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ABSTRACT 
 

Quantification of consecutive motor unit potential (MUP) is used to diagnose and monitor the progress of neuromuscular 

pathologies in clinical applications. In this study, a detailed motor unit simulation was conducted to reveal and understand the 

factors affecting MUPs. Using a volume conductor model and real muscle parameters, normal and pathological MUPs were 

created. The shape changes observed in consecutive MUPs, called jiggle, are calculated with a quantification method. 

Increased jitter duration and re-innervation percentage commonly observed during motor unit loss increase the jiggle value 

proportionally. Moreover, increasing fiber density changing different regions of a muscle bundle decreases the jiggle value. 

The blocking phenomena generally observed in re-innervated fibers affects the jiggle value similar to jitter duration. But, 

higher blocking levels (50%) of re-innervated motor fiber do not have an effect on jiggle value as lower levels of blocking 

(20%). In conclusion, simulation of pathological MUPs showed that it is useful for clinicians to understand the progress of a 

neuromuscular pathology and the factors affecting consecutive MUP wave shape. 
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1. INTRODUCTION 
 

The analysis of motor unit potential (MUP) recorded during voluntary muscle contraction provides 

important information to help in the diagnosis and characterization of neuromuscular pathology. 

Besides the analysis of such classical parameters as duration and amplitude, the degree of change in 

MUP shape at consecutive discharges can be analyzed [1]. This variability depends on the behavior of 

the multiple SFAPs of MUP, which is seen in single-fiber electromyography (SFEMG). The 

variability of the intervals in SFAPs, which is called the jitter, is between 10-30 µs in normal muscles 

[2]. However, the jitter is increased for disturbed neuromuscular transmission such as in early re-

innervation and myasthenic disturbances. If there are more severe disturbances, some SFAPs can be 

lost as a result of an intermittent failure of transmission in the motor unit (MU) endplate. All these 

disturbed neuromuscular transmission conditions cause instability or variations in consecutive MUPs 

and this is called “jiggle” by Stålberg and Sonoo [3].They proposed a method to express the 

quantification of shape variability and defined two parameters: the normalized mean of median 

consecutive amplitude differences (CAD) and the median of the cross correlational coefficient of 

consecutive discharges (CCC). The mathematical expression of CAD and CCC is [4]: 

 

𝐶𝐴𝐷 =
∑  {𝑚𝑒𝑑𝑖𝑎𝑛[

|𝑦1(𝑡)−𝑦2(𝑡)|,|𝑦2(𝑡)−𝑦3(𝑡)|,   .  .  .  ,
|𝑦𝑚−1(𝑡)−𝑦𝑚(𝑡)|

]−𝐶}𝑛
𝑡=1

∑ |𝑦(𝑡)|𝑛
𝑡=1

     (1) 
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𝐶𝐶𝐶 = 𝑚𝑒𝑑𝑖𝑎𝑛

{
 
 

 
 

∑ [𝑦1(𝑡)−�̅�1][𝑦2(𝑡)−�̅�2]
𝑛
𝑡=1

√∑ [𝑦1(𝑡)−�̅�1]2
𝑛
𝑡=1 √∑ [𝑦1(𝑡)−�̅�1]2

𝑛
𝑡=1

, . . . ,

 
 

 
∑ [𝑦𝑚−1(𝑡)−�̅�𝑚−1][𝑦𝑚(𝑡)−�̅�𝑚]
𝑛
𝑡=1

√∑ [𝑦𝑚−1(𝑡)−�̅�𝑚−1]2
𝑛
𝑡=1 √∑ [𝑦𝑚(𝑡)−�̅�𝑚]2

𝑛
𝑡=1

 
}
 
 

 
 

    (2) 

where 𝒚𝒊(𝒕) = amplitude of ith waveform at time t, m = number of waveform, n = number of sample in 

a waveform, C = noise calculation parameter and  �̅�𝒊 is the mean of 𝒚𝒊. 

 

For the calculation of jiggle parameters, a total 5 ms analysis window centered at the maximum 

negative peak was used from 30 ms MUP trace. CAD is actually the abbreviation of “normalized 

mean of median consecutive amplitude differences” and it expresses the ratio between the area of 

amplitude difference of the MUP waveform at consecutive discharges and the area of the averaged 

MUP (Figure 1). 

