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1. Introduction

We consider inverse problems for the boundary value problem (BVP)

(L (q (x)) , h,H, as, αs = 1, 2)

generated by the differential equation

ly := −y′′ + q (x) y = λy, x ∈ (0, a1) ∪ (a1, a2) ∪ (a2, π) , (1)

with the Robin boundary conditions

U (y) := y′ (0)− hy (0) = 0, V (y) := y′ (π) +Hy (π) = 0, (2)

and the transmission conditions at the points x = as, s = 1, 2

I (y) :=

{
y (as + 0) = y (as − 0) = y (as) ,
y′ (as + 0)− y′ (as − 0) = αsy (as)

(3)

where q (x) is a reel-valued function in L2 (0, π) ;h,H and all αs are real numbers, and λ is a

spectral parameter.

Notice that, we can understand problem (1) and (3) as analyzing the equation

y′′ +
(
λ2 − α1δ (x− a1)− α2δ (x− a2)− q (x)

)
y = 0 (4)
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where δ (x) is the Dirac function (see [1]).

There are two main branches which are called direct and inverse problems for spectral

problems of differential operators. One of the types of problems, the direct problem consists of

examining the spectral properties of an operator. Another type of problem, inverse problems,

aim to reconstruct the operator using their spectral properties. Direct and inverse problems for

the classical Sturm-Liouville operators have been comprehensively investigated ([6, 9, 14] and the

references therein). Some classes of direct and inverse problems for discontinuous BVPs in various

statements have been considered in [2, 7, 8, 12, 13, 15, 16]. Notice that, inverse spectral problems for

non-selfadjoint Sturm-Liouville operators on a finite interval with discontinuity inside an interval

have been investigated in [10, 11].

In this study, we determine various uniqueness results for inverse spectral problems of Sturm-

Liouville equations with δ -interactions for two point.

2. Properties of the Spectral Characteristics of L

In this part, we present the spectral characteristics of L and present the relationship among these

spectral characteristics. The technique used is analogous to those used in [6].

Let y (x) and z (x) be continuously differentiable functions on the intervals (0, a1) , (a1, a2) ,

(a2, π) . Denote ⟨y, z⟩ := yz′ − y′z . If y (x) and z (x) satisfy the conditions (3), then

⟨y, z⟩x=as−0 = ⟨y, z⟩x=as+0 , s = 1, 2, (5)

i.e., the function ⟨y, z⟩ is continuous on (0, π) .

Let φ (x, λ) , ψ (x, λ) , C (x, λ) , S (x, λ) be solutions of (1) under the conditions

C (0, λ) = φ (0, λ) = S′ (0, λ) = ψ (π, λ) = 1, C ′ (0, λ) = S (0, λ) = 0, φ′ (0, λ) = h, ψ′ (π, λ) = −H

(6)

and the conditions (3). Then U (φ) = V (ψ) = 0 .

Denote ∆(λ) := ⟨φ (x, λ) , ψ (x, λ)⟩ . Thanks to (5) and the Ostrogradskii-Liouville theorem

(see [4]), ∆(λ) does not depend on x . The function ∆(λ) is called the characteristic function of

L . Obviously,

∆(λ) = −V (φ) = U (ψ) . (7)

Clearly, the function ∆(λ) has at most a countable set of zeros {λn} and it is entire in λ.

Theorem 2.1 The eigenvalues {λn}n≥1 of the BVP L coincide with the zeros of the characteristic

function. The functions φ (x, λn) and ψ (x, λn) are eigenfunctions, and

ψ (x, λn) = βnφ (x, λn) , βn ̸= 0.
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Proof Let ∆(λ0) = 0 . Then by ⟨φ (x, λ0) , ψ (x, λ0)⟩ = 0 , we get ψ (x, λ0) = βnφ (x, λ0) , and

the functions ψ (x, λ0) , φ (x, λ0) satisfy the boundary conditions (2). Hence, λ0 is eigenvalue, and

ψ (x, λ0) , φ (x, λ0) are eigenfunctions related to λ0 .

Conversely, let λ0 be an eigenvalue of L. We need to show that ∆(λ0) = 0 . Assuming

the converse, suppose that ∆(λ0) ̸= 0 . Then the functions ψ (x, λ0) and φ (x, λ0) are linearly

independent. In this case y(x, λ0) = c1φ (x, λ0) + c2ψ (x, λ0) is a general solution of the problem

L . If c1 ̸= 0 , we can write

φ (x, λ0) =
1

c1
y(x, λ0)−

c2
c1
ψ (x, λ0) .

