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Abstract
The problem of minimizing total completion time (TCT) in an uncertain environment
is a crucial problem in production engineering. Minimizing the TCT of a two-machine
no-wait scheduling problem with uncertain and bounded setup times is known to be very
difficult, and is very likely to have no optimal solution. Such problems are known as
Non-deterministic Polynomial-time hard. Scheduling literature provides a mathematical
dominance relation for the problem. In this article, a substantially more effective mathe-
matical dominance relation is established. In fact, computational methods reveal that the
average percentage improvement comparing the established one in this article to the one
in the literature is 1407.80%. Furthermore, statistical hypothesis testing is conducted to
compare the means of the established dominance relation to that given in the literature,
with p-values of (almost) 0 for every case, meaning that the mean of the established dom-
inance relation is substantially larger than the one given in the literature. Additionally,
confidence intervals are constructed for each mean of the randomly generated cases for the
proposed dominance relation to confirm the accuracy of the means.
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1. Introduction
A manufacturing model with two machines where jobs flow from the first machine

to the next is known as a two-machine flowshop model. Specifically, each job has two
operations where the first operation is performed on the first machine and the second one
is performed on the second machine. In some environments, however, certain production
settings require that jobs be processed without any delay. That is, a job must continuously
be processed from beginning to end with no idle time in between the processes. This is
especially crucial with manufacturing settings relating to heat, where pausing may lead
to cooling the material and possibly result in complications [11]. Such a manufacturing
flowshop with no breaks is known as a no-wait flowshop and is used in many industries,
including chemical, plastic, and pharmaceutical and many scheduling problems such as
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bakery production and aircraft landing [5, 14]. As indicated in the survey papers of [14]
and [5], research relating to the no-wait flowshop problem has been increasing with various
performance measures such as the makespan by [25] and total flow time by [19].

Since unpredictability is a common part of manufacturing settings (see [22, 23]), it is
crucial to consider cases when job descriptors, such as processing times,setup times, and
due dates are not known in advance. The study of stochastic scheduling problems aims to
give solutions when job descriptors are uncertain and prone to change. Generally, in such
problems the aim is to find a solution to the expected job descriptors as opposed to the
actual ones. Some papers in this area, include [21], which studies normally distributed pro-
cessing times to minimize the expected number of tardy jobs, Pinedo [20] which considers
exponentially distributed processing times with the objective of minimizing the expected
weighted number of tardy jobs, Cunningham and Dutta [12] and Ku and Niu [18] which
study exponentially distributed processing times, and Kalczynski and Kamburowski [15]
which considers job processing times with the Weibull distribution, and so on.

The time it takes to set up a machine for a new job is called the setup time of that job on
that particular machine. In some manufacturing cases setup times are too small to make
any significant difference in production and are therefore neglected in the vast majority
of scheduling literature. Nonetheless, many other manufacturing settings require longer
setup times, Kopanos et al. [17] making a considerable difference in production. Neglecting
setup times in such cases results in poor efficiency. Allahverdi [4] states that setup times
need to be considered separately from processing times for increased productivity, better
resource utilization, eliminating waste, and meeting deadlines.

Research in scheduling problems generally assumes setup times to be deterministic,
which becomes problematic in settings where they change stochastically. This could result
due to equipment shortage, crew skills, or the breakdown of tools [16]. Gonzalez-Neira et
al. [13] and Wang and Choi [24] discuss the large number of uncertainties in manufacturing.
In an effort to resolve these types of problems, Aydilek et al. [10] suggests setting lower
and upper bounds for setup times. That is, for an uncertain setup time of job i on
machine k, denoted si,k, there is a lower bound Lsi,k and an upper bound Usi,k with
Lsi,k ≤ si,k ≤ Usi,k.

The motivation for the study comes from the reasons stated in the above paragraphs.
The fact that it is a no-wait flowshop combined with the unpredictability of its setup
times, given only the lower and upper bounds, is essential for these reasons.

