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Abstract

In this study, we investigate the norm of difference operator on some sequence spaces such
as Hilbert and Cesàro matrix domains. Therefore the present study is a complement for
those results obtained in [1].

1. Introduction

Let p > 1 and ω denote the set of all real-valued sequences. The Banach space `p is the set of all real sequences x = (xk)
∞
k=0 ∈ ω such that

‖x‖`p =

(
∞

∑
k=0
|xk|p

)1/p

< ∞.

We use the notations ∆B and ∆F to indicate the backward and forward difference matrices, respectively. These matrices are defined by

δ
B
j,k =


1 k = j
−1 k = j−1
0 otherwise,

and δ
F
j,k =


1 k = j
−1 k = j+1
0 otherwise.

(1.1)

Also Roopaei in [2] has introduced the notations `p(∆
B) and `p(∆

F ) for the backward and forward difference sequence spaces defined by,

`p(∆
B) =

{
x = (xn) :

∞

∑
n=1
|xn− xn−1|p < ∞

}
,

and

`p(∆
F ) =

{
x = (xn) :

∞

∑
n=1
|xn− xn+1|p < ∞

}
,

respectively. The domains c0(∆
F ), c(∆F ) and `∞(∆

F ) of the forward difference matrix ∆F in the spaces c0, c and `∞ are introduced by
Kizmaz [3]. Aftermore, the domain bvp of the backward difference matrix ∆B in the space `p have recently been investigated for 0 < p < 1
by Altay and Başar [4], and for 1≤ p≤ ∞ by Başar and Altay [5].

The infinite Cesàro operator is defined by

c j,k =

{
1

j+1 0≤ k ≤ j

0 otherwise,
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for all j,k ∈ N. That is,

C =


1 0 0 · · ·

1/2 1/2 0 · · ·
1/3 1/3 1/3 · · ·

...
...

...
. . .

 .

This operator has the `p-norm ‖C‖`p = p∗, where p∗ is the conjugate of p i.e. 1
p +

1
p∗ = 1.

Suppose that N ≥ 1 is a real number. The generalized Cesàro matrix, CN = (cN
j,k),

cN
j,k =

{ 1
j+N 0≤ k ≤ j

0 otherwise,

has the `p-norm ‖CN‖`p = p∗ ([6], Lemma 2.3), and the entries

CN =


1
N 0 0 · · ·
1

1+N
1

1+N 0 · · ·
1

2+N
1

2+N
1

2+N · · ·
...

...
...

. . .

 .

Note that, C1 is the well-known Cesàro matrix C. For more examples

C2 =


1/2 0 0 · · ·
1/3 1/3 0 · · ·
1/4 1/4 1/4 · · ·

...
...

...
. . .

 and C3 =


1/3 0 0 · · ·
1/4 1/4 0 · · ·
1/5 1/5 1/5 · · ·

...
...

...
. . .

 .

There are several research on the problem of finding the norm of operators on matrix domains while there are very limited papers about the
norm of difference operators. Roopaei has recently computed the norm of backward difference operator on some sequence spaces and the
present study is a complement for those results obtained in [1].

2. Norm of operators on matrix domains

The operator T is called bounded, if the inequality ‖T x‖`p ≤ K‖x‖`p holds for all sequences x ∈ `p, while the constant K is not depending on
x. The constant K is called an upper bound for operator T and the smallest possible value of K is called the norm of T .
The domain XT of an infinite matrix T in a sequence space X is defined as

XT = {x ∈ ω : T x ∈ X}

which is also a sequence space. It is easy to see that for an invertible matrix T , the matrix domain Tp is a normed space with ‖x‖Tp := ‖T x‖`p .
By using matrix domains of special triangular matrices in classical spaces, many authors have introduced and studied new Banach spaces.
For the relevant literature, we refer to the papers [7, 8, 9, 10, 11, 12, 13] and textbook [14]. Recently, Roopaei has computed the norm of
operators on several matrix domains in [2, 15, 16, 17, 18, 19, 20, 21].

Lemma 2.1 ([18], Lemma 3.1). Let U be a bounded operator on `p and Ap and Bp are two matrix domains such that Ap ' `p.

- If BT is a bounded operator on `p, then T is a bounded operator from `p into Bp and ‖T‖`p,Bp = ‖BT‖`p .