Then we have

⟨φ (x, λ0) , ψ (x, λ0)⟩ = − 1

c1
[y′(π, λ0) +Hy(π, λ0)] = 0.

Thus, the expression we get is contradiction.

Since for each eigenvalue there is come into being only one eigenfunction, there is come into

being sequence βn such that ψ (x, λn) = βnφ (x, λn) .

Denote

γn =

∫ π

0

φ2(x, λn)dx. (8)

The set {λn, γn}n≥1 is called the spectral data of L. 2

Lemma 2.2 The equality
.

∆(λn) = −βnγn (9)

holds. Here
.

∆(λ) = d
dλ∆(λ) .

Proof Since

−ψ′′(x, λ) + q(x)ψ(x, λ) = λφ(x, λ), −φ′′(x, λn) + q(x)φ(x, λn) = λψ(x, λn),

we obtain
d

dx
⟨φ (x, λ) , ψ (x, λn)⟩ = (λ− λn)ψ(x, λ)φ(x, λn).

Integrating from 0 to π and by aid of the conditions (2), (3), we have

(λ− λn)

∫ π

0

ψ(x, λ)φ(x, λn)dx = −∆(λ).

Because λ→ λn Lemma 2.2, this yields

∆̇ (λn) = −βnγn.
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2

Theorem 2.3 The eigenvalues {λn} and the eigenfunctions φ (x, λn) , ψ (x, λn) are real. All

zeros of ∆(λ) are simple, i.e.,
.

∆(λn) ̸= 0 . Eigenfunctions related to different eigenvalues are

orthogonal in L2(0, π).

Proof Let λn and λk (λn ̸= λk) be eigenvalues with eigenfunctions yn(x) and yk(x) respectively.

Using the conditions (2), (3), then integration by parts yields

∫ π

0

ℓyn(x).yk(x)dx =

∫ π

0

yn(x).ℓyk(x)dx

and hence

∫ π

0

yn(x)yk(x)dx = 0.

Further, let λ0 = u+ iv, v ̸= 0 be a non-real eigenvalue with an eigenfunction y0(x, λ) ̸= 0 . Since

q(x), h and H are real, we get that λ0 = u− iv is also the eigenvalue with the eigenfunction y0(x).

Since λ0 ̸= λ0, we derive as before

∥∥y0∥∥2
L2

=

∫ π

0

y0(x)y0(x)dx = 0

which is impossible. Thus, all eigenvalues {λn} of L are real, and consequently the eigenfunctions

φ (x, λn) and ψ (x, λn) are real too. Since γn ̸= 0, βn ̸= 0 , we get by virtue of (9) that
.

∆(λn) ̸= 0.
2

Now, consider the solution φ (x, λ) . Let C0(x, λ) and S0(x, λ) interval be smooth solutions

of (1) on the interval (0, π) under the initial conditions C0(0, λ) = S′(0, λ) = 1 , C ′
0(0, λ) =

S(0, λ) = 0 . Then

C(x, λ) = C0(x, λ), S(x, λ) = S0(x, λ), 0 < x < a1, (10)

C(x, λ) = A1C0(x, λ) +B1S0(x, λ), S(x, λ) = A2C0(x, λ) +B2S0(x, λ), a1 < x < a2, (11)

C(x, λ) = A3C0(x, λ) +B3S0(x, λ), S(x, λ) = A4C0(x, λ) +B4S0(x, λ), a2 < x < π (12)

45



Manaf Dzh. Manafov and Ahmet Zincir / FCMS

where



A1 = 1− α1C0(a1, λ)S0(a1, λ), B1 = α1 [C0(a1, λ)]
2
,

A2 = −α1 [S0(a1, λ)]
2
, B2 = 1 + α1C0(a1, λ)S0(a1, λ),

A3 = [1− α1C0(a1, λ)S0(a1, λ)] . [1− α2C0(a2, λ)S0(a2, λ)]− α1α2 [C0(a1, λ)]
2
[S0(a2, λ)]

2
,

B3 = α1 [C0(a1, λ)]
2
[1 + α2C0(a2, λ)S0(a2, λ)] + α2 [C0(a2, λ)]

2
[1− α1C0(a1, λ)S0(a1, λ)] ,

A4 = −α1 [S0(a1, λ)]
2
[1− α2C0(a2, λ)S0(a2, λ)]− α2 [1 + α1C0(a1, λ)S0(a1, λ)] [S0(a2, λ)]

2
,

B4 = [1 + α1C0(a1, λ)S0(a1, λ)] [1 + α2C0(a2, λ)S0(a2, λ)]− α1α2 [C0(a1, λ)]
2
[S0(a2, λ)]

2
.

