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Abstract 

In this study, it is aimed to create a low cost adaptive traffic light system. For this purpose, a probabilistic, discrete-time traffic simulator 

has been developed that can be used to model existing traffic networks. A unique adaptive traffic light system, which achieves higher 

service quality compared to a fixed time adjusted traffic light system, was developed and tested on the simulator. It has been shown that 

the developed system can manage the traffic flow in real time and is not affected by the information loss caused by the oversaturation 

of the modeled roads.  
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Uyarlanabilir, Dağıtılmış ve Akıllı Trafik Işık Sistemi 

Öz 

Bu araştırmada, düşük maliyetli bir uyarlanabilir trafik ışığı sistemi oluşturulması hedeflenmiştir. Bu amaçla öncelikle mevcut trafik 

ağlarını modellemek için kullanılabilecek olasılıksal, ayrık zamanlı bir trafik simülatörü geliştirilmiştir. Geliştirilen simülatör üzerinde 

sabit zaman ayarlı bir trafik ışığı sistemi ile karşılaştırıldığında daha yüksek hizmet kalitesine erişen, özgün bir uyarlanabilir trafik ışığı 

sistemi geliştirilmiş ve test edilmiştir. Geliştirilen sistemin gerçek zamanlı olarak trafik akışını yönetebildiği ve modellenen yolların 

aşırı doygunluğundan kaynaklanan bilgi kaybından etkilenmediği gösterilmiştir.  

 

 

Anahtar Kelimeler: akıllı ulaşım sistemi, çok-etmenli simülasyon, yük dengeleme. 
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1. Introduction 

Intelligent Transport Systems (ITS) aim to provide safer, 

smarter, more efficient and highly coordinated use of transport 

networks for vehicles and pedestrians (Dimitrakopoulos and 

Demestichas, 2010). Since 1970’s, different types of ITS have 

been built as an alternative to preset, fixed-time traffic light 

systems in many cities all over the world. In addition to higher 

quality of service for the users of the transport networks, ITS aim 

to provide a considerable reduction in air pollution and fuel 

consumption. Recent studies inform that the economic gains that 

can be achieved by ITS are considerably high (Studer et al., 2015). 

An ITS roughly contains 3 main components. First, it has a 

sensing module that collects real-time data about some specific 

properties of the on-going traffic. For this purpose, a number of 

different detector systems have been utilized, including video 

detectors (Chintalacheruvu and Muthukumar, 2012), inductive 

detectors (Gajda et al., 2001) or radar detectors (Garcia et al., 

2012). Based on these sensory systems, a number of metrics, such 

as number of waiting or approaching vehicles or average waiting 

time for vehicles or pedestrians, are computed in order to build 

adaptive systems. 

Second, an ITS should have an analysis module, in which, the 

calculated metrics are matched with some environmental facts 

that explains the current situation of the transportation network. 

For instance, an increased waiting time for vehicles passing 

through a specific intersection is taken as a signal of high 

congestion. In some systems, these analysis are made in a 

completely automated fashion based on some predefined rules 

(Hunt et al., 1982). Other systems involve manual inspections by 

technicians (Slavin et al., 2013). 

Third, based on the output of the analysis module, every ITS 

has a decision module that formulates necessary modifications on 

the parameters of the system so that the transportation network 

can adapt to the current traffic load. The electronic devices, whose 

parameters can be modified by the decision module, act as the 

actuators of the ITS. The main devices that are controlled by the 

system are traffic lights; almost all ITS attempt to compute the 

cycle time and specific green light intervals of traffic lights that 

are present on intersections. In addition to traffic lights, some 

systems make use of changeable message signs to inform drivers 

and pedestrians about some events on the transportation network. 

Based on the specific properties of its main components, we 

can define some desirable characteristics of an ITS: 

- The sensing module should be simple and cheap to 

implement and it should depend on the local information that can 

be captured in real-time. Furthermore, the information that is 

captured should be reliable enough to make adaptive decisions 

and it should not be affected by the environmental factors. Most 

systems make use of complex sensor technologies that attempt to 

capture the size, speed and direction of motorized vehicles and 

pedestrians that approach a specific intersection. Achieving such 

a complex task involves object detection, identification and 

tracking in real-time. It is reported that such systems are highly 

prone to errors especially on short roads that can get easily 

congested. In addition, these systems are highly expensive as they 

incorporate advanced video cameras or other type of sensors 

(Studer et al., 2015). 