Research regarding uncertain setup times has primarily focused on flowshop schedul-
ing. These, include [6], which establishes dominance relations for a two-machine flow-
shop scheduling problem, denoted F2, with respect to the makespan, i.e. completion
time of the last job (Cmax) and total completion time (

∑
Cj), stated mathematically

as (F2|Lsi,k
≤ si,k ≤ Usi,k

|Cmax,
∑

Cj). Other papers, include [1–3], which consider the
same problem with the performance measure of Cmax (makespan),

∑
Cj (total completion

time), and Lmax (maximum lateness), respectively.
Finding an optimal solution to minimizing the TCT of a two-machine no-wait problem is

known to be very difficult and likely impossible. Such problems are classified as NP (Non-
deterministic Polynomial-time)-hard, meaning that in terms of difficulty, they are either
equivalent to or more difficult than a class of problems called NP-complete problems.
No solutions to NP-complete problems have been found and the conjecture is that no
polynomial algorithm exists. Furthermore, if one NP-complete problem has a polynomial
algorithm, then so do the rest, [11].

The two machine no-wait flowshop problem with a performance measure of Lmax, that
is F2|no−wait, Lsi,k ≤ si,k ≤ Usi,k|Lmax, was addressed by [7] and a dominance relation
was established. Furthermore, the problem F2|no − wait, Lsi,k ≤ si,k ≤ Usi,k|

∑
Cj was

addressed in [9]. The paper provided a dominance relation to minimize
∑

Cj . In this
article, the same problem is addressed and a new dominance relation is proposed. It is
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shown that the new dominance relation is significantly better than the current one (around
a 1500% improvement) in the literature. This is further confirmed using a statistical test
of hypothesis with a significance level α = 0.01.

The remainder of the paper is organized as follows: Section 2 discusses the proposed
dominance relation. Section 3 discusses the results of computational experiments to com-
pare the proposed dominance relation to the best existing one in literature. Computational
experiments are carried out using the programming language Python and the results are
confirmed using a test of hypothesis. Finally, Section 4 is the conclusion, where the com-
putational experiments and the hypothesis test are summarized.

2. Proposed dominance relation
Suppose we have n jobs. Let γ1 be a sequence of these jobs and let γ2 be another

sequence obtained from γ1 by permuting the rth element g and r + 1st element h. So, if
we let σ1 denote the first r − 1st elements of γ1 and σ2 the elements in positions r + 2 to
n, we have γ1 = (σ1, g, h, σ2) and γ2 = (σ1, h, g, σ2).

The following lemma is from [7].

Lemma 2.1. The completion time of the job in position j on machine 2 is computed as
follows:

C[j] =
j∑

z=1
max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + t[j,2].

Theorem 2.2. Consider a two machine no-wait flow-shop scheduling problem with uncer-
tain setup times within some bounds. For two adjacent jobs g and h, job h should precede
job g if the following conditions hold, in order to minimise the performance measure of
total completion time, denoted, TCT. That is, TCT (γ2) ≤ TCT (γ1) when the conditions
below are satisfied.

(1) th,2 ≤ tg,2,
(2) Ush,2 + max {t[k,2]}k=r−1,r,r+1 ≤ Lsh,1 + th,1,
(3) Usg,2 + max {t[k,2]}k=r−1,r,r+1 ≤ Lsg,1 + tg,1,
(4) Usg,1 + tg,1 ≤ Lsh,1 + th,1,

where TCT(γ) is the total completion time of a sequence γ.

Proof. We know from Lemma 2.1 that

C[j] =
j∑

z=1
max {s[z,2] + t[z−1,2], s[z,1] + t[z,1]} + t[j,2]

and that TCT =
∑n

i=1 C[i].
We need to prove that TCT (γ2) ≤ TCT (γ1).

Case 1: j = 1, · · · , r − 1
It is trivial that C[j](γ2) = C[j](γ1) for j = 1, · · · , r − 1 since γ1 and γ2 are the exact

same sequence up to the rth element and therefore have the same setup and processing
times. Hence,

∑r−1
j=1 C[j](γ2) =

∑r−1
j=1 C[j](γ1).