(13)

Let λ = ρ2, ρ = σ + iτ . It is easy to verify that the C0(x, λ) satisfies the following relations:

C0(x, λ) = cos ρx+
sin ρx

2ρ

∫ x

0

q(t)dt+
1

2ρ

∫ x

0

q(t) sin ρ(x− 2t)dt+O(
1

ρ2
exp(|τ |x)), (14)

C ′
0(x, λ) = −ρ sin ρx+

cos ρx

2

∫ x

0

q(t)dt+
1

2

∫ x

0

q(t) cos ρ(x− 2t)dt+O(
1

ρ
exp(|τ |x)). (15)

Analogously,

S0(x, λ) =
sin ρx

ρ
− cos ρx

2ρ2

∫ x

0

q(t)dt+
1

2ρ2

∫ x

0

q(t) cos ρ(x− 2t)dt+O(
1

ρ3
exp(|τ |x)), (16)

S′
0(x, λ) = cos ρx+

sin ρx

2ρ

∫ x

0

q(t)dt− 1

2ρ

∫ x

0

q(t) sin ρ(x− 2t)dt+O(
1

ρ2
exp(|τ |x)). (17)

By virtue of (13) and (14)-(17),

A1 = 1− 1
2ρα1 sin 2ρa1 +O( 1

ρ2 exp(|τ |x)), B1 = 1
2α1(1 + cos 2ρa1) +O( 1ρ exp(|τ |x)),

A2 = O( 1
ρ2 exp(|τ |x)), B2 = 1 +O( 1ρ exp(|τ |x)),

A3 = 1− 1
2ρ [α1 sin 2ρa1 + α2 sin 2ρa2] +O( 1

ρ2 exp(|τ |x)),

B3 = 1
2 [α1(1 + cos 2ρa1) + α2(1 + cos 2ρa2)] +O( 1ρ exp(|τ |x)),

A4 = O( 1
ρ2 exp(|τ |x)), B4 = 1 +O( 1ρ exp(|τ |x)).

46



Manaf Dzh. Manafov and Ahmet Zincir / FCMS

Since φ (x, λ) = C(x, λ) + h.S(x, λ), we calculate using (10)-(17):

φ (x, λ) = cos ρx+



+(h+ 1
2

∫ x

0

q(t)dt) sin ρx
ρ +O( 1

ρ2 exp(|τ |x)), 0 < x < a1

(h+ 1
2α1 +

1
2

∫ x

0

q(t)dt) sin ρx
ρ −

− 1
2α1

sin ρ(2a1−x)
ρ +O( 1

ρ2 exp(|τ |x)), a1 < x < a2

(h+ 1
2 (α1 + α2) +

1
2

∫ x

0

q(t)dt) sin ρx
ρ − 1

2α1
sin ρ(2a1−x)

ρ −

− 1
2α2

sin ρ(2a2−x)
ρ +O( 1

ρ2 exp(|τ |x)), a2 < x < π

(18)

and

φ′ (x, λ) = −ρ sin ρx+



(h+ 1
2

∫ x

0

q(t)dt) cos ρx+O( 1ρ exp(|τ |x)), 0 < x < a1

(h+ 1
2α1 +

1
2

∫ x

0

q(t)dt) cos ρx+

+ 1
2α1 cos ρ(2a1 − x) +O( 1ρ exp(|τ |x)), a1 < x < a2

(h+ 1
2 (α1 + α2) +

1
2

∫ x

0

q(t)dt) cos ρx+ 1
2α1 cos ρ(2a1 − x)+

+ 1
2α2 cos ρ(2a2 − x) +O( 1ρ exp(|τ |x)), a2 < x < π.