- If T has a factorization of the form T =UA, then T is a bounded operator from the matrix domain Ap into `p and ‖T‖Ap,`p = ‖U‖`p .

- If BT =UA, then T is a bounded operator from the matrix domain Ap into Bp and

‖T‖Ap,Bp = ‖U‖`p .

In particular, if AT =UA, then T is a bounded operator from the matrix domain Ap into Ap and ‖T‖Ap = ‖U‖`p . Also, if T and A commute
then ‖T‖Ap = ‖T‖`p .

2.1. Norm of difference operator on the Hilbert sequence space

Recall the definition of Hilbert matrix H = (h j,k), which is defined by

h j,k =
1

j+ k+1
( j,k = 0,1, . . .).

That is

H =


1 1/2 1/3 · · ·

1/2 1/3 1/4 · · ·
1/3 1/4 1/5 · · ·

...
...

...
. . .

 .
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We know that H is a bounded operator on `p with ‖H‖`p = π csc(π/p) ([22], Theorem 323).
The sequence space associated with the Hilbert matrix, Hp, is defined by

Hp =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣ ∞

∑
k=0

xk

j+ k+1

∣∣∣∣∣
p

< ∞

}
,

and has the following norm

‖x‖Hp =

(
∞

∑
j=0

∣∣∣∣∣ ∞

∑
k=0

xk

j+ k+1

∣∣∣∣∣
p) 1

p

.

Theorem 2.2 ([22], Theorem 275). Let p > 1 and T = (t j,k) be a matrix operator with t j,k ≥ 0 for all j,k. Suppose that C, R are two strictly
positive numbers such that

∞

∑
j=0

t j,k ≤C f or all k,
∞

∑
k=0

t j,k ≤ R f or all j,

bounds for column and row sums respectively. Then

‖T‖`p ≤ R1/p∗C1/p.

The above theorem also known as Schur’s theorem.

Theorem 2.3. The `p norm of the backward difference operator on the Hilbert matrix domain Hp, is the `p-norm of forward difference
operator on Hp and

(a)‖∆B‖Hp,Hp = ‖∆F‖`p ,

(b)‖∆B‖`p,Hp ≤ 1.

Proof. (a) Let A = H∆B. The matrix A = (a j,k) has the entries

ai,k = ∑
j=k,k+1

hi, jδ
B
j,k =

1
i+ k+1

− 1
i+ k+2

=
1

(i+ k+1)(i+ k+2)
.

Obviously, A is a symmetric matrix which implies that H∆B = ∆F H. Now,

‖∆B‖Hp,Hp = sup
x∈Hp

‖H∆Bx‖`p

‖x‖Hp

= sup
x∈Hp

‖∆F Hx‖`p

‖Hx‖`p

= sup
y∈`p

‖∆F y‖`p

‖y‖`p

= ‖∆F‖`p .

(b) Let A be the matrix defined in part (a). According to Lemma 2.1 part (i)

‖∆B‖`p,Hp = ‖H∆
B‖`p = ‖A‖`p .

By a simple calculation

uk =
∞

∑
j=0

a j,k =
1

k+1
,

where uk is the kth column sum of A. Since 1 = u0 > u1 > · · · and A is symmetric, hence R and C are both 1 in Schur’s theorem. Therefore
‖A‖`p ≤ 1.

2.2. Norm of difference operator on the Cesàro sequence space

In this part of study, we intend to compute the norm of backward difference operator on the Cesàro sequence space. To do this we need the
definition of the generalized Cesàro matrix domain.
The matrix domain associated with the generalized Cesàro matrix [15] is the set

CN
p =

{
x = (xk) ∈ ω :

∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+N

∣∣∣∣∣
p

< ∞

}
,

which has the following norm

‖x‖CN
p
=

(
∞

∑
j=0

∣∣∣∣∣ j

∑
k=0

xk

j+N

∣∣∣∣∣
p) 1

p

.

Note that, by letting N = 1 we obtain the well-known Cesàro sequence space.
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Remark 2.4. In [23], Ng and Lee introduced the Cesàro sequence spaces Xp and X∞ of non-absolute type as the domains of Cesàro matrix
C1 of order one in the spaces `p and `∞, where 1≤ p < ∞. Recently, Şengönül and Başar [24] studied the Cesàro sequence spaces c̃0 and c̃
of non-absolute type as the domains of Cesàro matrix C1 of order one in the spaces c0 and c, also Roopaei et al [25] and Roopaei and Başar
[10] have investigated the Cesáro space Cn

p for p≥ 1 and 0 < p < 1, respectively.