Case 2: j = r, r + 1, r + 2

C[r](γ1) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (s[r,2] + t[r−1,2], s[r,1] + t[r,1]) + t[r,2]

=
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sg,2 + t[r−1,2], sg,1 + tg,1) + tg,2
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C[r](γ2) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sh,2 + t[r−1,2], sh,1 + th,1) + th,2

C[r+1](γ1) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sg,2 + t[r−1,2], sg,1 + tg,1)

+ max (sh,2 + t[r,2], sh,1 + th,1) + th,2

C[r+1](γ2) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sh,2 + t[r−1,2], sh,1 + th,1)

+ max (sg,2 + t[r,2], sg,1 + tg,1) + tg,2

C[r+2](γ1) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sg,2 + t[r−1,2], sg,1 + tg,1)

+ max (sh,2 + t[r,2], sh,1 + th,1) + max (s[r+2,2] + th,2, s[r+2,1] + t[r+2,1]) + t[r+2,2]

C[r+2](γ2) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sh,2 + t[r−1,2], sh,1 + th,1)

+ max (sg,2 + t[r,2], sg,1 + tg,1) + max (s[r+2,2] + tg,2, s[r+2,1] + t[r+2,1]) + t[r+2,2]

Hence,

r+2∑
z=r

C[z](γ1) −
r+2∑
z=r

C[z](γ2) = 3 max (sg,2 + t[r−1,2], sg,1 + tg,1) + 2 max (sh,2 + t[r,2], sh,1 + th,1)

+ max (s[r+2,2] + th,2, s[r+2,1] + t[r+2,1]) + t[r+2,2] + th,2 + tg,2

− 3 max (sh,2 + t[r−1,2], sh,1 + th,1) − 2 max (sg,2 + t[r,2], sg,1 + tg,1)
− max (s[r+2,2] + tg,2, s[r+2,1] + t[r+2,1]) − t[r+2,2] − tg,2 − th,2.

By conditions 2 and 3, we have

= 3(sg,1 + tg,1) + 2(sh,1 + th,1) + max (s[r+2,2] + th,2, s[r+2,1] + t[r+2,1])
− 3(sh,1 + th,1) − 2(sg,1 + tg,1) − max (s[r+2,2] + tg,2, s[r+2,1] + t[r+2,1])

= (sg,1 + tg,1) + max (s[r+2,2] + th,2, s[r+2,1] + t[r+2,1])
− (sh,1 + th,1) − max (s[r+2,2] + tg,2, s[r+2,1] + t[r+2,1])

≤ 0.

Case 3: j = r + 3, · · · , n
As in Case 1, we show that C[j](γ2) = C[j](γ1) for j = r + 3, · · · , n.

C[j](γ1) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sg,2 + t[r−1,2], sg,1 + tg,1)

+ max (sh,2 + t[r,2], sh,1 + th,1) + max (s[r+2,2] + t[r+1,2], s[r+2,1] + t[r+2,1])

+
n∑

z=r+3
max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + t[j,2]
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C[j](γ2) =
r−1∑
z=1

max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + max (sh,2 + t[r−1,2], sh,1 + th,1)

+ max (sg,2 + t[r,2], sg,1 + tg,1) + max (s[r+2,2] + t[r+1,2], s[r+2,1] + t[r+2,1])

+
n∑

z=r+3
max (s[z,2] + t[z−1,2], s[z,1] + t[z,1]) + t[j,2]

We have
C[j](γ1) − C[j](γ2) = max (sg,2 + t[r−1,2], sg,1 + tg,1) + max (sh,2 + t[r,2], sh,1 + th,1)

+ max (s[r+2,2] + t[r+1,2], s[r+2,1] + t[r+2,1])
− max (sh,2 + t[r−1,2], sh,1 + th,1) − max (sg,2 + t[r,2], sg,1 + tg,1)
− max (s[r+2,2] + t[r+1,2], s[r+2,1] + t[r+2,1]).

By conditions 2 and 3,
= sg,1 + tg,1 + sh,1 + th,1 − sh,1 − th,1 − sg,1 − tg,1

= 0.

It follows from Cases 1, 2, and 3 that TCT(γ2) ≤ TCT(γ1) as desired. �

3. Computational experiments
Computational experiments are conducted to compare the older and newer versions of

the dominance relations in an effort to confirm that the newer version is more efficient.
"Efficiency" here refers to how often randomly generated data satisfy conditions of the
newer version compared to that of the older version. How often these dominance relations
are satisfied translates to how effective they are in real-life situations. It is shown in this
article that the newer version is significantly more effective.