- The analysis module should be distributed over the 

transportation network. Some ITS have central controlling units 

(Hunt et al., 1982) that collect data from all intersections of the 

transportation network on which the systems have control on. As 

today’s transportation networks tend to grow larger and complex 

in time, adding new nodes to such systems costs very high. In such 

systems, in order to include new nodes in the system, the operators 

have to manually modify some parameters of the system, and this 

process results with an additional maintenance and personal cost 

(Studer et al., 2015). 

- The decision module of the ITS should be implemented in 

such a way that it is easy and cheap to upgrade the existing 

electronic infrastructure of the transportation network to include 

ITS related functionalities. Some ITS require large installation 

bases which result with a need for spaces on the current network 

and causes additional high costs (Studer et al., 2015). 

The main objective of this study is to implement a distributed, 

low-cost, adaptive, intelligent traffic light system that can be 

implemented in any part of a transportation network. In order to 

do that, we first implement a probabilistic, discrete-time traffic 

simulator that can model traffic networks, that consist of a 

variable number of roads and intersections, with different traffic 

loads. On this simulation, we model a simple transportation 

network that consist of a single intersection which is present in a 

residential area in the Bolu province of Turkey. On this model, we 

implement and test a novel, adaptive traffic light algorithm that 

depends on the local information captured through simple sensors 

mounted on the existing traffic lights. It is shown that, compared 

with the fixed-time green light setting that is currently used on the 

modelled intersection, our adaptive algorithm achieves a higher 

service quality as we observe a decreased waiting time for 

vehicles that pass through the modelled intersection. Our 

algorithm works in real time and it is not affected by the 

information loss due to over saturation of the modelled roads. 

The article proceeds as follows: in section 2, we present some 

well-known ITS that is widely used in many cities. Section 3 

presents SimTraffic simulation software that we developed in 

order to test our adaptive algorithms. In section 4 we present our 

novel, adaptive traffic light control system. Section 5 shows some 

results about the adaptive control system. Finally, section 6 

concludes the paper and mentions some further future work. 

A number of ITS have been developed and effectively used 

in many cities since 1970’s. One of the most well-known and 

widely-used ITS is SCATS (Sydney Coordinated Adaptive Traffic 

System) (Slavin et al., 2013). Originating from Sydney Australia, 

SCATS have been installed in approximately 55,000 intersections 

in 187 cities of 28 countries worldwide (Homepage | SCATS, 

2020). The main idea behind SCATS is to have a distributed 

network of sensors that captures traffic related information, 

including number of vehicles waiting in each lane and pedestrians 

waiting to cross at all intersections. This information is then 

transferred to the central office in which an automated plan 

selection is made based on the acquired data. The system allows 

manual inspection and plan selection by the operators in the 

central office, therefore, the maintenance and management cost of 

the system is high. Furthermore, once the system is operational, 

adding new intersections to the system means modifications and 

re-planning in the central office. The selected plans include green 

light intervals and cycle lengths of traffic lights in the network. 

The system is mainly designed to cover a metropolitan area and 

reported cost of installation, excluding maintenance and 



Avrupa Bilim ve Teknoloji Dergisi 

 

e-ISSN: 2148-2683  868 

operational costs, is around 7,500 to 12,000 € per intersection 

(Studer et al, 2015). As the adaptive algorithm depends on the data 

that counts the number of waiting vehicles, it is reported that 

SCATS suffers from the ineffective capture of real-time traffic 

data when the transportation networks is over-saturated. It is 

especially a serious issue in short roads that can get easily 

congested. 

SCOOT (Split Cycle Offset Optimization Technique) 

(Bretherton et al., 2006) is another type of ITS that originated 

from United Kingdom during 1970’s. Nowadays, it is installed 

350 cities worldwide (SCOOTTM – TRL Software, 2020). Similar 

to SCATS, SCOOT has a network of sensors that are installed on 

every intersection. These sensors collect information about 

approaching vehicles by using a set of inductive loops or other 

types of detectors. It has been reported that the correct location, 

continuous calibration and maintenance of these sensors are 

crucial for the success of the SCOOT system (Robertson and 

Bretherton, 1991). The perceived information about the real-time 

traffic is sent to the central computer which submits necessary 

adjustments on the cycle time and green light intervals to the 

intersections. Its installation cost is between 15,000 to 19,000 € 

per intersection and it is reported that it may achieve a low 

performance on over saturated short roads (Studer et al., 2015). 

COMPASS (also known as Freeway Traffic Management 

System) is an ITS that depends on the real-time traffic data by 

operators at a central office (Hellinga and Van Aerde, 1994). The 

system make use of pairs of in-road sensors to capture the density 

of the traffic. Operators of the system can also view the current 

situation by using cameras placed on the intersections. 

COMPASS uses changeable message signs to inform drivers 

about high congestion, closures or accidents. 

