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ÖZET:  
Amaç: Radyoizotopların tıpta teşhis ve tedavide kullanımları gün geçtikçe artmaktadır. Bu radyoizotopların üretimini verimli kılmak 
amacıyla, üretim tesir kesitlerinin doğru olarak hesaplanması gerekmektedir. Deneysel verilerin olmadığı durumlarda, tesir kesitleri 
çeşitli teorik yollarla hesaplanmakta ve istenilen enerji değerine karşı gelen değer elde edilmektedir. Çalışmamızda, farklı bir yaklaşım 
olarak yapay sinir ağları kullanılarak, bilinmeyen enerjilerdeki tesir kesitlerinin tahmininin yapılması için bir alternatif model ortaya 
koyulmuştur.   
Gereç ve Yöntem: 51Cr radyoizotoplarının nötron indüklenmiş reaksiyonlarla üretilmesine ait tesir kesitlerini elde etmek amacıyla, 
yapay sinir ağları metodu kullanılmıştır. Literatürde mevcut olan bu tesir kesiti verileri alınarak, %80’i ağın eğitiminde kullanılmış ve 
kalan %20’si ile ağın testi gerçekleştirilmiştir. Yapay sinir ağlarının girdileri, gelen nötron enerjileri olup çıktısı ise tesir kesitidir. Birçok 
denemeden sonra en iyi sonucu veren gizli katman nöron sayısı olarak 20 kullanılmıştır.  
Bulgular: Elde ettiğimiz sonuçlara göre, yapay sinir ağları metodu, radyoizotop üretim tesir kesitlerini tahmin etmede alternatif bir 
yöntem olarak kullanılabilir. Eğitim verileri üzerinden yapılan tahminlere ait MSE değeri 0,178 barn olarak elde edilirken, test verileri 
üzerindeki MSE değeri ise 0,155 barn’dır. Ağın, eğitim ve test verileri üzerindeki tahminlerine ait korelasyon katsayı değerleri sırasıyla, 
0,93 ve 0,95 olarak bulunmuştur.  
Sonuç: Literatürdeki deneysel sonuçlarla kıyaslandığında, yapay sinir ağlarının verdiği sonuçların, tesir kesitini tahmin etmede 
alternatif olarak kullanılabileceği sonucuna varılmıştır. Bu metodun bir avantajı, karmaşık matematiksel formülasyona girmeden, hızlı 
bir şekilde sonuçları elde etmeye imkan tanımasıdır. Bu çalışmadan elde edilen sonuçlar, herhangi bir izotop kullanılarak 
gerçekleştirilecek her türlü reaksiyona ait tesir kesitlerinin, yapay sinir ağları yöntemi kullanılarak elde edilebileceğinin bir 
göstergesidir. 
Anahtar Kelimeler: Radyoizotop, Tesir kesiti, Cr izotopu, Yapay sinir ağları 

 
 

Production Cross-Section of 51Cr Radioisotope Using Artificial Neural Networks 
 

ABSTRACT:  
Purpose: The use of radioisotopes in diagnosis and treatment in medicine is increasing day by day. In order to make the production 
of these radioisotopes efficiently, the production cross-sections must be calculated correctly. In the absence of experimental data, 
cross-sections are calculated in various theoretical ways and the data corresponding to the desired energy value is obtained. In our 
study, using artificial neural networks as a different approach, an alternative model is presented to estimate cross-sections at 
unknown neutron energies. 
Material and Methods: Artificial neural networks method was used to obtain cross-sections of 51Cr radioisotopes produced by 
neutron-induced reactions. By taking this cross-section data available in the literature, 80% of it was used in the training of the 
network and the remaining 20% was used in the test. The inputs of artificial neural networks are the incident neutron energies and 
the output is the cross-section. Hidden layer neuron number 20 was used that gave the best results after many trials. 
Results: According to the results we have obtained, the artificial neural network method can be used as an alternative method to 
estimate the radioisotope production cross-sections. While the MSE value of the estimations made over the training data is 0.178 
barn, the MSE value on the test data is 0.155 barn. Correlation coefficient values of the predictions of the network on training and 
test data were found as 0.93 and 0.95, respectively. 
Conclusion: When compared with the experimental results in the literature, it is concluded that the results of artificial neural 
networks can be used as an alternative to estimate the cross-section. An advantage of this method is that it allows to obtain results 
quickly without going into complex mathematical formulation. The results obtained from this study are an indication that cross-
sections of any reaction to be performed using any isotope can be obtained by using artificial neural networks method. 
Keywords: Radioisotope, Cross-section, Cr isotope, Artificial neural networks 
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INTRODUCTION  

The use of radioactive isotopes used in the diagnosis 

and treatment of diseases in medicine has increased 

considerably today. In order to minimize the damage 

these radioisotopes can cause to the patient, it is 

preferred that their half-life is as short as possible 

and their energy is as low as possible. However, since 

short-lived radioisotopes cannot be stored, they 

must be produced using a generator during use if the 

health center is far from the production center. In 

order for the radioisotopes to be produced by the 

generators through nuclear reactions to be 

produced efficiently, it is necessary to know the 

production cross-sections. Knowing the reaction 

energies to realize the most efficient production is 

one of the key points. Therefore, the desired 

radioactive isotopes can be produced in the most 

efficient way with incident particles at energies 

suitable for the target material (Martin, 2013; Bailey 

et al., 2014). 

