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AIM AND SCOPES 
Journal of Cellular Neuroscience and Oxidative Stress is an 

online journal that publishes original research articles, 
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drugs or disease. 
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on activation of the TRP channels in neurodegenerative 

diseases such Parkinson’s and Alzheimer’s diseases) 
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radicals. Gene anomalies and iron. Role of radiation and 

cancer on gene  polymorphism) 
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Abstract 

Epilepsy is a neurological disease characterized by 

abnormal electrical activity and recurrent seizures in the 

central nervous system (CNS). Changes in hypoxia and 

iron metabolism can stimulate seizures through the CNS 

and cardiac system. Cardiovascular system disorders such 

as arrhythmias also accompany this process. It was aimed 

to examine the genes of TFRC-1 and TIM-2, which 

contribute to ion homeostasis by providing hypoxia 

inducible factor (HIF) -1 and intracellular iron flow, 

through the kindled model of pentylenetetrazol (PTZ). 

HIF-1α, TFRC-1 and TIM-2 gene expressions were 

investigated in both brain and heart tissue by RT-PCR 

method. As a result of the data, TIM-2 expression 

significantly decreased in the brain (p<0.01) and cardiac 

ventricle tissue (p<0.05) in female rats. TFRC-1 gene 

expression decreased in female brain tissue (p<0.05). Our 

findings suggest that TFRC-1 and TIM-2 gene 
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modulation may have therapeutic potential in epilepsy 

patients. In addition, TFRC-1 and TIM-2 genes may 

contribute to ferroptosis and oxidative stress mechanisms 

known to be associated with the seizure process by 

regulating iron transfer into the cell. It is crucial to 

conduct new studies on behalf of the future to elucidate 

iron metabolism in epilepsy through the TIM-2 and 

TFRC-1 genes. 

 

Keywords: Epilepsy; PTZ-kindling model; HIF-1α; 

TFRC-1; TIM-2. 

   

Introduction 

Epilepsy is characterized by seizures that occur as a 

result of the imbalance between cerebral inhibition and 

arousal in the CNS (Steinlein 2004). It is one of the most 

common neurological diseases worldwide and affects 

more than 70 million people (Thijs et al. 2019). Epileptic 

seizures are recurrent paroxysmal events (occurring in 

sudden and temporary crises) that reflect the neural 

mechanisms of pathogenesis (Neligan et al. 2012). These 

seizures are associated with functional defects in the 

expression of genes responsible for controlling the neural 

signaling, synaptic structure, cell death, and inflammation 

(Ma 2018). However, the etiology of a significant portion 

of epilepsy cases is not fully known yet (Brodie et al. 

2018). 

The brain carries out changes in specific gene 

expressions to protect from non-physiological epileptic 

conditions. These changes result from the excitation of 

the transcriptional response coordinated to minimize brain 

damage (Simon 2016). This coordinated transcriptional 

response in epilepsy is not limited to brain cells, but also 

creates a transcriptional response in heart myocytes (Biet 

et al. 2015; Brewster et al. 2016; Lai et al. 2018). 

Epidemiological studies have shown that epilepsy 

patients have a higher prevalence of heart disease 

compared to the normal population (Kadima et al. 2013; 

Keezer et al. 2016). Genetic defects can lead to abnormal 

cardiovascular dysfunction (Marino and Digilio 2000). 

These disorders can affect the development of both the 

heart and the brain (Miller and Vogel 1999; McQuillen 

and Miller 2010). In addition, hypoxia inducible factor 

(HIF), a gene that has been observed to affect the CNS 

and cardiovascular system, is associated with epileptic 

seizures (Jiang et al. 2016; Auzmendi et al. 2018). 

The HIF-1 gene is an essential gene responsible for 

inducing tissue repair in response to the presence of 

oxygen (Darby and Hewitson 2016). HIF-1α is the part 

that is sensitive to oxygen. The gene shows activation in 

case of hypoxia, and this may lead to overexpression in 

the HIF-1α gene (Yu et al. 1998; Shimoda and Semenza 

2011). HIF-1α gene expression can be observed in 

cardiovascular diseases such as heart failure and 

pulmonary hypertension (Schultz et al. 2006). On the 

other hand, high HIF-1α expression levels have been 

reported in brain tissues in epilepsy (Li et al. 2014; Jiang 

et al. 2016). The HIF-1α gene in the brain can cause iron 

overload with different interactions on neurons (Merelli et 

al. 2018). 

Iron is essential for life but may have a toxic effect 

(Gorter et al. 2005). Iron causes seizures by catalyzing 

oxidative stress and ferroptosis (Mao et al. 2019; 

Nakamura et al. 2019). In addition, ferritin, which is an 

iron storage protein, increases in the hippocampus in 

epilepsy (Lakaye et al. 2000). In this context, receptors 

responsible for intracellular iron homeostasis constitute 

mechanisms for controlling iron levels in cells (Gorter et 

al. 2005). 

