. Let Vi ⊂ X ⊂ Z2, i ∈ {1, . . . , n} where each Vi is a thick convex disk.
Let X ′ =

∪n
i=1 Vi. Let Ci be a bounding curve of Vi. Let A1,i be the set of endpoints of

maximal horizontal or vertical segments of Ci. Let A2,i be the union of maximal slanted
segments of Ci. Then A = (X \ X ′) ∪

∪n
i=1(A1,i ∪ A2,i) is a freezing set for (X, c1).

Proof. Let f ∈ C(X, c1) such that A ⊂ Fix(f). For each i, it follows from Proposition 2.8
that the horizontal and vertical segments whose endpoints are in A1,i belong to Fix(f);
and it follows from our choice of A2,i that Ci ⊂ Fix(f). It follows from Proposition 2.8
that each horizontal segment joining two points of Ci belongs to Fix(f). Since Vi is convex,
therefore Vi ⊂ Fix(f); hence X ′ ⊂ Fix(f). Since by hypothesis, X \ X ′ ⊂ A ⊂ Fix(f), we
must have Fix(f) = X, and the assertion follows. �

In the following example, we show that the sets {Vi}n
i=1 and A of Theorem 3.2 are not

in general unique, and A may not be minimal.

Example 3.3. Let X = ([0, 2]Z × [0, 2]Z) ∪ ([2, 4]Z × [0, 3]Z) (see Figure 8), for which the
union above yields from Theorem 3.2 that

A = {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (4, 0), (4, 3)}

is a c1-freezing set of X. Notice also that X can be differently described as X = ([0, 4]Z ×
[0, 2]Z) ∪ ([2, 4]Z × [0, 3]Z) from which Theorem 3.2 yields a different freezing set,

F = {(0, 0), (0, 2), (2, 0), (2, 3), (4, 0), (4, 2), (4, 3)}.

A minimal freezing set for (X, c1) that is a proper subset of A is

A′ = {(0, 0), (4, 0), (4, 3), (2, 3), (0, 2)}.

Figure 8. The digital image of Example 3.3. Points of the freezing set A are
marked “a". For the minimal freezing set A′ ⊂ A, we have {(2, 0), (2, 2)} ⊂ A \ A′.

Proof. First, we show A′ is a freezing set. Let f ∈ C(X, c1) be such that f |A′ = idA′ .
From Proposition 2.8, the line segments

• from (0, 0) to (0, 2),
• from (0, 0) to (4, 0),
• from (4, 0) to (4, 3), and
• from (4, 3) to (2, 3)

all belong to Fix(f). Therefore, by Proposition 2.8, the line segments
• from (3, 0) to (3, 3) and
• from (2, 0) to (2, 3)
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belong to Fix(f). Therefore, by Proposition 2.8, the line segment from (0, 2) to (2, 2)
belongs to Fix(f). Therefore, by Proposition 2.8, the line segment from (1, 0) to (1, 2)
belongs to Fix(f). Thus X = Fix(f), so A′ is a freezing set for (X, c1).

To show A′ is minimal, observe that for every p ∈ A′ there exists q ∈ X such that q is
a close c1-neighbor of p:

(1, 1) is a close c1-neighbor of both (0, 0) and (0, 2):
(3, 1) is a close c1-neighbor of (4, 0); and
(3, 2) is a close c1-neighbor of both (2, 3) and (4, 3).
It follows from Lemma 2.15 that p ∈ A′ implies A′ \ {p} is not a freezing set for (X, c1).

The assertion follows. �

In light of Theorem 3.1, perhaps Theorem 3.2 will be especially useful for c1-connected
images that are not polygonal, as in the following.

Example 3.4. Let X be the union of the horizontal segments [0, 8]Z × {0}, [0, 3] × {1},
[0, 3] × {2}, [6, 8]Z × {1}, and [7, 8]Z × {2} (see Figure 9). For the union D1 ∪ D2 of thick
convex disks that are subsets of X, where

D1 = {(x, y) ∈ X | x ≤ 3}, D2 = {x, y) ∈ X | x ≥ 6},

with D2 considered with a bounding curve including the segment from (7, 2) to (6, 1) (the
dashed segment in Figure 9), Theorem 3.2 gives for (X, c1) the freezing set

A =
{

(0, 0), (0, 2), (3, 0), (3, 2), (4, 0), (5, 0),
(6, 0), (6, 1), (7, 2), (8, 0), (8, 2)

}
. (3.1)

A minimal freezing set A′ ⊂ A is

A′ = {(0, 0), (0, 2), (3, 2), (8, 0), (8, 2)}.