Theorem 2.5. The backward difference operator ∆B is a bounded operator from `p into the generalized Cesàro matrix domain CN
p and

‖∆B‖`p,CN
p
=

1
N
.

In particular, the backward difference operator is a bounded operator from `p into Cp and ‖∆B‖`p,Cp = 1.

Proof. Let D =CN∆B. By a simple calculation, we deduce that the matrix D = (d j,k) is a diagonal matrix with entries

D =


1
N 0 0 · · ·
0 1

1+N 0 · · ·
0 0 1

2+N · · ·
...

...
...

. . .

 . (2.1)

Now, according to Lemma 2.1

‖∆B‖`p,CN
p
= ‖CN

∆
B‖`p = ‖D‖`p = sup

j
d j, j =

1
N
.

In particular, for N = 1, C1
p is the well-known Cesàro matrix domain Cp. Therefore we have the result.

Corollary 2.6. The generalized Copson operator is a bounded operator from `p into the forward difference matrix domain `p(∆
F ) and

‖CNt‖`p,`p(∆F ) =
1
N
.

In particular, Copson operator is a bounded operator from `p into `p(∆
F ) and ‖Ct‖`p,`p(∆F ) = 1.

Proof. According to Lemma 2.1 and previous theorem

‖CNt‖`p,`p(∆F ) = ‖∆FCNt‖`p = ‖(C
N

∆
B)t‖`p

= ‖Dt‖`p = sup
j

d j, j =
1
N
,

where D is the diagonal matrix defined in the relation (2.1).

Theorem 2.7. The backward difference operator is a bounded operator from the generalized Copson space into the generalized Cesàro
matrix domain and

‖∆B‖CNt
p ,CN

p
= ‖∆F‖`p .

In particular, the backward difference operator is a bounded operator from the Copson matrix domain into the Cesàro matrix domain and
‖∆B‖Ct

p,Cp = ‖∆F‖`p .

Proof. Through the proof of Theorem 2.5 we knew that CN∆B = ∆FCNt . Now, according to Lemma 2.1 we have

‖∆B‖CNt
p ,CN

p
= sup

x∈CNt
p

‖∆Bx‖CN
p

‖x‖CNt
p

= sup
x∈CNt

p

‖CN∆Bx‖`p

‖CNtx‖`p

= sup
x∈CNt

p

‖∆FCNtx‖`p

‖CNtx‖`p

= sup
y∈`p

‖∆F y‖`p

‖y‖`p

= ‖∆F‖`p ,

that completes the proof.

Corollary 2.8. The generalized Copson operator is a bounded operator from the backward difference matrix domain `p(∆
B) into the

forward difference space `p(∆
F ) and

‖CNt‖`p(∆B),`p(∆F ) = p∗.

In particular, Copson operator is a bounded operator from `p(∆
B) into `p(∆

F ) and ‖Ct‖`p(∆B),`p(∆F ) = p∗.

Proof. The proof is similar to the proof of Theorem 2.7.
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In sequel we intend to generalize the result of Theorem 2.7 for the backward difference operator of order n. At first we need some definitions.
Let us recall the backward difference matrix of order n, ∆n = (δ n

j,k), which is a lower triangular matrix with the entries

δ
n
j,k =

{
(−1)( j−k)( n

j−k
)

k ≤ j ≤ n+ k,
0 otherwise.

This matrix has the inverse ∆−n = (δ−n
j,k ) with the following entries

δ
−n
j,k =

{ (n+ j−k−1
j−k

)
j ≥ k,

0 otherwise.
(2.2)

Note that, for n = 1, the backward difference of order 1 is ∆B that was defined by relation (1.1).
The Hausdorff matrix Hµ = (h j,k)

∞
j,k=0, is defined by:

h j,k =

{ ∫ 1
0
( j

k

)
θ k(1−θ) j−kdµ(θ) 0≤ k ≤ j

0 k > j,

where µ is a probability measure on [0,1]. The Hausdorff matrix contains some famous classes of matrices. By letting dµ(θ) =
n(1−θ)n−1dθ in the definition of the Hausdorff matrix, the Cesàro matrix of order n, Cn = (cn

j,k), is defined as follows

cn
j,k =


(n+ j−k−1

j−k )
(n+ j

j )
0≤ k ≤ j,

0 otherwise.

