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Abstract

In this paper, we proved a fixed point theorem for single-valued mapping in convex partial symmetric spaces. In doing so, we extended
and generalised the theorem due to Asim et al. [5] by employing a convex structure for single-valued Kannan type contractions. We also
provided an illustrative example to support the results and an application to integral equation.
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1. Introduction and Preliminaries

In 1922, Banach [10] gave a contraction principle (BCP) for self-mappings in metric space. Nadler [25] extended the single-valued map of
Banach contraction principle into multi-valued contraction mapping. Ćirić [14] gave a generalised Banach contraction principle and proved
fixed point theorems for single-valued and multivalued quasi-contraction. Takahashi [31] introduced the notion of convexity in metric spaces
and studied some fixed point theorems for non-expansive mappings in such spaces. Assad and Kirk [7] extended the results of Nadler to the
subset of metrically convex metric space with Rothe’s boundary condition to obtain the fixed point. A convex metric space is a generalised
space. For example, every normed space and cone Banach space is a convex metric space and convex complete metric space. Subsequently,
Karapinar [21], Moosaei [24], Nazam et al. [26], Asadi [3], Oussaeif [27], Cho and Bae [13], Beg and Abbas [11], and several others studied
fixed point theorems in convex metric spaces.
In 1931, Wilson [34] initiated the study of the fixed point theorem in symmetric spaces by defining the metric as follows: Let X be a
nonempty set. A symmetric d is a non-negative real function defined on X×X such that

(s1) d (x,y)= 0, ⇐⇒ x = y,
(s2) d (x,y) = d (y,x), (symmetric property).

We denote a nonempty set X equipped with symmetric d on X by (X ,d) and call it symmetric space because the triangular inequality not
included in this concept. Later, Jachymski et al. [20] proved the results using nonlinear contractions on semi-metric spaces. Hicks and
Rhoades’s [16] proved fixed point theory in symmetric spaces with applications to probabilistic spaces. Imdad and Javid [18] proved the
common fixed point theorem in symmetric spaces employing a new implicit function and common property (E.A). Aamri and El Moutawakil
[1] proved common fixed points under contractive conditions in symmetric spaces. Finally, Imdad et al. [19] proved the coincidence and
fixed points in symmetric spaces under strict contractions. In 2007, Turkoglu and Altun [32] proved a common fixed point theorem for
weakly compatible mappings in symmetric spaces satisfying an implicit relation.
In 1994, as a part of the study of denotational semantics of data flow networks, Matthews [23] introduced a generalisation of the metric space
called the partial metric space. He also extended Banach’s fixed theorem from metric space to partial metric spaces. Since then, several
researchers have worked in this direction; some of them are Bukatin et al. [12] gave a review on partial metric spaces. Shatanawi et al.
[29] gave the results for a generalisation of some coupled fixed point results on partial metric spaces. Karapinar et al. [22] introduced the
fixed point theorem on partial metric spaces involving rational expressions. Aydi et al. [8] gave a Common fixed points for multivalued
generalized contractions on partial metric spaces Aydi et al. [9] extended the Banach concepts on φ -contraction type couplings in partial
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metric spaces. In 2018, Şahin et al. [30] proved fixed point theorem for neutrosophic triplet partial metric space. In 2019, Perveeni et al.
[28] proved the fixed point theorem for the generalised contraction principle under relatively weaker contraction in partial metric spaces.
Recently, Asim et al. [5] introduced the class of partial symmetric spaces by combining the concept of partial metric space due to Matthew
[23] and the symmetric space concept due to Wilson [34] and proved some results. Moreover, they proved some related fixed point results
for single-valued and multivalued mappings using this space. Since then, several researchers have been motivated to do their research in
this direction. In 2019, Gesmundo et al. [15] gave the results on partially symmetric variants of Common’s problem via simultaneous
rank. In 2021, Wangwe and Kumar [33] proved the fixed point theorem for multivalued non-self mappings in partial symmetric spaces.
Furthermore, in 2021, Asim and Imdad [4] proved a common fixed point result in partial symmetric space. Furthermore, Asim et al. [6]
proved a multivalued result using Suzuki and Wardowski-type contraction mapping in partial symmetric space.
Combining the concepts of convex space and symmetric space, we introduce the class of convex partial symmetric space, wherein we prove
the existence and uniqueness of fixed point results for certain types of contractions in convex partial symmetric spaces.
In this paper, we seek to generalise the theorem by Asim et al. [5] for single-valued non-self mappings on convex partial symmetric space.
In this paper we will denote (X , ps) as partial symmetric space.