Figure 9. The digital image of Example 3.4. Points of the set A of Theorem 3.2
are marked “a", where A is based on the union D1 ∪ D2 of thick convex disks that
are subsets of X, where
(x, y) ∈ D1 implies x ≤ 3,
(x, y) ∈ D2 implies x ≥ 6, and
D2 is considered with a bounding curve including the slanted segment from (7, 2)
to (6, 1).

Proof. Let f ∈ C(X, c1) such that A′ ⊂ Fix(f). By (3.1) and Proposition 2.8, it follows
that the horizontal segments [0, 8]Z×{0} and [0, 3]Z×{2} belong to Fix(f). It follows from
Proposition 2.8 that the vertical segments {i} × [0, 2]Z, i ∈ {0, 1, 2, 3} belong to Fix(f).
By Proposition 2.8, the vertical segment from (8, 0) to (8, 2) belongs to Fix(f). This much
shows X \ {(6, 1), (7, 1), (7, 2)} ⊂ Fix(f).

Since (6, 1) ↔c1 (6, 0) ∈ Fix(f), we must have p1(f(6, 1)) ∈ {5, 6, 7}.
• If p1(f(6, 1)) = 5 then by Lemma 2.9, p1(f(7, 1)) < 7 and p1(f(8, 1)) < 8, a

contradiction since (8, 1) ∈ Fix(f).
• If p1(f(6, 1)) = 7 then the continuity of f requires that (6, 0) ̸∈ Fix(f), a contra-

diction.
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We conclude that p1(f(6, 1)) = 6.
Also since (6, 1) ↔c1 (6, 0) ∈ Fix(f), we must have, by continuity of f , p2(f(6, 1)) ∈

{0, 1}. If p2(f(6, 1)) = 0 then, since f ∈ C(X, c1), either p1(f(7, 1)) = 6 or p2(f(7, 1)) = 0.
In either case, the continuity of f would require (8, 1) ̸∈ Fix(f), a contradiction. Therefore,
we must have p2(f(6, 1)) = 1, so (6, 1) ∈ Fix(f).

Therefore, (7, 1) ∈ Fix(f), by Proposition 2.8, since (7, 1) is on the unique shortest path
between the fixed points (6, 1) and (8, 1).

Now we have N(X, c1, (7, 2)) ⊂ Fix(f), so the continuity of f implies that (7, 2) ∈
Fix(f).

Thus X = Fix(f), so A′ is a freezing set.
To show A′ is minimal, note that every p ∈ A′ has a close c1-neighbor in X:

(1, 1) is a close c1-neighbor of both (0, 0) and (0, 2);
(2, 1) is a close c1-neighbor of (3, 2); and
(7, 1) is a close c1-neighbor of both (8, 0) and (8, 2).

.

From Lemma 2.15 it follows that A′ is a subset of every c1-freezing set of X. The assertion
follows. �

4. c2 results
In this section, we derive a result for the c2 adjacency that is dual to Theorem 3.2. We

use the following.

Theorem 4.1 ([3]). Let X be a thick convex disk with a bounding curve S. Let B1 be the
set of points x ∈ S such that x is an endpoint of a maximal slanted edge in S. Let B2 be the
union of maximal horizontal and maximal vertical line segments in S. Let B = B1 ∪ B2.
Then B is a minimal freezing set for (X, c2) (see Figure 7(iii)).

Theorem 4.2. Let Vi ⊂ X ⊂ Z2, i ∈ {1, . . . , n} where each Vi is a thick convex disk.
Let X ′ =

∪n
i=1 Vi. Let Ci be a bounding curve of Vi. Let B1,i be the union of maximal

horizontal and maximal vertical segments of Ci. Let B2,i be the set of endpoints of maximal
slanted segments of Ci. Then B = (X \ X ′) ∪

∪n
i=1(B1,i ∪ B2,i) is a freezing set for (X, c1).

Proof. Let f ∈ C(X, c2) such that B ⊂ Fix(f). By hypothesis B1,i ⊂ Fix(f). Let S be a
maximal slanted segment of Ci. Since B2,i ⊂ Fix(f), Proposition 2.8 implies S ⊂ Fix(f).
It follows that Ci ⊂ Fix(f). Since Vi is convex, for every x ∈ Vi

• there is a horizontal segment joining two members of Ci and containing x; it follows
from Lemma 2.9 that p1(f(x)) = p1(x); and

• there is a vertical segment joining two members of Ci and containing x; it follows
from Lemma 2.9 that p2(f(x)) = p2(x). Hence x ∈ Fix(f).