To conduct experiments it is necessary to generate data for the processing times and
lower and upper bounds of the setup times. This is done in the following way: similar to [8]
and [10], different values of n are used (number of jobs) from 50 to 500 with an increment
of 50. So 10 different values of n are considered. A value H that determines how to choose
the lower bound of setup times based on the upper bounds is defined as shown below. The
variable H is set to be equal to eight different values H = 5, 10, 15, 20, 25, 30, 35, 40 and
the following is done for each combination of n and H.

• Generate tj,k from U(1, 100).
• Generate Usj,k from U(1, 100),
• Generate Lsj,k from U(max(1, Usj,k − H), Usj,k),

for j = 1, · · · , n and k = 1, 2.
In total, (10)(8) = 80 combinations of n and H are considered.

3.1. Computing examples with Python
The programming language Python is utilized to compare the older and newer versions

of the dominance relation, stated from now on as Theorem-old and Theorem-new, respec-
tively. First, a function called "counter-satisfy" is created which, given a certain sequence
of jobs and a theorem (either Theorem-old or Theorem-new), counts the number of times
the given theorem is satisfied for every two adjacent jobs in the given sequence.

For each combination of H and n, 300 instances are generated for the processing times
and lower and upper bounds of setup times. Then, for each of the 300 instances, the
sequence 1−2−3−· · ·−n is shuffled and entered into the "counter-satisfy" function along
with each of Theorem-old and Theorem-new to keep track of how often the theorems are
satisfied.
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Finally, the average of the 300 instances corresponding to the different shuffles is taken,
so that there is one average estimate for each instance of processing times and lower and
upper bounds of setup times. As a result, there are 300 averages in total. Lastly, the
average and standard deviation of those 300 averages are taken and the result is recorded
for that particular H and n combination in Table 1. Since there are a total of 8 values for
H, 10 values of n, and 300 × 300 = 90, 000 cases for each H and n combination; the total
number of instances considered is 8 × 10 × 300 × 300 = 7, 200, 000.

Table 1 summarizes the computational results for all combinations of n and H. The first
two columns list the various values for n and H and the third and fourth columns list the
mean and standard deviation of how often the randomly generated data satisfy conditions
of Theorem-old. Similarly, the fifth and sixth values list the mean and standard deviation
of how often the data satisfy conditions of Theorem-new. Finally the last column lists
the percentage improvement which shows the improvement of Theorem-new compared
to Theorem-old. For a given combination of H and n, the percentage improvement is
calculated by dividing the difference between the means of Theorem-old and Theorem-
new by the mean of Theorem-old.

Table 1. Computational results.