2. Preliminaries

We will require the following preliminaries and results in developing our theorem.

Definition 2.1. [5] Let X be a non-empty set. A mapping ps : X×X → R+ is said to be partial symmetric if, for all x,y,z ∈ X, we have the
following properties:

(ps1) : x = y if and only if ps(x,y) = ps(x,x) = ps(y,y),
(ps2) : ps(x,x)≤ ps(x,y),
(ps3) : ps(x,y) = ps(y,x).

Then the pair (X , ps) is said to be partial symmetric space.

From ps1 and ps2 we have

ps(x,y) = 0⇒ ps(x,y) = ps(x,x) = ps(y,y)⇒ x = y. (2.1)

A partial symmetric space (X , ps) reduces to a symmetric space if ps(x,x) = 0, for all x ∈ X . Obviously, every symmetric space is partial
symmetric space, but not conversely.
Let (X , ps) be a partial symmetric space. Then, the ps-open ball, with center x ∈ X and radius ε > 0, is defined by: Bps(x,ε) = {y ∈ X :
ps(x,y)< ps(x,x)+ ε},
Similarly, the ps-closed ball, with center x ∈ X and radius ε > 0, is defined by: Bps [x,ε] = {y ∈ X : ps(x,y)≤ (x,x)+ ε}.
The family of ps-open balls for all x ∈ X and ε > 0, Ups = {Bps(x,ε) : x ∈ X ,ε > 0}, forms basis of some topology τps on X .

Definition 2.2. [5] Let (X , ps) be a partial symmetric space. Then,

(i) a sequence {xn} in (X , ps) is said to be ps-convergent to x ∈ X, with respect to τps if ps(x,x) = lim
n→∞

ps(xn,x).

(ii) a sequence {xn} in (X , ps) is called a ps-Cauchy sequence if only if lim
n,m→∞

ps(xn,xm) exists and is finite.

(iii) a partial symmetric space (X , ps) is said to be ps-complete if every ps- Cauchy sequence {xn} in X is ps convergent, with respect to
τps to a point x ∈ X, such that

ps(x,x) = lim
n→∞

ps(xn,x) = lim
n,m→∞

ps(xn,xm).

Definition 2.3. [5] Let (X , ps) be a partial symmetric space. Then

(A1) lim
n→∞

ps(xn,x) = ps(x,x) and lim
n→∞

ps(xn,y) = ps(x,y) imply that x = y, for a sequence {xn}, x,y ∈ X .

(A2) a partial symmetric ps is said to be 1-continuous if lim
n→∞

ps(xn,x) = ps(x,x) implies that lim
n→∞

ps(xn,y) = ps(x,y), where {xn} is a

sequence in X and x,y ∈ X.

(A3) a partial symmetric ps is said to be continuous if lim
n→∞

ps(xn,x) = ps(x,x) and lim
n→∞

ps(xn,y) = ps(x,y) imply that lim
n→∞

ps(xn,yn) =

ps(x,y) where {xn} and {yn} are sequences in X and x,y ∈ X.

(A4) lim
n→∞

ps(xn,x) = ps(x,x) and lim
n→∞

ps(xn,yn) = ps(x,x) imply lim
n→∞

ps(yn,x) = ps(x,x), for sequences (xn),(yn), and x in X.

(A5) lim
n→∞

ps(xn,yn) = ps(x,x) and lim
n→∞

ps(yn,zn) = ps(x,x) imply lim
n→∞

ps(xn,zn) = ps(x,x), for sequences (xn),(yn),(zn), and x in X.

Definition 2.4. [5] Let (X , ps) be a partial symmetric space. A mapping f : X → X is said to be a Kannan-Ćirić type k-contraction if, for all
x,y ∈ X,

ps( f x, f y)≤ k max
{

ps(x, f x), ps(y, f y)
}

(2.2)

where k ∈ [0,1).

In 2019 Asim et al. [5], proved a Kannan-Ćirić type k-contractions in the setting of partial symmetric space.

Theorem 2.5. [5] Let (X , ps) be a complete partial symmetric space and f : X −→ X. Assume that the following conditions are satisfied:
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(i) f is a Kannan-Ćirić type k-contraction,
(ii) f is continuous.