(19)

It follows from (7),(18) and (19) that

∆(λ) = ρ sin ρπ − ω cos ρπ − 1

2
(α1 cos ρ(2a1 − π) + α2 cos ρ(2a2 − π)) +O(

1

ρ
exp(|τ |x)) (20)

where

ω = h+H +
1

2
(α1 + α2) +

1

2

∫ π

0

q(t)dt.

Using (20) and Rouche’s theorem ([5]), by the well-known method [3] for n→ ∞

ρn = n+ o(1).

Similarly, from Rouche’s theorem one can prove that for sufficiently large values of n , every circle

σn(δ) = {ρ : (ρ− n) ≤ δ} contains exactly one zero ∆(ρ2). Since δ > 0 is arbitrary, we must have

ρn = n+ εn, εn = o(1), n→ ∞. (21)

Since ρn are zeros of ∆(ρ2) , from (20) we get

n sin εnπ − ω cos εnπ − 1
2 (α1 cos 2na1. cos 2a1εn

+α2 cos 2na2. cos 2a2εn). cos εnπ + σn = 0
(22)

where

σn = εn sin εnπ − 1
2 (α1 sin 2(n+ εn)a1

+α2 sin 2(n+ εn)a2) sin εnπ + o(exp |τn|π), τn = Im ρn.
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Hence sin εnπ = O( 1n ) , that is, εn = O( 1n ). Using (22) we get more precisely

εn =
1

πn
(ω +

1

2
(α1 cos 2na1 + α2 cos 2na2)) +O(

1

n
). (23)

Substituting (23) into (21), we get

ρn = n+
1

πn
(ω +

1

2
α1 cos 2na1 +

1

2
α2 cos 2na2) +O(

1

n
). (24)

At last, using (8), (18), (19) and (24) one can calculate

γn =
π

2
+
ωn

n
+O(

1

n
)

where

ωn = −1

2
(a2 − a1)α1 sin 2na1 −

1

2
(π − a2)(α1 sin 2na1 + α2 sin 2na2).

If q(x) is a smooth function one can more precise asymptotics for the spectral data.

3. Formulation of the Inverse Problem and Uniqueness Theorems

In this part, we investigate three types inverse problems of rescuing L by using its spectral

characteristics, namely

(i) from the Weyl function,

(ii) from the so-called spectral data,

(iii) from two spectra.

For each class of inverse problems we show the relation between the different spectral

characteristics and prove the corresponding uniqueness theorems.

Let Φ(x, λ) be the solution of (4) under the conditions U (Φ) = 1 and V (Φ) = 0 . We set

M (λ) := Φ (0, λ) . The functions Φ(x, λ) and M (λ) are called the Weyl solution and the Weyl

function for the BVP L, respectively. Clearly,

Φ(x, λ) =
ψ (x, λ)

∆ (λ)
= S (x, λ) +M (λ)φ (x, λ) , (25)

M (λ) =
∆1 (λ)

∆ (λ)
(26)

where ∆1 (λ) = ψ (0, λ) = V (S) is the characteristic function of the BVP L1 , which is equation

(4) with the boundary conditions U (y) = 0, y (π) = 0 and S (x, λ) is defined from the equality

ψ (x, λ) = ∆1 (λ)φ (x, λ) + ∆ (λ)S (x, λ) .
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Let {µn}n≥1 be zeros of ∆1 (λ) , i.e., the eigenvalues of L1 .

First, let us prove the uniqueness theorems for the solutions of the problems (i) − (iii) .

For this purpose we agree that together with L we consider a BVP L̃ of the same form but with

different coefficients q̃ (x) , h̃, H̃, ãs and α̃s, s = 1, 2. Everywhere below if a certain symbol e

denotes an object to L , then the corresponding symbol ẽ with tilde denotes the analogous object

related to L̃ .

Theorem 3.1 If M(λ) = M̃(λ), then L = L̃ . Thus, the specification of the Weyl function M̃(λ) ,

uniquely determines the operator L .