H n Thm-old mean Thm-old std Thm-new mean Thm-new std Per. Imp.
5 50 0.022 0.03 2.785 0.984 125.59
5 100 0.046 0.043 5.598 1.453 120.7
5 150 0.074 0.058 8.541 1.871 114.42
5 200 0.09 0.056 11.774 2.181 129.82
5 250 0.115 0.059 14.543 2.399 125.46
5 300 0.137 0.071 17.605 2.54 127.5
5 350 0.158 0.075 20.427 2.802 128.28
5 400 0.181 0.084 23.315 3.053 127.81
5 450 0.215 0.088 26.117 3.064 120.47
5 500 0.231 0.088 28.892 3.024 124.07
10 50 0.007 0.017 2.554 0.972 363.86
10 100 0.015 0.02 5.227 1.459 347.47
10 150 0.021 0.023 7.98 1.562 379
10 200 0.027 0.023 10.622 1.948 392.41
10 250 0.035 0.03 13.213 2.208 376.51
10 300 0.042 0.03 15.871 2.396 376.88
10 350 0.046 0.031 18.546 2.734 402.17
10 400 0.051 0.033 21.606 2.966 422.65
10 450 0.061 0.032 23.76 2.989 388.51
10 500 0.068 0.036 26.717 3.173 391.9
15 50 0.003 0.009 2.233 0.911 743.33
15 100 0.008 0.015 4.81 1.326 600.25
15 150 0.01 0.015 7.226 1.607 721.6
15 200 0.013 0.014 9.769 1.856 750.46
15 250 0.017 0.016 12.142 2.021 713.24
15 300 0.018 0.018 14.703 2.38 815.83
15 350 0.021 0.018 16.943 2.369 805.81
15 400 0.025 0.019 19.901 2.663 795.04
15 450 0.027 0.02 22.237 2.821 822.59
15 500 0.032 0.023 24.745 3.014 772.28
20 50 0.002 0.007 2.13 0.899 1064
20 100 0.003 0.006 4.47 1.313 1489
20 150 0.006 0.011 6.758 1.696 1125.33
20 200 0.008 0.011 8.964 1.847 1119.5
20 250 0.01 0.012 11.161 1.982 1115.1
20 300 0.013 0.013 13.267 2.118 1019.54
20 350 0.012 0.012 15.521 2.295 1292.42
20 400 0.016 0.014 17.859 2.526 1115.19
20 450 0.017 0.015 20.053 2.562 1178.59
20 500 0.019 0.015 22.404 2.82 1178.16
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25 50 0.001 0.005 1.973 0.787 1972
25 100 0.003 0.008 4.051 1.192 1349.33
25 150 0.003 0.007 6.158 1.46 2051.67
25 200 0.005 0.009 8.15 1.555 1629
25 250 0.007 0.009 10.104 1.74 1442.43
25 300 0.009 0.01 12.389 1.945 1375.56
25 350 0.009 0.011 14.601 2.246 1621.33
25 400 0.01 0.01 16.597 2.373 1658.7
25 450 0.012 0.012 18.657 2.758 1553.75
25 500 0.012 0.011 20.869 2.643 1738.08
30 50 0.001 0.007 1.757 0.769 1756
30 100 0.002 0.007 3.7 1.068 1849
30 150 0.003 0.006 5.54 1.269 1845.67
30 200 0.004 0.008 7.563 1.596 1889.75
30 250 0.005 0.008 9.486 1.846 1896.2
30 300 0.006 0.008 11.328 1.965 1887
30 350 0.006 0.009 13.216 1.983 2201.67
30 400 0.007 0.009 15.093 2.24 2155.14
30 450 0.008 0.008 17.156 2.324 2143.5
30 500 0.01 0.01 19.173 2.269 1916.3
35 50 0.001 0.004 1.695 0.681 1694
35 100 0.001 0.005 3.514 1.084 3513
35 150 0.002 0.005 5.17 1.208 2584
35 200 0.003 0.006 7.196 1.654 2397.67
35 250 0.003 0.005 8.862 1.829 2953
35 300 0.004 0.007 10.609 1.856 2651.25
35 350 0.005 0.007 12.387 1.989 2476.4
35 400 0.006 0.007 14.402 2.127 2399.33
35 450 0.007 0.009 15.705 2.248 2242.57
35 500 0.008 0.009 17.622 2.443 2201.75
40 50 0.001 0.004 1.559 0.681 1558
40 100 0.001 0.005 3.309 1.036 3308
40 150 0.001 0.004 4.789 1.327 4788
40 200 0.003 0.006 6.452 1.35 2149.67
40 250 0.003 0.007 8.197 1.463 2731.33
40 300 0.004 0.006 9.83 1.638 2456.5
40 350 0.004 0.006 11.384 1.926 2845
40 400 0.006 0.007 12.979 1.911 2162.17
40 450 0.005 0.007 14.608 2.13 2920.6
40 500 0.007 0.008 16.367 2.341 2337.14

As can be seen in Table 1, the newer version of the theorem is considerably better
than the older version. The average percentage improvement is 1407.80.% Furthermore,
the median is 1349.33+1375.56

2 = 1362.44%. Since the median is close to the average, it
indicates that the average is an accurate representation of the numbers. Likewise, the
standard deviations of both Thm-old and Thm-new are reasonably small, which further
indicate that the means give an accurate representation of the data. Finally, the percentage
improvement is higher for greater values of H and n as seen in Figures 1 and 2 below. The
fact that the percentage improvement rises with greater values of n and H is an advantage,
since it illustrates the effectiveness of the new dominance relation.

As can be seen in Figures 1 and 2, there are points where the graph decreases. Nonethe-
less, the general direction of the graph is upward as we move to the right.