Then T has a unique fixed point x ∈ X such that ps(x,x) = 0.

Now, we introduce some definitions on convex structure:

Definition 2.6. ([2], [31]) Let (X ,d) be a metric space and I = [0,1]. A mapping W : X×X× I→ X is said to be a convex structure on X if
for each (x,y,λ ) ∈ X×X× I and u ∈ X, such that

d(u,W (x,y,λ )) ≤ λ d(u,x)+(1−λ )d(u,y). (2.3)

A metric space (X ,d) together with a convex structure W is called a convex metric space, which is denoted by (X ,d,W ). Obviously,
W (x,x,λ ) = x, and W (x,y,λ ) = λx+(1−λ )y .

Now, we extend the concept of partial symmetric space to convex partial symmetric space structure:

Definition 2.7. Let (X , ps) be a partial symmetric space and I = [0,1]. A mapping W : X×X× I→ X is said to be a convex structure on X
if for each (x,y,λ ) ∈ X×X× I and u ∈ X, such that

ps(u,W (x,y,λ )) ≤ λ ps(u,x)+(1−λ ) ps(u,y). (2.4)

A partial symmetric space (X , ps) together with a convex structure W is called a convex partial symmetric space, which is denoted by
(X , ps,W ). Obviously, W (x,x,λ ) = x, and W (x,y,λ ) = λx+(1−λ )y .

Definition 2.8. Let (X , ps,W ) be a convex partial symmetric space. A non empty subset C of X is said to be convex if W (x,y,λ ) ∈ C
whenever (x,y,λ ) ∈C×C× I.

Definition 2.9. Let (X , ps,W ) be a convex partial symmetric space and C be a convex subset of X. A self-mapping T on C has a property
(I = [0,1]) if T (W (x,y,λ )) =W (T (x),T (y),λ ) for each x,y ∈C and λ ∈ I.

We now introduce the following lemma in context of convex partial symmetric space which will be useful in our main results:

Lemma 2.10. Let (X , ps,W ) be a convex partial symmetric space, then the following are true:

(i)

ps(x,y) =
1
2

(
ps(x,W (x,y,λ ))+ ps(y,W (x,y,λ ))

)
(2.5)

for all (x,y,λ ) ∈ X×X× I.
(ii)

ps(x,W (x,y,
1
2
)) = ps(y,W (x,y,

1
2
)) = ps(x,y) (2.6)

for all x,y ∈ X.

Proof. (i) From Equation 2.5 and Definition 2.6 for all (x,y,λ ) ∈ X×X× I, we have

ps(x,W (x,y,λ )) ≤ λ ps(x,x)+(1−λ )ps(x,y)

≤ λ ps(x,x)+ ps(x,y)−λ ps(x,y)

≤ λ ps(x,y)+ ps(x,y)−λ ps(x,y)

= ps(x,y), by (ps1).

Also,

ps(y,W (x,y,λ )) ≤ λ ps(y,x)+(1−λ )ps(y,y)

≤ λ ps(y,x)+ ps(y,y)−λ ps(y,y)

≤ λ ps(x,y)+ ps(x,y)−λ ps(x,y)

= ps(x,y), by (ps1).

By considering the right hand side of (2.5) we get

≤ 1
2

(
ps(x,W (x,y,λ ))+ ps(y,W (x,y,λ ))

)
≤ 1

2

(
ps(x,y)+ ps(x,y)

)
= ps(x,y).

Therefore, ps(x,y) = 1
2

(
ps(x,W (x,y,λ ))+ ps(y,W (x,y,λ ))

)
exists.
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(ii) From Equation 2.6 for (x,y) ∈ X and by using Definition 2.5, we have

ps(x,W (x,y,
1
2
)) ≤ 1

2
ps(x,x)+(1− 1

2
)ps(x,y)

≤ 1
2

ps(x,x)+ ps(x,y)−
1
2

ps(x,y)

≤ 1
2

ps(x,y)+ ps(x,y)−
1
2

ps(x,y)

= ps(x,y), by (ps2).

Also,

ps(y,W (x,y,
1
2
)) ≤ 1

2
ps(y,x)+(1− 1

2
)ps(y,y)

≤ 1
2

ps(y,x)+ ps(y,y)−
1
2

ps(y,y)

≤ 1
2

ps(x,y)+ ps(x,y)−
1
2

ps(x,y)

= ps(x,y), by (ps2).