 

 
 

Figure 1. Jiggle calculation schematic representation [3] 

 

The method and the mathematical functions were based on simulation studies and tested with real 

electromyographic signals [3, 4]. The alignment of the waveforms, the choice of the reference point 

and the sensitivity of the method were tested with real electromyographic signals. Furthermore, for the 

biological and the technical noise, the segment of 5 ms nearest to the right endpoint in each trace was 

used to get C value using the points contained in an interval of ±20 % of the acquisition gain (Figure 

2). C was designed here to compensate selectivity for smooth baseline fluctuations by excluding the 

activity from nearby MUPs (recruited MUPs other than the analyzed ones) [4].  

 

The relationship between the jiggle and the jitter, the temporal dispersion of the waveforms were also 

tested with simulations [3]. Simulation studies indicated that the jiggle assessed by this method is 

proportional to the jitter of the SFAPs. But the effect of blocking phenomena, percentage of re-

innervated fibers and the fiber density on the shape variability of the MUP has not been tested with 

simulation. For this purpose, a detailed muscle bundle was simulated with real muscle parameters to 

reveal the effects of blocking, re-innervation and fiber density. 
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Figure 2. Selection of analysis and noise (C) calculation window [4] 

 

2. MATERIALS and METHODS 

 

It is impossible to experimentally change the MU properties of a living muscle. Hence, MUP 

simulation is essential to understand, quantitatively express and interpret the shape changes observed 

in consecutive MUPs. For this reason, a MUP simulation was created based on the MU parameters 

obtained by previous studies [5-9]. 

 

2.1. Simulation Parameters 

 

The muscle fiber density, muscle fiber length, number of muscle fibers and neuromuscular junction 

(NMJ) positions in a MU were set to create specific MUP to the specific MUs in each muscle group. 

In addition, the number of healthy and pathological or reinnervated fibers in a MU was set as variable. 

The jitter value, NMJ delay, was set as 20µs for normal muscle fibers and 20-300µs for pathological 

muscle fibers [10]. The concentric needle electrode was placed at the midpoint of the distance between 

the NMJ and the muscle fiber end (tendon connection) of the MU. Standard muscle and fiber 

parameters used in simulation are given in Table 1. 

 
Table 1. Parameters used in simulation model [7] 

 
Type Parameter Interval Current value 

Motor Unit Number of Muscle Fiber 0-1000 150 

Motor Unit Diameter Size 2.5 mm 

Motor Unit Minimum Contraction Rate 0-10 5 

Motor Unit Maximum Contraction Rate 10-100 40 

Motor Unit Fiber Density (fiber/mm2) 1-10 5  

Motor Unit Contraction % 0-100 % 30 

Muscle Fiber Radius 20-90 µm 50 µm 

Muscle Fiber Radius Distribution ± 30 µm ± 5 µm 

Muscle Fiber NMJ Position (From Center) -20 - 20 0 mm 

Muscle Fiber NMJ Position Distribution ± 20 mm 2 mm 

Muscle Fiber Latency 0-1000 µs 500 µs 

Muscle Fiber Jitter 0-300 µs 20 µs 

 

2.2. Formulation of MUP  

 

In this study, the volume conductor model was used to create SFAP [11]. The muscle fiber volume 

conductor model is generally expressed as the convolution of the transmembrane current of a 
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cylindrical muscle fiber and the electrode transfer function. The muscle fiber is assumed to be straight 

and cylindrical. The extracellular environment is assumed to be infinite with cylindrical anisotropy. 

The origin of the cylindrical coordinate system is in the cross section of the fiber in the end plate 

(NMJ) and in the center of the fiber (Figure 3A). The action potential is formed in the endplate and 

travels along the muscle fiber in both directions as a depolarization wave and ends in the tendon. 

Depolarization wave in a muscle fiber has to flow through the membrane and transmembrane current 

density is proportional to the second derivative of the intracellular potential [12]. Therefore, it can also 

be thought that the transmembrane current originates from the endplate and spreads towards the 

tendons. 

 
 
Figure 3. SFAP formation at the electrode. A. Schematic representation of muscle fiber and electrode position. 

B. Transmembrane current waveform in a muscle fiber. C. Electrode transfer function [6]. 

 

The end plate (z = 0) current, i0(t), as shown in Figure 3B and a potential generated by the point 

current source located at the beginning of the cylindrical coordinate system is expressed by a 

mathematical equation [13]; 

𝑃(𝑟, 𝑧) =
1

4𝜋𝜎𝑟
(

𝐼

√
𝜎𝑧
𝜎𝑟
𝑟2+𝑧2

)       (3) 

where I = Intensity of the current source, r = radial distance, 𝝈𝒓 = extracellular conductivity (0.063 

Sm-1) and 𝝈𝒛= intracellular conductivity (0.33 Sm-1). 