T cell immunoglobulin and mucin region (TIM) -2 

receptors bind ferritin and form the main mechanism in 

iron uptake. TIM-2 is a specific ferritin receptor 

expressed in many systems such as immune system cells, 

liver and kidney tissues, including CNS cells (Todorich et 

al. 2008). Transferrin-1 receptor (Tfr-1) is a receptor 

encoded by the TFRC-1 gene and might be stimulated by 

HIF-1α (Merelli et al. 2018). Decreased iron 

concentration in the cell caused by Tfr-1 inactivation is 

associated with heart problems that can cause death 

(Gorter et al. 2005). Since the transport of iron will be 

modulated by these receptors, studying the TFRC-1 and 

TIM-2 genes in epilepsy will help clarify the mechanism. 

In this study, the HIF-1α gene in the brain and heart 

and the Tfr-1 and TIM-2 receptors genes involved in iron 

metabolism were investigated in epileptic rats. 

 

Material and Method 

The methodology of this entire study was 

summarized in a diagram in Figure 1. 
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Animals 

The animals were ordered to create an experimental 

epilepsy model at the Kayseri Erciyes University 

Research Center. The experimental protocol of this study 

was approved by the Animal Ethics Committee of the 

Kayseri Erciyes University (ethics committee decision 

number: 2019/027, approved 13 February 2019). A total 

of 44 adult male and female Wistar-albino rats weighing 

between 280-400 g were randomly divided into 4 groups. 

Rats were placed in cages at controlled temperatures (24 

°C ± 2 °C). They were given free access to water and food 

and kept on a 12-hour light-dark cycle.  

 

Animal Model 

PTZ Kindling Model 

The PTZ (P6500, Sigma-Aldrich, St. Louis, MO, 

USA) agent was dissolved in isotonic saline (0.9% NaCl) 

and a 1% solution concentration was established. 35 

mg/kg PTZ injection contains 1% PTZ agent. It was 

prepared in a 10 ml volume of 229 mg PTZ. This 

preparation helped to prepare 35 mg/kg PTZ. A dose of 

35 mg/kg  of  1%  solution of  PTZ was  administered I.P.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

every two days to create chronic epilepsy seizures in the 

rat.  The solution was injected into rats three days a week 

(Monday, Wednesday and Friday) for one month (a total 

of 13 injections, the last injection being 50 mg/kg). Rat 

behaviors were observed 30 minutes after injection 

according to the protocol, and epileptic seizure scoring 

was performed (Table 1). 

 

Number of 

injections 

Racine scoring of 

epileptic female rats 

Racine scoring of 

epileptic male rats 

1. 0,7 1,16 

2. 1,17 1,77 

3. 2,17 2,12 

4. 1,88 2,06 

5. 2,47 2 

6. 2,52 2,75 

7. 2,94 2,81 

8. 2,97 3 

9. 3 3,26 

10. 3,11 3,31 

11. 3,23 3,12 

12. 4,4 4,38 

13. 5,2 5,31 

 

Table 1: Racine scoring of epileptic rats. 

 

Figure 1. Establishment of PTZ kindling pattern, followed by analysis of HIF-1α, TFRC-1 and TIM-2 gene expressions. 

In the epilepsy model created as a result of PTZ injection, the isolation of rat brain and heart ventricle tissues and RT-

PCR method was applied and data were analyzed.  
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Racine Scoring System 

Racine scoring (RS) is one of the most commonly 

used tools to assess seizure intensity in rodent 

experimental epilepsy models (Racine 1972). RS, which 

categorizes the stages of seizures, 

Stage 0: No answer, 

Stage 1: Twitching in the ear and face, 

Stage 2: Myoclonic jerks in the body, 

Stage 3: Standing up on hind legs, 

Stage 4: Tonic-clonic seizures with the animal 

falling to the ground, 

Stage 5: Recurrent (generalized) severe tonic-clonic 

seizures. 

 

Real time polymerase chain reaction (RT-PCR) 

This study was conducted to detect and compare 

gene expression levels in rat brain and cardiac ventricle 

tissue samples. Tissue samples were firstly homogenized, 

RNA isolation (#11828665001, Roche) was performed 

with manual isolation, the obtained RNAs were converted 

into cDNA, their purity levels and amounts were 

measured. 

For amplification, qPCR study was performed with 

2X Sybr Green Master Mix qPCR kit (BIONEER) and 

HIF-1α, TIM-2 and TFRC-1 primers, and the gene 

expression levels were compared to each other and the 

reference gene among tissues as control and patient 

groups.  