Hence,

ps(x,W (x,y,
1
2
)) = ps(y,W (x,y,

1
2
)) = ps(x,y),

for all x,y ∈C.

We give some examples on convex partial symmetric space as follows:

Example 2.11. Let X = R. Define a mapping ps : X×X → R+ for all x,y ∈ X and p,q > 1, as follows:

ps(x,y) =
(1

2
|x− y|

) 1
p
+
(1

2
|x− y|

) 1
q
.

Then the pair (X , ps) is a convex partial symmetric space.

Example 2.12. Let X = R. Define a mapping ps : X×X → R+ for all x,y ∈ X and p,q > 1, as below:

ps(x,y) = (max{x,y})
1
p +(max{x,y})

1
q .

Then the pair (X , ps) is a convex partial symmetric space.

3. Main Results

In this section, we proved a fixed point theorem for single-valued mappings using Kannan type Contraction in convex partial symmetric
spaces.
To develop our main result, we start by extension of Definition 2.4 in convex partial symmetric spaces.

Definition 3.1. Let (X , ps,W ) be a convex partial symmetric space and T : C→C be a mapping. Let T satisfy the following condition:

ps(T x,Ty)≤ λ {ps(x,T x)+ ps(y,Ty)} , (3.1)

for all x,y ∈C,0 < λ < 1, then T is called Kannan-contraction ps-mapping of C into C.

Now, we give an extension of Theorem 2.5 for a self-mapping satisfying Kannan-type contraction under the setting of convex partial
symmetric spaces.

Theorem 3.2. Let (X , ps,W ) be a complete convex partial symmetric space and T : C −→C be a self mapping. Assume that T satisfies the
following conditions:

(i) T is a Kannan- type contraction mapping,
(ii) T is continuous.

Then, T has a fixed point provided ps(x,x) = 0.

Proof. Consider x0 ∈C and construct an iterative sequence xn ∈C such that;

xn+1 =W (xn,T xn,λ ) (3.2)

for n = 1,2,3, ...
Applying Definition 2.6, Lemma 2.10 and let x0 be arbitrary. Define {xn} in the following way

xn+1 =
xn +T xn

2
,
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where n = 1,2,3, ...
We know that,

W (x,y,λ ) = λx+(1−λ )y.

Taking λ =
1
2

in (3.2), we get

W (x,x,
1
2
) =

1
2

x+(1− 1
2
)x,

=
x+ x

2
,

= x.

W (x,y,
1
2
) =

1
2

x+(1− 1
2
)y,

=
x+ y

2
.

Since C is convex, let x = xn,y = T xn = xn+1 in the above equation, we get

xn−T xn = xn−
xn +T xn

2
,

=
1
2
(2xn− xn−T xn),

=
1
2
(xn− xn+1),

ps(xn,T xn) =
1
2

ps(xn,xn+1).

This can easily be seen by the use of Definition 2.1 and is equivalent to say

ps(xn,xn+1) = 0.

For x = xn−1,y = xn in Equation (3.1), we obtain

ps(T xn−1,T xn) ≤ λ ps(xn−1,T xn−1)+λ ps(xn,T xn),

ps(xn,xn+1) ≤ λ ps(xn−1,xn)+λ ps(xn,xn+1),

(1−λ ) ps(xn+,xn+1) ≤ λ ps(xn−1,xn),

ps(xn,xn+1) ≤ λ

1−λ
ps(xn−1,xn). (3.3)

Next, we apply x = xn,y = T xn = xn+1 in Equation (3.1), we get

ps(T xn,T (T xn)) ≤ λ ps(xn,T xn)+λ ps(T xn,T (T xn)),

ps(xn+1,xn+2) ≤ λ ps(xn,xn+1)+λ ps(xn+1,xn+2),

(1−λ ) ps(xn+1,xn+2) ≤ λ ps(xn,xn+1),

ps(xn+1,xn+2) ≤ λ

1−λ
ps(xn,xn+1). (3.4)

Using (3.3) in (3.4) we have

ps(xn+1,xn+2) ≤

(
λ

1−λ

)2

ps(xn−1,xn). (3.5)

For all n ∈ N,
λ

1−λ
∈ [0,

1
2
], it is a Cauchy sequence in C.