Proof Let us define the matrix P (x, λ) = [Pjk(x, λ)] j,k=1,2 by the formula

P (x, λ) =

[
φ̃(x, λ) Φ̃(x, λ)

φ̃′(x, λ) Φ̃′(x, λ)

]
=

[
φ(x, λ) Φ(x, λ)
φ′(x, λ) Φ′(x, λ)

]
. (27)

By (25), we calculate

Pj1(x, λ) = φ(j−1)(x, λ)Φ̃′(x, λ)− Φ(j−1)(x, λ)φ̃′(x, λ)

Pj2(x, λ) = Φ(j−1)(x, λ)φ̃(x, λ)− φ(j−1)(x, λ)Φ̃(x, λ)

}
(28)

and

φ(x, λ) = P11(x, λ)φ̃(x, λ) + P12(x, λ)φ̃′(x, λ)

Φ(x, λ) = P11(x, λ)Φ̃(x, λ) + P12(x, λ)Φ̃′(x, λ)

}
. (29)

According to (25) and (28), for each fixed x , the functions Pjk(x, λ) are meromorphic in λ with

simple poles in the points λn and λ̃n . Denote G0
δ = Gδ ∩ G̃δ , where Gδ := {λ : |λ− n| ≥ δ} . By

virtue of (18), (19) and (28) we get

|P11(x, λ)− 1| ≤ Cδ |λ|−1
, |P12(x, λ)| ≤ Cδ |λ|−1 , λ ∈ G0

δ (30)

where Cδ is a constant.

On the other hand according to (25) and (28),

P11(x, λ) = φ(x, λ)S̃(x, λ) + S(x, λ)φ̃(x, λ) + (M̃(λ)−M(λ))φ(x, λ)φ̃′(x, λ),

P12(x, λ) = S(x, λ)φ̃(x, λ) + φ(x, λ)S̃(x, λ) + (M(λ)− M̃(λ))φ(x, λ)φ̃(x, λ).

Since M(λ) = M̃(λ) , it follows that for each fixed x , the functions P1k(x, λ), k = 1, 2 , are entire

in λ . Together with (30) this yields P11(x, λ) = 1, P12(x, λ) = 0. Substituting into (29), we obtain

φ(x, λ) = φ̃(x, λ), Φ(x, λ) = Φ̃(x, λ) for all x ∈ (0, a1) ∪ (a1, a2) ∪ (a2, π) and λ . Taking this into
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account, from (1) we obtain q(x, λ) = q̃(x, λ) on (0, π) , from (6) we obtain h = h̃, H = H̃, and

from (3) we conclude that as = ãs , αs = α̃s , s = 1, 2. Consequently, L = L̃. 2

Theorem 3.2 If λn = λ̃n , γn = γ̃n, n ≥ 1 , then L = L̃. Thus, the specification of the spectral

data {λn, γn}n≥1 uniquely determines the operator L .

Proof It follows from (26) that the Weyl function M(λ) ise meromorphic with simple poles at

points. Using (26), Theorem 2.1 and equality
.

∆(λn) = −βnγn, we have

Re sλ=λnM(λ) =
ψ(0, λ)
.

∆(λn)
=

βn
.

∆(λn)
=

1

γn
. (31)

Since the Weyl function M(λ) is regular for λ ∈ τn , applying the Rouche theorem ([5]), we

conclude that

M(λ) =
1

2πi

∫
τn

M(µ)

λ− µ
dµ, λ = intτn

where the contour τn is assumed to have the counterclockwise circuit. Calculating this integral by

the residue theorem and taking (31) into account we arrive at

M(λ) =

∞∑
k=1

1

γk(λ− λk)
. (32)

Under the hypothesis of the theorem we obtain, in view of (32), that M(λ) = M̃(λ) , and

consequently by Theorem 3.1, L = L̃. 2

Theorem 3.3 If λn = λ̃n and µn = µ̃n, n ≥ 1, then L = L̃. Thus the specification of two spectra

{λn, µn}n≥1 uniquely determines L.

Proof It is obvious that characteristic functions ∆(λ) and ∆1(λ) are uniquely determined by the

sequences {λn}n≥1 and {µn}n≥1 , respectively. If λn = λ̃n, µn = µ̃n, n ≥ 1, then ∆(λ) = ∆̃(λ) ,

∆1(λ) = ∆̃1(λ) . Together with (26) this yields M(λ) = M̃(λ) . By Theorem 3.1, we obtain L = L̃ .
2

Remark 3.4 By (26), the specification of two spectra {λn, µn}n≥1 is equivalent to the specification

of the Weyl function M(λ) . On the other hand, if follows from (32) that the specification of the

Weyl function M(λ) is equivalent to the specification of the data {λn, γn}n≥1 . Consequently, three

statements of the inverse problem of reconstruction of the problem L from the Weyl function, from

the spectral data and from two spectra are equivalent.
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