Chromium has four naturally occurring stable 

isotopes which are 50Cr, 52Cr, 53Cr and 54Cr with the 

abundances of 4.35%, 83.79%, 9.50%, and 2.37%, 

respectively. We focused on the production of the 
51Cr isotope, which is used as red cell label and can 

also be used as a platelet label. This medical 

radioisotope can be produced by neutron-induced 

reactions performing on stable 50Cr isotope. With a 

radioactive half-life of 27.7 days, it decays by 

electron capture. Gamma and x-ray radiation from 

this radioisotope can be fatal in large doses or 

sustained exposure. Therefore, 51Cr should be stored 

in lead containers or behind lead shield and carried 

only with protective gear attached. In our study, we 

studied the determination of the values of the 

production cross sections of the production of the 
51Cr radioisotope from the stable Cr isotope by 

neutron-induced nuclear reaction according to 

different neutron energies (Kenny, et al., 1977; 

Kapchigashev and Popov, 1964).  

Recently, ANN has been used in many fields in 

nuclear physics. Among them the studies performed 

by our group on the cross-sections are estimations of 

heavy-ion fusion reaction cross-section (Akkoyun, 

2020), determination of photonuclear reaction 

cross-section on Ca isotopes (Akkoyun, and Kaya 

2020) and p-shell nuclei (Akkoyun et al., 2020). For 

this purpose, we used artificial neural networks 

method, which is a machine learning method. 

Artificial neural networks are a mathematical 

method that models the work of the brain function 

of living beings in terms of learning. In the study 

where we estimated the production cross-section for 
51Cr using the cross-section data available in the 

literature (Kopecky, 1997), we saw that artificial 

neural networks are an alternative tool suitable for 

this purpose. Thus, production cross sections 

corresponding to energies not available in the 

literature can be rapidly produced without the need 

for complex mathematical operations. We also 

compared our results with the experimental data 

available in the literature for 51Cr, and we found that 

our results were consistent with these data.  

 

MATERIAL and METHODS  

Artificial neural network (ANN) is a mathematical 

model that mimics the brain functionality. It consists 

of several processing units called neurons in mainly 

three different layers (Haykin, 1999). Because of it 

has layers, it is named as layered ANN. In one of the 

most common type of ANN, the data flow forward 

direction from input layer to output layer. Therefore 

this type of ANN, which is also used in this study, is 

named as layered feed-forward ANN. The neurons 

only in different layers are connected each other via 

weighted connections. The neurons in the input 

layer receive the data and the output layer neurons 

give the result. According to the problem variables, 

the numbers of the neurons in input and output 

layers are determined. Between these two layers 

there is a hidden layer which is seen as a black box. 

Besides, the number of the hidden layer can also be 

change from 1 to more leading deep-learning. There 

is no rule for the determination of the numbers of 

hidden layer and its neurons. After many trials for 

the problem, the numbers of hidden layer and the 

neurons can be taken into account that gives the 

results as close as to the desired values.  

ANN consists of two main stages, one of which is the 

training and the other is the test stage of the results 

of the training. The data for the problem is usually 

divided into two parts, 80% and 20%, and 80% is used 

for training of ANN and 20% for the test of ANN. The 
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main goal in training is to determine the weight 

values of the connections between each neuron in 

different layers. In the training stage of this work, 

Levenberg–Marquardt (Levenberg, 1955; 

Marquardt, 1963) back-propagation algorithm was 

used. After determining the weight values that gives 

the best results, the desired values in the training 

data is tried to be produced with the constructed 

network. The error between the outputs produced 

by the network and the desired outputs is 

determined by MSE. MSE gives the average of the 

squares of the difference between the desired and 

the neural network output values. It is not enough to 

see that the network gives successful results on the 

training data. It should also be determined whether 

the network can generalize on this type of data. This 

is done on the 20% data set previously allocated. The 

constructed network is applied on the test data and 

the outputs of the network are compared with the 

desired outputs. If the MSE values are below the 

desired level in the test stage also, it can be said that 

this network is successful in solving the given 

problem. In our study, we consider the reaction in 

which neutrons are sent on the 50Cr stable isotope to 

produce the 51Cr radioisotope. For different neutron 

energies, we tried to obtain the cross-section of this 

reaction with ANN. We obtained the data from the 

literature from a experimental data library (Kopecky, 

1997). We took the neutron energies as inputs of 

ANN and logarithm of the production cross-section 

as output. We used the values of 1 as the number of 

hidden layer and 20 as the number of hidden layer 

neurons, which enabled us to give the closest results 

to the desired outputs of the problem. For further 

information about ANN, we refer to reader to the 

reference (Haykin, 1999). 