 

It is assumed that the unit current source emerges in the end plate at t=0 and moves towards the 

tendons at a constant speed, the potential generated at the electrode by this source is h(t) (Figure 3C). 

If i0(t) (Figure 3B) is divided into n sources of different amplitude, the first source will appear at t = 0 

and each subsequent source at the interval Δt. The amplitudes of these sources can be expressed as a1, 

a2, . . . an. The first current source emerging at t = 0 propagates and reaches the tendons and creates 

a1.h(t) potential at the electrode. The potential created by the second current source at the electrode 

will be a2.h(t- Δt). So, the total potential formed at the electrode can be expressed as; 

 

𝑆𝐹𝐴𝑃(𝑡) =  𝑎1. ℎ(𝑡) + 𝑎2. ℎ(𝑡 − ∆𝑡)+ . . . + 𝑎𝑛ℎ(𝑡 − (𝑛 − 1)∆𝑡)    (4) 

where Δt approaches to zero, n approaches to infinity.  

h(t) and i0(t) are expressed as convolution (*) as follows. 
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𝑆𝐹𝐴𝑃(𝑡) =  𝑖0(𝑡) ∗ ℎ(𝑡)         (5) 

As a result, SFAP can be expressed as the output of a linear system whose input is transmembrane 

current, 𝒊𝟎(𝒕), and stimulus response, 𝒉(𝒕). 
 

MUP of a MU now can be expressed as summation of SFAP waveforms (8) created by muscle fibers 

and mathematical formulation of MUP; 

 

𝑀𝑈𝑃(𝑡) = ∑ 𝑆𝐹𝐴𝑃𝑖
𝑁
𝑖=1 (𝑡 − 𝜏𝑖). 𝑠𝑖           (6) 

𝑴𝑼𝑷(𝒕): The potential of the MU, 𝑺𝑭𝑨𝑷𝒊(𝒕): SFAP of the ith muscle fiber, N: the number of muscle 

fibers, 𝝉𝒊: delay of 𝑺𝑭𝑨𝑷𝒊(𝒕) to the recording point and 𝒔𝒊: randomly assigned value of 1 or 0 

representing blocking of muscle fiber. 

 

2.3. Pathological MUP Simulation and Jiggle Calculation 

 

While simulating consecutive MUPs, firstly, a muscle bundle containing the characteristics of a 

certain muscle group (fiber density, number of MUs, the number of muscle fibers contained in a MU, 

muscle fiber length, etc.) was created. The MUs and muscle fibers within this muscle bundle were 

randomly positioned within anatomical boundaries. Next, the probabilities of jitter generation or 

blocking of muscle fibers in these MUs were randomly adjusted. The electrode position was placed at 

a point between the NMJ and the tendon after the concentric electrode parameters [6] were adjusted. 

Then, the neurons in the MUs forming the muscle bundle were stimulated at a frequency of 6-8 Hz, 

and sequential MUPs were created. 

 

To observe the effect of jitter on CAD and CCC values, MUs with 10% and 20% re-innervation rate 

were created.  In addition, the probability of blocking of reinnervated muscle fibers was assigned as 

0%, and the jitter level of these reinnervated muscle fibers was changed between 50-300µs in steps of 

50µs. For normal muscle fibers, the jitter level was set as 20µs. After the MUP waves were created, 

30dB intensity white noise was added, which is the most common background noise level in needle 

electrode recordings in the clinic. 

 

When a motor nerve is severely damaged or lost its function, it cannot innervate the muscle fibers it is 

attached to. In this case, the neighboring motor nerve begins to form new NMJs by extending new 

terminal ends to the non-stimulated muscle fibers and it is called re-innervation, the stimulation of the 

muscle fiber also takes longer time than normal because the NMJ connection is not fully formed [14]. 

The number of reinnervated muscle fibers in a MU will also change the shape of MUP. In order to 

reveal the effect of re-innervation on the jiggle value, the percentage of re-innervated muscle fibers 

was changed between 10% and 50%, and pathological MUP waves were created. While forming 

pathological MUP waves, jitter levels of re-innervated muscle fibers were determined as 100, 200 and 

300µs. 