Note that, C1 is the well-known Cesàro matrix C.
The sequence space Cn

p is defined as the set of all sequences whose Cn-transforms are in the space `p; that is

Cn
p =

{
x = (x j) ∈ ω :

∞

∑
j=0

∣∣∣∣∣ 1(n+ j
j
) j

∑
k=0

(
n+ j− k−1

j− k

)
xk

∣∣∣∣∣
p

< ∞

}
,

which is a Banach space with the norm

‖x‖Cn
p
=

(
∞

∑
j=0

∣∣∣∣∣ 1(n+ j
j
) j

∑
k=0

(
n+ j− k−1

j− k

)
xk

∣∣∣∣∣
p)1/p

.

The Copson matrix domain Cnt
p is defined similarly which is isomorphic to the `p space by Theorem 2.3 of [18]. Roopaei in [17], through the

proof of Corollary 3.6, has showed that Cn∆nB is a diagonal matrix. Hence Cn∆nB = ∆nF Cnt , where ∆nF is the forward difference operator of
order n.
Now, as a result of Lemma 2.1 part (iii), we have the following result.

Theorem 2.9. The backward difference operator of order n, ∆nB , is a bounded operator from the Copson matrix domain into the Cesàro
matrix domain and

‖∆nB‖Cnt
p ,Cn

p
= ‖∆nF ‖`p .

In particular, the backward difference operator is a bounded operator from the Copson matrix domain into the Cesàro matrix domain and
‖∆B‖Ct

p,Cp = ‖∆F‖`p .

We have also the following corollary which has a proof similar to the above theorem.

Corollary 2.10 ([18], Theorem 4.3). The Copson matrix of order n, Cn, is a bounded operator from `p(∆
nB) into `p(∆

nF ) and

‖Cn‖`p(∆nB ),`p(∆nF ) =
Γ(n+1)Γ(1/p∗)

Γ(n+1/p∗)
.

In particular, the Copson matrix is a bounded operator from `p(∆
B) into `p(∆

F ) and

‖C‖`p(∆B),`p(∆F ) = p∗.

Theorem 2.11. Let n,s and m are non-negative integers that n = s+m. The backward difference operator of order n, ∆nB , is a bounded
operator from the matrix domain `p(∆

mB) into the Cesàro matrix domain Cs
p and

‖∆nB‖`p(∆mB ),Cs
p
= 1.
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Proof. From the relation (2.2), one can see that the Cesàro matrix of order n and its inverse can be rewritten based on the backward difference
operator and of order −n and its inverse. For j ≥ k, we have

cn
j,k =

(n+ j−k−1
j−k

)(n+ j
j
) =

δ
−n
j,k(n+ j
j
) , and c−n

j,k = δ
n
j,k

(
n+ k

k

)
.

Let us first compute the matrix Cs∆nB .

(Cs
∆

nB) j,k = ∑
i

∆
−sB
j,i ∆

nB
j,k(s+ j

j
) =

1(s+ j
j
)∆

m
j,k.

Hence, Cs∆nB =U∆mB , where U = (u j,k) is the diagonal matrix defined as u j, j =
1

(s+ j
j )

. Now, according to the Lemma 2.1 we have

‖∆nB‖`p(∆mB ),Cs
p

= sup
x∈`p(∆mB )

‖∆nB x‖Cs
p

‖x‖`p(∆mB )
= sup

x∈`p(∆mB )

‖Cs∆nB x‖`p

‖∆mB x‖`p

= sup
x∈`p(∆mB )

‖U∆mB x‖`p

‖∆mB x‖`p

= sup
y∈`p

‖Uy‖`p

‖y‖`p

= ‖U‖`p = sup
j

u j, j = 1.

Corollary 2.12. Let n,s and m are non-negative integers that n = s+m. The backward difference operator of order n, ∆nB , is a bounded
operator from the matrix domain `p(∆

mB) into the matrix domain `p(∆
sB) and

‖∆nB‖`p(∆mB ),`p(∆sB ) = 1.

Proof. The proof is similar to the proof of the above theorem.
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