Thus, for all i, Vi ⊂ Fix(f). Since by hypothesis, X \ X ′ ⊂ Fix(f), it follows that
X = Fix(f). Since f is arbitrary, the assertion follows. �

Example 4.3. Let X ⊂ Z2 be the digital image shown in Figure 10. The hull vertices
listed for disks Di in this figure are all endpoints of maximal slanted bounding edges or
members of horizontal or vertical bounding edges of their respective Di. By Theorem 4.2,
these hull vertices of the Di; (9, 1) and (9, −1), members of vertical bounding edges of D6
and D7, respectively; and (4, 0) ∈ X \

∪8
i=1 Di, make up a freezing set B for (X, c2). Thus

a listing of members of B (note there are vertices that belong to more than one Di):
B = 

(−3, 0), (0, 3), (1, 2), (−2, −1), (3, 0), (2, −1), (0, 1), (0, −3), (−1, −2),
(1, 0), (−1, 0), (0, −1), (4, 0), (5, 0), (7, 2), (8, 1), (6, −1), (8, 3), (9, 2),
(9, 1), (9, 0), (9, −1), (9, −2), (8, −3), (7, −2), (7, 0), (8, −1)
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Figure 10. The digital image of Example 4.3. X = {(4, 0)}∪
∪8

i=1 Di, where the
Di are the thick convex disks listed below.
Subsets of {(x, y) ∈ X | x ≤ 3}:
D1, with hull vertices {(−3, 0), (0, 3), (1, 2), (−2, −1)};
D2, with hull vertices {(1, 2), (3, 0), (2, −1), (0, 1)};
D3, with hull vertices {(2, −1), (0, −3), (−1, −2), (1, 0)}; and
D4, with hull vertices {(−1, −2), (−2, −1), (−1, 0), (0, −1)}.
Subsets of {(x, y) ∈ X | x ≥ 5}:
D5, with hull vertices {(5, 0), (7, 2), (8, 1), (6, −1)},
D6, with hull vertices {(7, 2), (8, 3), (9, 2), (9, 0)},
D7, with hull vertices {(9, 0), (9, −2), (8, −3), (7, −2)}, and
D8, with hull vertices {(7, −2), (6, −1), (7, 0), (8, −1)}.
Bold perimeters:
(a) D1, D3, D5, D7
(b) D2, D4, D6, D8

Let B′ ⊂ B be the set

B′ = {(−3, 0), (0, −3), (0, 3), (8, −3), (8, 3), (9, −2), (9, −1), (9, 1), (9, 2)}.

Then B′ is a minimal freezing set for (X, c2).

Proof. Let f ∈ C(X, c2) such that B′ ⊂ Fix(f). By Proposition 2.8, we have the follow-
ing.

• The line segment S1 from (−3, 0) to (0, −3) belongs to Fix(f).
• The line segment S2 from (−3, 0) to (0, 3) belongs to Fix(f).
• The path S3 consisting of the line segment from (0, −3) to (3, 0), the line segment

from (3, 0) to (5, 0), and the line segment from (5, 0) to (8, −3), belongs to Fix(f).
• The path S4 consisting of the line segment from (0, 3) to (3, 0), the line segment

from (3, 0) to (5, 0), and the line segment from (5, 0) to (8, 3), belongs to Fix(f).
• The line segment S5 from (8, −3) to (9, −2) belongs to Fix(f).
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• The line segment S6 from (8, 3) to (9, 2) belongs to Fix(f).
Also, by hypothesis, the line segment S7 from (9, −2) to (9, 2) belongs to Fix(f). By the
convexity of the Vi, every x ∈ X \

∪7
k=1 Sk belongs to a horizontal line segment between

two members of
∪7

k=1 Sk; hence by Lemma 2.9, p1(f(x)) = p1(x). Also by the convexity
of the Vi, every x ∈ X \

∪7
k=1 Sk belongs to a vertical line segment between two members

of
∪7

k=1 Sk; hence by Lemma 2.9, p2(f(x)) = p2(x). Thus x ∈ Fix(f). Thus X = Fix(f),
so B′ is a freezing set.

Notice that every p ∈ B′ has a close c2-neighbor in X, as listed below.
p ∈ B′ close c2 neighbor of p in (X, c2)
(−3, 0) (−2, 0)
(0, −3) (0, −2)
(0, 3) (0, 2)
(8, −3) (8, −2)
(8, 3) (8, 2)
(9, −2) (8, −2)
(9, −1) (8, −1)
(9, 1) (8, 1)
(9, 2) (8, 2)

By Lemma 2.15, p belongs to every freezing set of (X, c2). Therefore, B′ is minimal. �

5. Further remarks
Theorems 3.2 and 4.2 give methods for finding a freezing set for (X, c1) ⊂ Z2 or (X, c2) ⊂

Z2, respectively. Roughly, a freezing set is found by filling X as much as possible by thick
convex disk subsets, then using the formula of the respective theorem. For both c1 and
c2, the resulting freezing set can be examined, often using tools used in our examples, for
a subset that is a minimal freezing set.

Acknowledgment. A suggestion from an anonymous reviewer is gratefully acknowl-
edged.
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