There are also some proprietary ITS that have been 

successfully installed in a number of cities, including INSYNC 

(Stevanovic et al., 2016), SURTRAC (Smith et al., 2013), and 

STREAMS (Nowacki, 2012). 

2. Material and Method 

2.1. Simulation 

As stated above, in order to test our novel intelligent traffic 

light algorithm, we build a probabilistic, discrete-time traffic 

simulator that is called TrafficSim. A TrafficSim model can both 

run in real-time mode for visualization purposes and in fast-time 

mode. Figure 1 shows a model that includes 7 roads and 2 

intersections. A TrafficSim model M = {R,I,L,V,P} consists of 5 

components. These components can be defined as follows: 

 

Figure 1. A sample model that consist of 7 roads and 2 

intersections. Roads A, B, C, E, F and G are defined as external 

roads while road D is an internal road. The small rectangles on 

the roads represent generated vehicles. 

 

R is the set of roads that are part of the model. Each road has 

parameters of roadLength and numberOfLanes, that represent the 

length of road in meters and number of lanes that the road 

possesses, respectively. Each road, otherwise stated, can have 

traffic heading towards both directions. Based on the type of 

endpoints of a road, the model can have two types of roads. If both 

endpoints of the road are intersections that are part of the model, 

then it is called an internal road. The traffic in both directions on 

internal roads are result of vehicles passing through the 

intersections at the endpoints of these roads. Alternatively, if one 

endpoint of the road goes out of the model, then the road is called 

an external road. As it will be explained below, new vehicles enter 

the model through external roads. 

I is the set of intersections that connect roads of the model. 

When a vehicle passes through a traffic light, it enters an 

intersection and then pass to another road that is connected at the 

intersection. The default setting is that vehicles randomly pass to 

the next road with equal probability. However, it is possible to 

match distinct probabilities to each road. Furthermore, every 

intersection has a control tool that sets the cycle length and green 

light intervals of the traffic lights that are present on the 

intersection. 

L is the set of traffic lights that control the entrance to 

intersections. All traffic lights that belongs to the same 

intersection share the same green light cycles, which is 

determined by the control tool of the intersection. Each traffic 

light has a FIFO (First-In-First-Out) queue that stores the vehicles 

that are stopped at the traffic light. A vehicle can pass through a 

traffic light at a constant speed if it approaches the light during the 

green light interval. However, if the vehicle approaches the traffic 

light during the red light interval, the vehicle is added to the FIFO 

queue of the traffic light. When the green light gets on, the 

vehicles that are in the queue can pass the traffic light at a rate that 

is equal to one vehicle per 2 seconds. 

V is the set of vehicles that become part of the model. Each 

vehicle can move on a road, pass through an intersection or wait 

at a traffic light. At each time unit, new position of the vehicle is 

determined by adding its displacement to its previous position. 

Furthermore, at the open endpoint of every external road, a new 

vehicle may enter the model with a probability equal to PnewVehicle. 

By setting different vales to PnewVehicle, we can simulate traffic at 

different instensity levels. A high probability results with a high 

density traffic while low PnewVehicle value means a sparse traffic 

entering the model. At current implementation, each external road 

can have different PnewVehicle values. 

Finally, P is the set of pedestrians that can come to 

intersections. With probability equal to PnewPedestrian, new 

pedestrians may arrive at intersections. Once the green light 

interval for the pedestrians starts, all pedestrians waiting at the 

intersections are set to leave the intersection. In current 

implementation, all intersections have the same PnewPedestrian value. 

Table 1 sumarizes the components of a TrafficSim model and 

gives a list of parameters of each of the components

. 
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Table 1. Simulation parameters 

 
Component name Parameter Name Explanation 

R (Roads) roadLength Length of the road (m) 

numberOfLanes # of lanes 

type Internal or external 

PnewVehicle If external, new vehicle probability 

I (Intersections) roadList List of roads that are connected 

roadPassProb Array of probabilities of passing to next road 

lightList List of traffic lights 

controlModule Module that controls traffic lights 

PnewPedestrian New pedestrian probability 

L (Lights) waitingVehicles FIFO queue for waiting vehicles 

curLight Green or red 

V (Vehicles) curRoad Current road 

curSpeed Current speed 

curDirection Current direction 

curPosition Current position 

P (Pedestrians) CurIntersection Current intersection 

 

 