 

qPCR Kit and PCR Conditions 

The WizPureq PCR Master Mix (SYBR) we have 

used recommends adding 1-100 ng of cDNA to prepare a 

reaction volume of 50-100 µl. The cDNAs we obtained 

from our extraction device were diluted to appropriate 

concentrations. BIONEER Brand WizPure qPCR Master 

Mix (SYBR) was used in our Real Time PCR studies. 

In the expression test experiments performed after 

Absolute Quantification study (in Quantitative Analysis), 

primers and sample cDNA (or PCR Grade water for 

Negative Control) were added to ready-made reaction 

tubes, the final sample volume was completed to 20 µl 

with PCR Grade water. Before the tubes were loaded into 

the Q-PCR device, BIONEER Brand ExiSpin Model 

Vortex-Mixer was used, which automatically performs 

both vortex and spin processes in order to ensure 

homogeneity. 

 

Protocol of Real Time PCR  

PCR process was performed with BIONEER 

BRAND EXICYCLER96 REAL TIME PCR device. The 

prepared mixes were placed in BIONEER Brand 

ExiCycler96 Model Q-PCR device (after homogeneity 

was achieved with the BIONEER Brand ExiSpin Model 

Vortex-Mixer device) in 0.2 ml PCR tubes covered with 

optic transparent film. Since the amplification conditions 

of the experiments (temperature, time and number of 

cycles required for Syber Green Master Mix) were 

already optimized by BIONEER (the manufacturer of 

Devices, Master Mixes and Primer-Probes), significant 

results were obtained from the studies. 

 

Statistical Analysis  

SPSS program (SPSS for Windows, SPSS Inc, 

Chicago, IL, version 24.0) was used for statistical 

analysis. Results are shown as the average standard error 

margin. Inter-group comparison was made with the one-

way ANOVA test and Independent sample T-test was 

used for binary comparisons. Statistical value of p<0.05 

was considered as significant. 

 

Results 

Scoring of PTZ Kindling Epilepsy Model  

After PTZ treatment, kindling epileptic seizures 

were gradually induced. At the 13th injection, generalized 

tonic-clonic seizures, corresponding to stage 5 of the 

Racine scaling system score, were observed in both male 

and female rats (Figure 2) (5.31±0.58 and 5.2±0.47). The 

latency of the first seizure was calculated for both groups. 

Female rats with PTZ had their first seizure in 266±66 s, 

while PTZ-affected male rats had their first seizure in 

308±95 s. There was no significant change in the body 

weight of the rats during the PTZ injection procedure. 

 

Findings of RT-PCR  

HIF-1α, TFRC-1 and TIM-2 gene expression on 

brain tissue isolated from the PTZ-induced epilepsy 

model was shown in Figure 3. TFRC-1 gene expression 

was significantly decreased in female rats compared to the 

control group (p <0.05), but no significant result was 

obtained in male rats. TIM-2 expression was significantly 

decreased in female rats compared to the control group (p 

<0.01), and no significant data was observed in male rats. 

In addition, HIF-1α had no a significant difference in both 

female and male rats. 



HIF-1α, TFRC-1, and TIM-2 in Epilepsy 

J Cell Neurosci Oxid Stress 2020; 12: 947 - 954                                                                                                                                                 951 

                                                                                                                           

 

  

Figure 2. Racine score exhibited by male (orange) and female (blue) rats after each injection of PTZ (*p<0.05; ***p<0.001). 

 

 

Figure 3. HIF-1α, TFRC-1 and TIM-2 gene expression levels graph obtained from brain tissue by RT-PCR analysis. The black 

column refers to the control group, the blue column to the female rat, the orange column to the male rat (*p<0.05; **p<0.01).  

 

 

Figure 4. HIF-1α, TFRC-1 and TIM-2 gene expression levels graph obtained from cardiac ventricle tissue by RT-PCR analysis. 

The black column refers to the control group, the blue column to the female rat, the orange column to the male rat (*p<0.05).  

 

 



HIF-1α, TFRC-1, and TIM-2 in Epilepsy 

J Cell Neurosci Oxid Stress 2020; 12: 947 - 954                                                                                                                                                 952 

                                                                                                                           

In our study, as a second target, HIF-1α, TFRC-1 

and TIM-2 gene expression analysis was performed on 

the cardiac ventricle tissue and was shown in Figure 4. 

TIM-2 expression in cardiac tissue significantly decreased 

in female rats (p<0.05). HIF-1α expression was not 

provided significant data in both male and female rats 

compared to the control group. When TFRC-1 gene 

expression was examined, no significant results were 

obtained in both genders. 

 

Discussion 

Ferritin receptor encoded by the TIM-2 gene and 

Tfr-1 transferrin receptor encoded by the TFRC-1 gene 

play a role in iron homeostasis in cells (Figure 5B) (Xu et 

al. 2015; Merelli et al. 2018). Our results show that 

TFRC-1 and TIM-2 gene expressions are significantly 

reduced in female rat brain tissue in epilepsy (Figure 3). 