 

In the process of re-innervation formation, NMJ formation (the connection of motor neuron terminal 

end and muscle fiber) takes time. During this time, when there is no complete fusion in NMJ, some of 

the consecutive stimuli cannot create an action potential in the muscle fiber [15]. Therefore, while 

some of the muscle fibers in a MU form SFAP, some cannot form, and in this case, which is called 

blocking, shape change occurs in consecutive MUP waves. In order to reveal the effect of the blocking 

percentage on the jiggle value, the percentage of blocking of re-innervated muscle fibers was changed 

between 10% and 50%, and pathological MUP waves were created by simulation. While forming 

pathological MUP waves, jitter values of reinnervated muscle fibers were set as 20, 100, 200 and 

300µs. The amount of re-innervated muscle fibers was set as 20% of all muscle fibers for the 
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pathological MUs. For normal muscle fibers, jitter value was determined as 20µs, re-innervation rate 

1% and blockage probability 1% [16]. 

 

The number of muscle fibers per unit area varies according to muscle groups or muscle bundle 

regions. Changing the muscle fiber density will increase the number of muscle fibers in the recording 

area of the concentric electrode. Moreover, with increasing muscle fiber density, MUP amplitude also 

increases [5]. Therefore, normal and pathological muscle models with different muscle fiber density 

were created to reveal the effect of muscle fiber density on jiggle parameters. In order to simulate the 

human muscle structure appropriately, the simulation was performed by changing the muscle fiber 

density between 5-30 fibers/mm2 [17]. During the simulation, 20% of all muscle fibers were set re-

innerved. Also, 10% of these re-innerved muscle fibers were assigned to have the possibility of 

blocking. Pathological MUP waves were obtained by assigning the jitter probabilities of re-innervated 

muscle fibers as 150µs, and jiggle parameters were calculated using equation 1 and 2. 

 

3. RESULTS and DISCUSSION 

 

Discrimination of normal and pathological consecutive MUPs can be easy for a clinician by looking at 

the shape of the potentials but quantification of shape variability of MUP waveforms provides accurate 

information about the examined MU.  
 

 

Figure 4. Simulated normal and pathological MUP waveforms. For normal MUP: Jitter value is 20µs, re-innervation ratio is 

1% and blocking ratio of re-innervated fibers is 1%. For pathological MUP: Jitter value is 100µs, re-innervation 

ratio is 10% and blocking ratio of re-innervated fibers is 10%. Red waves are the mean of the consecutive MUPs. 

 

As can be seen in Figure 4, the CAD value of the normal MUP wave is 0.056 while pathological MUP 

wave is 0.294. Also, the CCC values representing the cross-correlation between consecutive MUP 

waveforms support the CAD values. If there is no difference between the consecutive potentials CCC 

value should be 1. But, increasing difference between potentials will decrease the CCC value. In 

Figure 4, while CCC value is 0.993 for normal MUP waveforms, it drops to 0.943 for pathological 

MUP because of the increasing consecutive wave shape difference. 

 

With increasing jitter duration, jiggle value (CAD) increases significantly for the case of 10 and 20 % 

of re-innervation as expected (Figure 5). The decrease in CCC with increasing jitter duration supports 

the acquired jiggle values. Increasing jitter value assigned to the SFAPs causes shape variability in 

consecutive MUPs because of the temporal dispersion between randomly created SFAPs. There is an 

increase between 20 and 50µs jitter durations for the 10% re-innervation rate but it is not significant. 
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With these results, increasing level of a neuromuscular pathology affecting NMJ or re-innervation rate 

of a MU will cause a directly proportional increase in CAD value. 

 

 
Figure 5. Simulation of the relationship between jiggle and jitter. Bars represent the SEM values. One-Way ANOVA 

(Dunnett) test was used for significance. Each jitter group is compared with following increased jitter group. (*: 

p<0.05, #: p<0.05) 

 
When the re-innervated fiber percentage in a MU increased, calculated jiggle values increase 

significantly for all jitter durations (Figure 6). It is assumed that since the increased re-innervation 

percentage will cause new unstable NMJ formation, it is inevitable to have high jitter duration in MUs. 