3.2. Hypothesis testing
Hypothesis testing is used to confirm that the new dominance relation is much more

effective than the earlier one. For a given H and n, the aim is to compare the average
number of times the earlier dominance relation, denoted µ0, was satisfied versus the newer
dominance relation, denoted µ1 and confirm that µ1 > µ0.
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Figure 1. Percentage improvement vs H.

Figure 2. Percentage improvement vs n.

The the null and alternative hypotheses are as follows:
• H0 : µ1 − µ0 = 0
• H1 : µ1 − µ0 > 0

We take the significance level of α = 0.01. Given n and H, we compute the Z-scores for
a difference of means using the test statistic formula

Z = X̄1 − X̄0√
S2

0
90000 + S2

1
90000

,

where X̄0, X̄1, S0, and S1 are the sample means and standard deviations of the earlier and
newer dominance relations, respectively.

Since P (Z ≤ 2.33) = 0.99, the critical Z-value for the 99th percentile of a standard
normal distribution N(0, 1) is 2.33. Hence, if the Z-score is greater than 2.33, we reject the
null hypothesis and accept the alternative hypothesis that the newer dominance relation
is in fact better. Otherwise, we fail to reject the null hypothesis. The results are listed in
Table 2.
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Table 2. Z-scores and 95% and 99% confidence intervals for Thm-old and Thm-
new.