2.2. Adaptive Traffic Light System 

The adaptive traffic light system is implemented and tested 

on TrafficSim simulation platform. The system works in a fully 

distributed manner and depends on the information that is 

received from video cameras that are mounted on the existing 

traffic lights. The controller, based on a load balancing technique, 

basically counts the number of vehicles that pass the traffic lights 

during the green light interval. This task involves object detection 

and we argue that, with a simple video camera detection system, 

the task can be achieved with a high success rate in real time. The 

video detection system needs to capture baseline background 

image of passing line of the traffic light and compare it with the 

consecutive captured image frames to detect the existence of 

passing vehicles. Based on this information, at the end of every 

green light cycle, the effective usage of a specific light l at tine t, 

Effective(l,t) can be defined as: 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(l,t) =
# 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑝𝑎𝑠𝑠𝑒𝑑 𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 𝑡

𝐺𝑟𝑒𝑒𝑛 𝑙𝑖𝑔ℎ𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒 𝑡
    

              

 (1) 

Based on this observation the estimated load on the road that 

ends with traffic light l, EstimatedLoad(l,t) is calculated as 

follows: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐿𝑜𝑎𝑑(𝑙,𝑡) = 𝛼𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒(𝑙,𝑡) + (1 −

𝛼)𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐿𝑜𝑎𝑑(𝑙,𝑡−1)          

  (2) 

When the system starts, all lights that are on a specific 

intersection have the same share of green light cycle, so the green 

light intervals for each of them are equal. At the end of each green 

light cycle, the adaptive system updates the green light intervals 

in the following way: 

 If the traffic light l has higher estimated load than the 

average estimated load plus a threshold value, γ, it is 

assigned one more unit of share of the green light interval 

in the next cycle. 

 If the traffic light l has lower estimated load than the 

average estimated load minus a threshold value, γ, it is 

assigned one less unit of share of the green light interval 

in the next cycle. 

In this way, the controller attempts to balance the load on each 

traffic light by assigning more green light interval to the traffic 

lights with higher relative load. 

3. Results and Discussion  

In order to test the utility of the adaptive traffic light system, 

we created a TrafficSim model of a simple transportation network 

which is present in a residential area in the Bolu province of 

Turkey (figure 2). The model incorporates an intersection that 

connects 4 external roads. The traffic lights on these roads share 

the same green light cycle. In the current fixed-time system, the 

green light cycle is 75 seconds in which 11 seconds are set as the 

green light for pedestrians (during which all traffic lights for 

vehicles are set to red) and 16 seconds are set as the green light 

interval for each of the traffic lights. The adaptive system 

similarly assigns 11 seconds of every cycle as green light for 

pedestrians, however, it dynamically assigns remaining green 

light interval to traffic lights based on the load metric. To 

quantitatively compare the performance of the adaptive system 

with the fixed-time system at different traffic densities, we 

calculated average waiting time at the intersection. 

 
Figure 2. TrafficSim model of an intersection that is present in a 

residential area of Bolu, Turkey. The exact coordinates of the 

intersection is 40°44'23.5"N 31°35'55.1"E 
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In order to test the utility of the adaptive system, we simulate 

variable traffic loads in different sets of experiments. For this 

purpose, an external road with a normal load is set to have 

PnewVehicle = 0.05, while an external road with a high load is set to 

have PnewVehicle = 0.1. As it will be explained below, the external 

roads in each experimental setting set to have a different 

combination of normal or heavy loads. 

In the first set of experiments, all four external roads are set 

to have normal load. Figure 3 shows results for the first set of 

experiments. In this setting, the adaptive system, after a minimal 

increase in the average waiting time at the beginning of the 

experiment run, achieves a similar performance with the fixed-

time system. When we compare the average waiting time metric 

for two settings at the end of the experiments, a pair-wise t-test 

reveals that there is no statistically significant difference between 

two systems. The average waiting time for the adaptive system is 

27.63 seconds (std 0.63) and the average waiting time for the 

fixed-time system is calculated as 27.48 seconds (std 0.61). In 

fact, at the end of the first hour of the simulation time, the 

difference in the performance of the two systems becomes 

statistically insignificant. Therefore, we can deduce that the 

adaptive system is able to detect that the load on all roads are same 

and it assigns the same amount of green light interval to all traffic 

lights, achieving the same performance with the fixed-time 

system. 

 
Figure 3. Results for the first set of experiments. The figure 

shows the average waiting time for 100 experiment runs. At 

specific points, 95% confidence intervals are shown for both of 

the systems. 𝜶 is set to 0.25 and 𝜸 is set to 0.1 for the adaptive 

system 

In the second set of experiments, we assign different loads to 

different roads. In this setting, Road A and road C are set to have 

normal load while road B and road D are set to have heavy load. 