Let ω =
λ

1−λ
, using (3.3) and (3.5) we obtain,

ps(xn,xn+1) ≤ ω ps(xn−1,xn)

ps(xn+1,xn+2) ≤ ω
2 ps(xn−1,xn)

Continuing in the similar way, we obtain

ps(xn,xn+1) = ω
n ps(x0,x1), f or all n ∈ N.

On taking limit of n→ ∞, we get

lim
n→∞

ps(xn,xn+1) = 0. (3.6)
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Since {xn} is a ps-Cauchy sequence. Using xn, xn+1 = xm in (3.1), we have, for n,m ∈ N,

ps(xn,xm) = ps(T xn−1,T xm−1),

ps(xn,xm)≤ λ ps(xn−1,T xn−1)+λ ps(xm−1,T xm−1), (3.7)

For all n,m ∈ N and n,m→ ∞, we get

ps(xn,xm) ≤ λ ps(x,x)+λ ps(y,y).

From (3.6) and ps1 , we obtain

ps(xn,xm) = 0. (3.8)

This shows that xn is a ps-Cauchy sequence. Since (X , ps) is a complete space in C, then x is a fixed point of T in C. Therefore,

ps(xn,x) = 0,

lim
n→∞

xn = x.

If we have x as a fixed point of T ∈C, then by continuity of T , xn→ x⇒ T xn→ T x. Using Equation (3.1) and let T x = x, Ty = y, we have

ps(x,y) ≤ λ ps(x,x)+λ ps(y,y),

≤ λ ps(x,x),

≤ λ ps(y,y),

ps(x,y) ≤ 0,

which is a contradiction. Hence x is a unique fixed point of T .
Finally, we will show that ps(x,x) = 0, from Equation (3.1) and ps2 , we have

ps(x,x) ≤ λ {ps(x,x)+ ps(y,y)} ,
ps(x,x) ≤ λ ps(x,x)+λ ps(y,y),

≤ λ

1−λ
ps(y,y),

ps(x,x) = 0.

Furthermore, we will provide an illustrative example for Theorem 3.2.

Example 3.3. Let X = [0,4] be with usual convex partial symmetric endowed with the usual metric ps(x,y) =‖x−y‖. Defined T : X −→ [0,4]
by

T x =


x
3
, 0≤ x≤ 3,

x
4
, 3 < x≤ 4.

For x,y ∈ [0,3], we obtain

ps(T x,Ty) =
1
3
|x− y| =

1
3
|0−3|= 1,

ps(x,T x) = λ |x− x
3
| = λ |0−0|= 0,

ps(y,Ty) = λ |y− y
3
| = λ |3−1|= 2λ ,

The above equality deduces to

ps(T x,Ty) ≤ λ [ps(x,T x)+ ps(y,Ty)], (3.9)

1 ≤ 2λ .

For x,y ∈ (3,4], we have

ps(T x,Ty) =
1
4
|x− y| =

1
4
|4−4|= 0,

ps(x,T x) = λ |x− x
4
| = λ |4−1|= 3λ ,

ps(y,Ty) = λ |y− y
4
| = λ |4−4|= 3λ ,
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By applying (3.9), the above equalities deduces to

0 ≤ 6λ .

For x ∈ [0,3] and y ∈ (3,4], we have

ps(T x,Ty) ≤ | x
3
− y

4
|,

≤ |1−1|,
= 0.

λ [ps(x,T x)+ ps(y,Ty)] ≤ λ |x−T x|+λ |y−Ty|,

≤ λ |x− x
3
|+λ |y− x

4
|,

≤ λ |3−1|+λ |4−1|,
= 5λ .

Using (3.9) together with the equalities above we get

0 ≤ 5λ .

for all x,y ∈ [0,4] Theorem 3.2 satisfy. Hence, 0 is a fixed point of T .