n H 95% CI-old 95% CI-new 99% CI-old 99% CI-new Z-score
50 5 (0.02, 0.03) (2.67, 2.9) (0.02, 0.03) (2.64, 2.93) 841.987
100 5 (0.04, 0.05) (5.43, 5.76) (0.04, 0.05) (5.38, 5.81) 1145.816
150 5 (0.07, 0.08) (8.33, 8.75) (0.07, 0.08) (8.26, 8.82) 1356.964
200 5 (0.08, 0.1) (11.53, 12.02) (0.08, 0.1) (11.45, 12.1) 1606.623
250 5 (0.11, 0.12) (14.27, 14.81) (0.11, 0.12) (14.19, 14.9) 1803.706
300 5 (0.13, 0.15) (17.32, 17.89) (0.13, 0.15) (17.23, 17.98) 2062.344
350 5 (0.15, 0.17) (20.11, 20.74) (0.15, 0.17) (20.01, 20.84) 2169.352
400 5 (0.17, 0.19) (22.97, 23.66) (0.17, 0.19) (22.86, 23.77) 2272.379
450 5 (0.21, 0.22) (25.77, 26.46) (0.2, 0.23) (25.66, 26.57) 2535.051
500 5 (0.22, 0.24) (28.55, 29.23) (0.22, 0.24) (28.44, 29.34) 2842.15
50 10 (0.01, 0.01) (2.44, 2.66) (0, 0.01) (2.41, 2.7) 785.991
100 10 (0.01, 0.02) (5.06, 5.39) (0.01, 0.02) (5.01, 5.44) 1071.592
150 10 (0.02, 0.02) (7.8, 8.16) (0.02, 0.02) (7.75, 8.21) 1528.451
200 10 (0.02, 0.03) (10.4, 10.84) (0.02, 0.03) (10.33, 10.91) 1631.56
250 10 (0.03, 0.04) (12.96, 13.46) (0.03, 0.04) (12.88, 13.54) 1790.324
300 10 (0.04, 0.05) (15.6, 16.14) (0.04, 0.05) (15.51, 16.23) 1981.773
350 10 (0.04, 0.05) (18.24, 18.86) (0.04, 0.05) (18.14, 18.95) 2029.862
400 10 (0.05, 0.05) (21.27, 21.94) (0.05, 0.06) (21.16, 22.05) 2180.074
450 10 (0.06, 0.06) (23.42, 24.1) (0.06, 0.07) (23.32, 24.21) 2378.485
500 10 (0.06, 0.07) (26.36, 27.08) (0.06, 0.07) (26.24, 27.19) 2519.441
50 15 (0, 0) (2.13, 2.34) (0, 0) (2.1, 2.37) 734.322
100 15 (0.01, 0.01) (4.66, 4.96) (0.01, 0.01) (4.61, 5.01) 1086.356
150 15 (0.01, 0.01) (7.04, 7.41) (0.01, 0.01) (6.99, 7.47) 1347.048
200 15 (0.01, 0.01) (9.56, 9.98) (0.01, 0.02) (9.49, 10.05) 1576.895
250 15 (0.02, 0.02) (11.91, 12.37) (0.01, 0.02) (11.84, 12.44) 1799.795
300 15 (0.02, 0.02) (14.43, 14.97) (0.02, 0.02) (14.35, 15.06) 1850.997
350 15 (0.02, 0.02) (16.67, 17.21) (0.02, 0.02) (16.59, 17.3) 2142.868
400 15 (0.02, 0.03) (19.6, 20.2) (0.02, 0.03) (19.5, 20.3) 2239.072
450 15 (0.02, 0.03) (21.92, 22.56) (0.02, 0.03) (21.82, 22.66) 2361.869
500 15 (0.03, 0.03) (24.4, 25.09) (0.03, 0.04) (24.3, 25.19) 2459.749
50 20 (0, 0) (2.03, 2.23) (0, 0) (2, 2.26) 710.101
100 20 (0, 0) (4.32, 4.62) (0, 0) (4.27, 4.67) 1020.629
150 20 (0, 0.01) (6.57, 6.95) (0, 0.01) (6.51, 7.01) 1194.315
200 20 (0.01, 0.01) (8.76, 9.17) (0.01, 0.01) (8.69, 9.24) 1454.657
250 20 (0.01, 0.01) (10.94, 11.39) (0.01, 0.01) (10.87, 11.46) 1687.81
300 20 (0.01, 0.01) (13.03, 13.51) (0.01, 0.01) (12.95, 13.58) 1877.302
350 20 (0.01, 0.01) (15.26, 15.78) (0.01, 0.01) (15.18, 15.86) 2027.293
400 20 (0.01, 0.02) (17.57, 18.14) (0.01, 0.02) (17.48, 18.23) 2119.089
450 20 (0.02, 0.02) (19.76, 20.34) (0.01, 0.02) (19.67, 20.44) 2346.096
500 20 (0.02, 0.02) (22.09, 22.72) (0.02, 0.02) (21.98, 22.82) 2381.349
50 25 (0, 0) (1.88, 2.06) (0, 0) (1.86, 2.09) 751.7
100 25 (0, 0) (3.92, 4.19) (0, 0) (3.87, 4.23) 1018.769
150 25 (0, 0) (5.99, 6.32) (0, 0) (5.94, 6.38) 1264.711
200 25 (0, 0.01) (7.97, 8.33) (0, 0.01) (7.92, 8.38) 1571.356
250 25 (0.01, 0.01) (9.91, 10.3) (0.01, 0.01) (9.85, 10.36) 1740.839
300 25 (0.01, 0.01) (12.17, 12.61) (0.01, 0.01) (12.1, 12.68) 1909.486
350 25 (0.01, 0.01) (14.35, 14.86) (0.01, 0.01) (14.27, 14.94) 1949.042
400 25 (0.01, 0.01) (16.33, 16.87) (0.01, 0.01) (16.24, 16.95) 2096.947
450 25 (0.01, 0.01) (18.34, 18.97) (0.01, 0.01) (18.25, 19.07) 2028.081
500 25 (0.01, 0.01) (20.57, 21.17) (0.01, 0.01) (20.48, 21.26) 2367.403
50 30 (0, 0) (1.67, 1.84) (0, 0) (1.64, 1.87) 685.017
100 30 (0, 0) (3.58, 3.82) (0, 0) (3.54, 3.86) 1038.742
150 30 (0, 0) (5.4, 5.68) (0, 0) (5.35, 5.73) 1308.969
200 30 (0, 0) (7.38, 7.74) (0, 0.01) (7.32, 7.8) 1420.847
250 30 (0, 0.01) (9.28, 9.7) (0, 0.01) (9.21, 9.76) 1540.776
300 30 (0.01, 0.01) (11.11, 11.55) (0, 0.01) (11.04, 11.62) 1728.535
350 30 (0, 0.01) (12.99, 13.44) (0, 0.01) (12.92, 13.51) 1998.467
400 30 (0.01, 0.01) (14.84, 15.35) (0.01, 0.01) (14.76, 15.43) 2020.43
450 30 (0.01, 0.01) (16.89, 17.42) (0.01, 0.01) (16.81, 17.5) 2213.584
500 30 (0.01, 0.01) (18.92, 19.43) (0.01, 0.01) (18.84, 19.51) 2533.647
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50 35 (0, 0) (1.62, 1.77) (0, 0) (1.59, 1.8) 746.243
100 35 (0, 0) (3.39, 3.64) (0, 0) (3.35, 3.68) 972.222
150 35 (0, 0) (5.03, 5.31) (0, 0) (4.99, 5.35) 1283.433
200 35 (0, 0) (7.01, 7.38) (0, 0) (6.95, 7.44) 1304.647
250 35 (0, 0) (8.65, 9.07) (0, 0) (8.59, 9.13) 1453.084
300 35 (0, 0) (10.4, 10.82) (0, 0.01) (10.33, 10.89) 1714.158
350 35 (0, 0.01) (12.16, 12.61) (0, 0.01) (12.09, 12.68) 1867.56
400 35 (0.01, 0.01) (14.16, 14.64) (0, 0.01) (14.09, 14.72) 2030.454
450 35 (0.01, 0.01) (15.45, 15.96) (0.01, 0.01) (15.37, 16.04) 2094.912
500 35 (0.01, 0.01) (17.35, 17.9) (0.01, 0.01) (17.26, 17.99) 2162.982
50 40 (0, 0) (1.48, 1.64) (0, 0) (1.46, 1.66) 686.332
100 40 (0, 0) (3.19, 3.43) (0, 0) (3.15, 3.46) 957.904
150 40 (0, 0) (4.64, 4.94) (0, 0) (4.59, 4.99) 1082.437
200 40 (0, 0) (6.3, 6.6) (0, 0) (6.25, 6.65) 1433.097
250 40 (0, 0) (8.03, 8.36) (0, 0) (7.98, 8.41) 1680.227
300 40 (0, 0) (9.65, 10.02) (0, 0) (9.59, 10.07) 1799.622
350 40 (0, 0) (11.17, 11.6) (0, 0) (11.1, 11.67) 1772.577
400 40 (0.01, 0.01) (12.76, 13.2) (0, 0.01) (12.69, 13.26) 2036.564
450 40 (0, 0.01) (14.37, 14.85) (0, 0.01) (14.29, 14.93) 2056.749
500 40 (0.01, 0.01) (16.1, 16.63) (0.01, 0.01) (16.02, 16.72) 2096.528