The decrease in TIM-2 gene expression we have observed 

may be a counter-pathogenesis response of neurons to 

reduce epileptic activity by reducing iron flow into the 

cell. 

As a control mechanism to compensate for seizures 

that may occur with increased iron concentration in 

neurons, cells may exhibit a decrease in TFRC-1 and 

TIM-2 gene expression. Pathogenesis may be minimized 

by a natural process by trying to reduce the intracellular 

iron concentration. In addition, the receptors encoded by 

these genes in the iron-induced ferroptosis mechanism 

known to be associated with epilepsy (Feng et al. 2020; 

Mao et al. 2019; Nakamura et al. 2019) may contribute to 

seizure formation by regulating intracellular iron 

homeostasis (Figure 5B). 

The formation of reactive oxygen products and 

neuropathy findings (Cozzi et al. 2010) as a result of the 

decrease in Tfr-1 expression of Cozzi et al. supports the 

role of this gene in epilepsy, in line with the decrease in 

expression in the TFRC-1 gene we obtained in our study. 

In the pathogenesis of seizures, a mechanism that triggers 

oxidative damage by disrupting Tfr-1-related iron 

homeostasis can be considered (Figure 5B). Another 

striking data is that a significant decrease in genes 

encoding transferrin and ferritin receptors was observed 

only in female rats. This process suggests that TIM-2 and 

TFRC-1 genes may have a regulation mechanism by 

steroid hormones such as estrogen and progesterone. 

Studies to analyze the regulatory effect of hormone 

differences between sexes on TIM-2 and TFRC-1 genes 

can provide meaningful data. 

It has been reported that sex differences can cause 

changes in gene expression in tissues (Kassam et al. 

2019). Sex differences involved in gene expression have 

been observed in a number of tissues, including the liver, 

heart, and brain (Ellegren and Parsch 2007; Parsch and 

Ellegren 2013; Rinn and Snyder 2005). Male and female 

gender can also differ in terms of many pathologies such 

as cancer (Naugler et al. 2007), cardiovascular (Lerner 

and Kannel 1986) and neurological diseases (Gillies et al. 

2014). Accordingly, in our study, using both male and 

female rats, the discrimination in terms of gender in the 

change in targeted gene expression was reported. 

 We present a new approach to epilepsy with the 

relationship between HIF-1 and iron metabolism in the 

brain (Figure 5A) (Merelli et al. 2018) mentioned in the 

literature, the unchanged amount of HIF-1α we obtained 

and the results of the decrease in TIM-2 and TFRC-1 

gene expression. Based on our results, in future studies, in 

addition to the brainstem, TIM-2 and TFRC-1 genes from 

the peripheral nervous system, especially in the vagus 

nerve, can be examined and neurological approaches can 

be developed. 

As a result of studies, cardiovascular problems 

contribute to mortality in epilepsy (Neligan et al. 2011). 

Another parameter we examined in our study is TIM-2 

and TFRC-1 genes found in cardiac ventricles. We 

reported that the expression level of the TIM-2 ferritin 

receptor gene was significantly decreased in female rats 

(Figure 4). Therefore, pathogenesis may be triggered by 

changing the iron homeostasis in cardiomyocytes. 

Availability of iron ions is of great importance for 

cardiomyocytes. Cardiac iron deficiency leads to 

situations such as oxidative phosphorylation, metabolic 

changes, and disruption of mitochondria (Xu et al. 2015). 

Therefore, in epilepsy, cardiac iron deficiency may occur 

with a decrease in TIM-2 ferritin receptors, and this may 

contribute to seizures by creating cardiac function 

abnormalities (Figure 5B). 

According to the data we have obtained, targeting 

iron metabolism via TIM-2 and TFRC-1 encoded 

transferrin and ferritin receptors may have therapeutic 

potential for epilepsy. Due to the significant TIM-2 and 

TFRC-1 expression changes we have observed in both the 

brain and the heart, the seizure prognosis can evolve into 

a more significant state by using specific receptor agents. 

The  reduction  of  TIM-2  receptor  in  both  tissues  may  
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indicate that this receptor has a wider role in iron 

transport in epilepsy. TFRC-1 expression, which encodes 

the Tfr-1 receptor, decreases only in the brain. This may 

indicate that the TFRC-1 gene may have local effects on 

the brain tissue in epilepsy, while the TIM-2 receptor may 

cause pathology in the cardiac system as well as the 

neuronal system. On behalf of the TIM-2 receptor, the 

change in expression in both the brain and the heart can 

be targeted primarily in therapeutic approaches and a 

wider systemic effect can be created. In addition, due to 

the inability to obtain significant data for the HIF-1α 

gene, efficient results may not be observed by targeting 

this gene therapeutically in epilepsy. 
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