4. An application

In this section, we give an application of Theorem 3.2 to prove existence and uniqueness of the solution of an integral equation

x(t) = x(a)+
∫ b

a
K(t,s,x(s))ds, t ∈ [a,b], (4.1)

where K > 0. Let X =C([a,b],R) be the space of all continuous functions and define a convex partial symmetric space ps on X endowed
with metric.

ps(x,y) =
(1

2
sup

t∈[a,b]
|x(t)− y(t)|

) 1
p
+
(1

2
sup

t∈[a,b]
|x(t)− y(t)|

) 1
q
, (4.2)

for all x,y ∈ X and p,q > 1. Then the pair (X , p), is a convex partial symmetric space. Consider the Banach space C[a,b] of continuous real
valued functions with supremum norm by Hunter and Nachtergaele [17] defined by

‖x‖= sup
t∈[a,b]

|x|, t ∈ [a,b],

where u is a unique solution of (4.1). From Equation (4.1), u is the solution of x
′
(t) = K(t,x(s)) satisfying initial condition x(a) = x if and

only if

x(b) = x(a)+
∫ b

a
K(t,s,x(s))ds, t ∈ [a,b]. (4.3)

Definition 4.1. Suppose that K : [a,b]×Rn −→Rn, where [a,b] is an interval in R. We say that K(t,x(t)) is a globally Lipschitz continuous
function of u uniformly in t if there is a constant λ > 0 such that

‖K(t,x)−K(t,y)‖∞ ≤ λ‖x− y‖.

Equation (4.3) can be formulated as a fixed point equation x = T x.
For a map T : X −→ X defined by

T x(t) = x(a)+
∫ b

a
K(t,s,x(s))ds, t ∈ [a,b]. (4.4)

Theorem 4.2. Suppose that, for all x,y ∈C([a,b],R),

|K(t,s,x(s))−K(t,s,y(s))| ≤ µ|x(s)− y(s)|, (4.5)

where µ = 1
2(b−a) < 1, for all t,s ∈ [a,b] and x,y ∈ R. Then Equation (4.5) has a fixed point x ∈ X.

Proof: We prove that a mapping T defined in (4.4) is a contraction for two continuous functions x and y on C([a,b],R).
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‖T x(t)−Ty(t)‖
1
p +‖T x(t)−Ty(t)‖

1
q ≤

(∫ b

a
‖K(t,s,x(s)−K(t,s,y(s)‖ds

) 1
p

+
(∫ b

a
‖K(t,s,x(s)−K(t,s,y(s)‖ds

) 1
q

≤
(∫ b

a
µ ‖x(s)− y(s)‖ds

) 1
p

+
∫ b

a
µ ‖x(s)− y(s)‖ds

) 1
q

≤
(

µ ‖x(s)− y(s)‖
) 1

p
(∫ b

a
ds
) 1

p

+
(

µ ‖x(s)− y(s)‖
) 1

q
(∫ b

a
ds
) 1

q

‖T x(t)−Ty(t)‖
1
p +‖T x(t)−Ty(t)‖

1
q ≤

(
(µ(b−a)) ‖x(s)− y(s)‖

) 1
p

+
(
(µ(b−a))‖x(s)− y(s)‖

) 1
q

≤ µ (
1
2

sup
t∈[a,b]

‖x(t)− y(t)‖)
1
p

+µ (
1
2

sup
t∈[a,b]

‖x(t)− y(t)‖)
1
q ).

Hence, Equation 4.5 is satisfied for

λ = max{(µ(b−a))
1
p ,(µ(b−a))

1
q }.

Since x,y ∈ X , from ‖x‖τ ,‖y‖τ ≤ 1, we have

|T x(t)−Ty(t)| = λ‖x− y‖τ ,

or equivalently,

pτ (T x,Ty) = λ pτ (x,y). (4.6)

From Equation (3.2) and (4.6), assume that u and v are two distinct points on X . Letting x = xn−1 and y = xn, we have

ps(T x,Ty) ≤ λ { ps(x,y)+ ps(T x,Ty)} ,
ps(T xn−1,T xn) ≤ λ { ps(xn−1,xn)+ ps(xn,T xn)} ,

ps(xn,xn+1) ≤ λ { ps(xn−1,xn)+ ps(xn,xn+1)} ,
ps(xn,xn+1)−λ ps(xn,xn+1) ≤ λ ps(xn−1,xn),

(1−λ ) ps(xn,xn+1) ≤ λ ps(xn−1,xn),

ps(xn,xn+1) ≤ λ

(1−λ )
ps(xn−1,xn),

Letting λ =
λ

(1−λ )
< 1, we obtain

ps(T x,Ty) ≤ λ ps(x,y). (4.7)

Operator T satisfies condition of Equation (3.2). Hence by Theorem 4.2 we obtained the operator T has a fixed point u ∈ X , which is a
solution of (4.1).
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