As seen in Table 2, the z-scores are much larger than 2.33, rejecting the null hypothesis
that the earlier theorem is at least as good as the newer one. The minimum z-score in the
table is 685 and the p-value is 1 − Φ(685), which is practically 0.

Furthermore, 95% and 99% confidence intervals are constructed for the means of the
earlier and proposed dominance relations. The average 95% and 99% confidence intervals
for Thm-old are (0.0244, 0.0286) and (0.0237, 0.0293), respectively. Those of Thm-new are
(11.87, 12.31) and (11.80, 12.38), respectively. Clearly, there is no overlap between these
average confidence intervals. In fact, not only is there no overlap in the averages, there is
also no overlap in any individual case in the table. This further confirms the conclusion
of the hypothesis test that the proposed dominance relation is significantly better than
the earlier one. The 95% and 99% confidence intervals were calculated using the following
formulas, respectively.

x ± (1.96)( s

300
)

and

x ± (2.58)( s

300
),

where x is the sample mean and s is the sample standard deviation.

4. Conclusion
A dominance relation was proposed by [9] to solve the problem of a two-machine no-

wait flowshop scheduling problem with uncertain and bounded setup times. In this article,
a new dominance relation is proposed which is substantially more effective than the one
proposed earlier. In other words, conditions for the new dominance relation are satisfied
much more frequently than the previous dominance relation.

The difference between the two dominance relations is confirmed with randomly gener-
ated data of 7, 200, 000 instances. Computational Results are presented with tables and
graphs. Hypothesis testing with a significance level of α = 0.01 along with confidence
intervals are also constructed to further verify the new dominance relation’s effectiveness.

For future research, it would be interesting to see what kind of dominance relation
would solve the problem of total tardiness as opposed to total completion time.
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