 

RESULTS and DISCUSSIONS 

The differences between literature data and the ANN 

estimations on the training data have been 

presented in Figure 1. As can be seen in the figure 

that the maximum differences are about +1 and -1 

for the logarithm of the cross-sections in units of 

barn. From the low-energies to the about 103 keV, 

the differences decrease linearly. In energy values 

between 103 and 105 keV, fluctuations are observed 

in the differences between them. The differences in 

this range are the cause of the 1 barn difference, 

which is also the maximum. It is seen that the 

difference between the literature values and ANN 

estimates is concentrated around zero for the 

incident neutron energies after 105 keV. As a result 

of the similar examination on the test data (Figure 2), 

it is seen that the same behavior is observed. Again, 

maximum deviations from the literature data were 

observed in the range of 103 and 105 keV and it was 

found to be 1 barn. 

We tried to see the reason of the differences by 

drawing the literature data and ANN estimations in 

the same plot for the training and test data 

separately. As seen in Figure 3, literature data have 

resonance peaks in the energy range of 103 and 105 

keV. In our estimates made with artificial neural 

networks, it is seen that the general trend is caught, 

although it is naturally difficult to fully capture these 

peaks. However, the fact that the peak values were 

not fully reproduced led to the emergence of bigger 

differences in this region. In the low energy parts up 

to 103 keV, it is seen that the ANN estimates show 

values close to the literature, but in an opposite 

behavior. It is clearly seen that the ANN estimates 

are in a one-to-one agreement with the literature 

data at high energies above 105 keV. In Figure 4, 

similar inspection was carried out on the test data. It 

was observed that the similar behavior in the 

training data was observed here, and although the 

trend in the resonance region was caught, the peak 

values could not be obtained exactly. The MSE values 

for the training and the test data obtained as 1.178 

and 0.155, respectively. The correlation coefficients 

are 0.93 and 0.95 for the training and test data which 

shows the method is quite useful for the estimation 

of production cross-sections. 

Along with the literature data we use in our ANN 

calculations, the production cross-section values of 
50Cr(n,γ)51Cr neutron induced reaction including the 

existing experimental data (Pomerance, 1952; 

Kapchigashev and Popovare, 1964; Sims and Juhnke, 

1968; Stieglitz et al., 1971; Gleason, 1975; Kenny et 

al., 1977; Venturini and Pecequilo, 1977; Simonits et 

al., 1984) given in Figs. 5 and 6 together with the ANN 

results. It is clear from the figures that ANN results 

are generally compatible with the experimental 

data. In Figure 5, training data of ANN are shown in 
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the same graph along with all experimental data in 

the literature. Especially in the high neutron energy 

part, it is seen that the ANN results are quite 

compatible with the experimental data. Figure 6 

shows the comparison of test data with 

experimental data. In both graphs, it is seen that only 

one experimental value in the resonance region is far 

from ANN results. ANN results appear to be fairly 

close to all other experimental data points. It is seen 

that ANN produces values for cross-section data

corresponding to many neutron energies for which 

there is no experimental data in the literature.

 
 

Figure 1. Differences between the literature data and ANN estimations on the training data for 51Cr production cross-
sections. 
 

 
 

Figure 2. The same as Figure 1 but for the test data. 
 
 

 
 

Figure 3. Logarithms of the literature data (Kopecky, 1997) and ANN estimations on the training data for 51Cr production 
cross-sections. 
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Figure 4. The same as Figure 3 but for the test data. 
 
 

 
 

Figure 5. The ANN estimated cross-sections of training data for 50Cr(n,γ)51Cr reaction as a function of incident neutron 
energy together with the available experimental data. 
 
 

 
 

Figure 6. The ANN estimated cross-sections of test data for 50Cr(n,γ)51Cr reaction as a function of incident neutron energy 
together with the available experimental data. 
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CONCLUSION  

In this study, we obtained the cross section values of 
51Cr radioisotopes from stable 50Cr isotopes by 

neutron induced reaction by using artificial neural 

networks method. According to the results we have 

obtained, this method is a suitable method for this 

purpose. Apart from fluctuations in the resonance 

region, we have seen that with ANN, we can 

generally capture behaviors in the production cross-

sections. As a result, by using the ANN method, the 

cross-section information required for any 

radioisotope production in a nuclear reaction can be 

easily obtained by using ANN. Thus, it has been seen 

that approximate values of cross-sections 

corresponding to energies that do not have 

experimental value in the literature can also be 

obtained easily and quickly by ANN. 
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