Figure 4 shows the results for the second set of experiments. As 

can be seen, the adaptive system achieves a lower waiting time 

for vehicles. A pair-wise t-test reveals that the difference between 

the two systems is statistically significant. At the end of the 

experiment runs, we observe a 38% decrease in average waiting 

time for vehicles for the adaptive system, as the average waiting 

time for the adaptive system is 35.04 seconds (std 2.22) and the 

average waiting time for the fixed-time system is 56.86 seconds 

(std 11.39). This result shows that the adaptive system is able to 

detect the roads with higher congestion and then assign these 

roads longer green light intervals, which results with a lower 

average waiting time at the intersection. Furthermore, as can be 

seen in figure 4, the confidence intervals for fixed-time system is 

much wider than of the confidence intervals of the adaptive 

system. This means that, in comparison with the fixed-time 

system, the adaptive system is more robust to random fluctuations 

in the traffic load. 

 
Figure 4. Results for the second set of experiments. The figure 

shows the average waiting time for 100 experiment runs. At 

specific points, 95% confidence intervals are shown for both of 

the systems. 𝜶 is set to 0.25 and 𝜸 is set to 0.1 for the adaptive 

system 

Finally, in the third set of experiments, we check the utility of 

the adaptive system on changing conditions. To simulate such an 

environment, we alternate the load of the roads in the following 

way: we have a two-hour simulation in which during the first 

hour, road A and road C are set to have normal load while road B 

and road D are set to have heavy load. In the second hour, road A 

and road C are set to have heavy load while road B and road D are 

set to have normal load. Figure 5 shows results for these 

experiments. As can be seen, the adaptive system achieves a 

higher performance compared to a fixed-time system in terms of 

decreased waiting time at the intersection. As the traffic loads on 

different roads are altered at the halfway through the simulation, 

we observe a small performance loss of performance for the 

adaptive system. However, it quickly adapts itself to the new 

conditions and achieves a high performance. The performance 

gain manifests itself in terms of decreased waiting time for 

vehicles. At the end of the experiment runs, we observe a 29% 

decrease in average waiting time for vehicles for the adaptive 

system, as the average waiting time for the adaptive system is 

39.19 seconds (std 3.42) and the average waiting time for the 

fixed-time system is 55.41 seconds (std 9.63). 

 
Figure 5. Results for the third set of experiments. The figure 

shows the average waiting time for 100 experiment runs. At 

specific points, 95% confidence intervals are shown for both of 

the systems. 𝜶 is set to 0.25 and 𝜸 is set to 0.1 for the adaptive 

system 
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4. Conclusions and Recommendations 

In this study, we implemented a probabilistic, discrete-time 

traffis imulator that can be used to model traffic networks. Based 

on this simulator, we were able to create models of existing traffic 

networks with different levels of real-time traffic density. 

Furthermore, we made a first attempt in building a novel adaptive 

traffic light system that estimates and then balances the load on a 

set of traffic lights that are present on a specific intersection. As 

stated in section II, most of the well-known adaptive traffic light 

systems depend on the information of waiting or approaching 

vehicles at an intersection. Capturing such an information is a 

complex task that involves real-time object detection and 

tracking. However, our system involves only object detection 

procedures that are necessary to determine number of vehicles 

that pass through a specific traffic light during the green light 

interval. By having a simpler task, our system possesses a number 

of a benefit: 

 Our system can be built on and integrated with existing 

hardware with relatively low cost. 

 The performance of our system does not suffer from over 

saturation. As stated in section II, over saturation, 

especially on short roads, is a serios problem that affects 

the performance of many ITS. However, as our system 

only depends on the information about number of 

passing vehicles, it would work exactly same on any type 

of road or intersection. 

We tested the utility of our system on the model of a simple 

transport network that consists of a single intersection that 

connects four roads. It was shown that the system was able to 

estimate the traffic load on specific roads. Based on this 

information, the system was able to dynamically assign green 

light intervals to traffic lights so that, compared to a fixed-time 

system, it could achieve a higher quality of service in terms of 

reduced vehicle waiting time at the intersection. 

Obviously, there is still much to be discussed and improved 

about our adaptive system. First, we compared it with a fixed-time 

system that has a specific cycle length. It should be possible and 

testable to modify the length of the cycles to achieve a higher 

quality of service. Second, we tested the system on a simple model 

with only one intersection. Using the simulator, it should be 

possible to check the utility of our system on complex traffic 

networks that include many intersections. As the adaptive system 

works based on the local information that can be captured on each 

intersection separately, we may be able to quantitatively measure 

the cumulative increase in the quality of service in a larger 

network. Finally, the performance of our system should be 

compared with other ITS in terms of increase in quality of service 

and cost of implementation. 
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