The jitter duration, which was considered 300µs in the first stage of NMJ formation, will decrease to 

100µs or lower as the NMJ connection becomes more stable [18]. Therefore, the obtained results 

support the assumption mentioned above because jiggle values for 100µs jitter duration (more stable 

NMJ) are smaller than 300µs jitter duration (unstable NMJ). 

 

 
 
Figure 6. Simulation of the relationship between jiggle and re-innervated fiber percentage.  Bars represent the SEM values. 

One-Way ANOVA (Dunnett) test was used for significance. Each re-innervation group is compared with 

following increased re-innervation group. (*: p<0.05, significance level is same for 100µs, 200µs and 300µs). 

 
In the formation process of NMJ, from the initial state (unstable) to the stable state, it is believed that 

muscle fibers are not always stimulated in the case of consecutive stimulation [10]. This is called 

blocking, which causes shape change in successive MUP waves and significantly affects the 

consecutive MUP wave shape.  The simulation results supports this assumption. The percentage of 

blocking, which is accepted as 1% for normal muscle fibers, increases up to 50% for pathological 

muscle fibers. When the jitter time is kept constant and the blocking rate increases significantly up to 

30%, the jiggle value also increases, and remains constant at 30% (Figure 7). There is no significant 
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increase between 30 and 50 % of blocking. This situation can be explained as the high blocking rate of 

the fibers causes a drop in the number of SFAP waves that form MUP waves. 

 

 
Figure 7. Simulation of the relationship between jiggle and blocking percentage. Re-innervation rate is 20% for 

the blocking rates 10-50%.  Bars represent the SEM values. One-Way ANOVA (Dunnett) test was used 

for significance. Each blocking percentage is compared with following increased blocking percentage. 

(*: p<0.05, significance level is same for 100µs, 200µs and 300µs, no significance for the 20µs jitter 

duration). 

 

Muscle fiber density (the number of muscle fibers per unit cross section) varies in certain regions of a 

muscle bundle [5, 17]. Changing muscle fiber density will change the number of muscle fibers in the 

recording area of the concentric electrode, and thus the number of SFAP that create the MUP wave. 

The increase in muscle fiber density in normal muscle groups does not make a statistical difference in 

jiggle value. Because the jitter duration and blocking percentage are very low in normal muscle 

groups, increasing the muscle fiber density does not create a significant change in consecutive MUP 

waves. However, as the muscle fiber density increases in pathological muscle groups, the jiggle value 

decreases statistically between 15 and 30 fibers/mm2 according to the 5 fibers/mm2 (Figure 8). This is 

due to the increased number of muscle fibers in the concentric electrode recording area, which 

relatively decreases the reinnervated muscle fiber density. 

 

 
 

Figure 8. Simulation of the relationship between jiggle and fiber density. For normal group: Jitter value is 20µs, re-

innervation ratio is 1% and blocking ratio of re-innervated fibers is 1%. For pathological group: Jitter value is 

100µs, re-innervation ratio is 10% and blocking ratio of re-innervated fibers is 10%. One-Way ANOVA 

(Dunnett) test was used for significance. Each fiber density results are compared with the initial fiber density 

(5fiber/mm2). (*: p<0.05, **: p<0.01). 
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5. CONCLUSION 

 

Consecutive MUP simulation using real muscle parameters is necessary to understand the factors 

affecting the function of MU during neuromuscular pathology. In this study, quantification of 

consecutive MUPs was used to reveal the effects of jitter duration, re-innervation percentage, blocking 

percentage and fiber density to the shape of the MUP. Increasing jitter duration observed between 

pathological SFAPs of a MU composing MUP increases the jiggle value. Similarly, re-innervated 

motor fiber percentage in a MU also increases the jiggle value of consecutive MUPs. In the initial 

stage of the re-innervation process, the fusion of the NMJ is unstable and blocking phenomena occurs 

during consecutive stimulation of MU. Blocking of some fiber in a MU causes changes in MUPs and 

increases the jiggle value. Jiggle value increases when blocking ratio of re-innervated fibers rises up to 

the 30% but higher blocking ratios do not affect the jiggle value because of the decreasing number of 

re-innervated fiber percentage. Fiber density of a muscle fiber changes in some regions of the muscle 

bundle especially muscle fibers near the tendons are denser than middle of the muscle bundle. 

Simulation of this parameter showed that higher fiber density decreases the jiggle value because of the 

increasing number of fiber in the concentric electrode active area. Therefore, recording MUPs close to 

the muscle provides accurate and stable jiggle calculation.   
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