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Abstract

In this paper, we use the Faber polynomial expansion techniques to get the general Taylor-
Maclaurin coefficient estimates for |an|, (n ≥ 4) of a generalized class of bi-univalent
functions by means of (p,q)−calculus, which was introduced by Chakrabarti and Jagan-
nathan. For functions in such a class, we get the initial coefficient estimates for |a2| and
|a3|. In particular, the results in this paper generalize or improve (in certain cases) the
corresponding results obtained by recent researchers.

1. Introduction

Let A indicate the class of functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disc D= {z : |z|< 1} and satisfy the conditions f (0) = 0, f ′(0) = 1 for every z ∈D. Denote
by S the subclass of A containing of all univalent functions. Let Ω be the class of Schwarz functions φ , which are analytic in
D satisfying the conditions φ(0) = 0 and |φ(z)|< 1 for all z ∈ D. If f1 and f2 are analytic functions in D, then we state f1 is
subordinate to f2, denoted by f1 ≺ f2, if there exists a Schwarz function φ ∈Ω such that f1(z) = f2(φ(z)) (see [1]).

According to the Koebe 1/4 Theorem [1], the range of D under every function f in the univalent function class S contains a
disc {w : |w|< 1/4} of radius 1/4. Thus, every univalent function f has an inverse f−1 satisfying the conditions

f−1( f (z)) = z, (z ∈ D)

and

f ( f−1(w)) = w, (|w|< r0( f ); r0( f )≥ 1/4),

where

f−1 (w) = w−a2w2 +
(
2a2

2−a3
)

w3−
(
5a3

2−5a2a3 +a4
)

w4 + · · · .
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If both f and f−1 are univalent in D, then a function f ∈A is said to be bi-univalent in D. The class of bi-univalent functions
will be denoted by Σ in D.

Not much is known about the bounds for |an| of Faber polynomials in quantum calculus because the bi-univalency requirement
makes the behaviour of the coefficients of the functions f and f−1 unpredictable. The quantum calculus has a great number of
applications in the fields of special functions and other areas (see [2], [3]). There is a possibility to extend some of the results
in quantum calculus to post quantum calculus in geometric function theory.

Let us first recall certain notations of the (p,q)−calculus. The (p,q)−twin-basic number [n]p,q is defined by

[n]p,q =
pn−qn

p−q
, (0 < q < p≤ 1,n = 0,1,2, ...).

The (p,q)−derivative operator of a function f is given by

(Dp,q f )(z) =
f (pz)− f (qz)

(p−q)z
, (z 6= 0) (1.2)

and (Dp,q f )(0) = f ′(0) provided that the function f is differentiable at z = 0 (see [4]). For a function f given by (1.1), it can
be easily concluded that

Dp,q f (z) = 1+
∞

∑
n=2

[n]p,qanzn−1. (1.3)

Note that, for p = 1, (p,q)−derivative operator reduces to the Jackson q−derivative ([5], [6]) given by

(Dq f )(z) =
f (z)− f (qz)
(1−q)z

, (z 6= 0). (1.4)

Also, for p = 1, q−bracket [n]q is given by

[n]q =
1−qn

1−q
, (n = 0,1,2, ...).

In 1903, G. Faber [7] in his thesis, introduced the polynomials which have since proved useful in analysis, and hence are known
as Faber polynomials. By using the Faber polynomial expansion of functions f ∈A , researchers in [8] got the following
useful results.

Lemma 1.1. If f is of the form (1.1), then the coefficients of its inverse functions g = f−1 are given by

g(w) = f−1(w) = w+
∞

∑
n=2

1
n

K−n
n−1(a2,a3, ...)wn := w+

∞

∑
n=2

bnwn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)! an−1

2 + (−n)!
(2(−n+1))!(n−3)! an−3

2 a3 +
(−n)!

(−2n+3)!(n−4)! an−4
2 a4

+ (−n)!
(2(−n+2))!(n−5)! an−5

2 [a5 +(−n+2)a2
3]

+ (−n)!
(−2n+5)!(n−6)! an−6

2 [a6 +(−2n+5)a3a4]+∑l≥7 an−l
2 Vl

such that Vl ,(7≤ l ≤ n) is a homogeneous polynomial in the variables a2,a3, ...,an. The first three terms of K−n
n−1 are given

below:

K−2
1 =−2a2, K−3

2 = 3(2a2
2−a3), K−4

3 =−4(5a3
2−5a2a3 +a4).

Making use of (p,q)−derivative operator defined in (1.2), we define the class NΣ(p,q;λ ,δ ,A,B) as below:

Definition 1.2. Let A and B be real numbers such that −1 ≤ B < A ≤ 1. For 0 < q < p ≤ 1,λ ≥ 1,δ ≥ 0, a bi-univalent
function f ∈ Σ is said to be in NΣ(p,q;λ ,δ ,A,B) if

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z)≺ 1+Az

1+Bz
, (z ∈ D) (1.5)

and

(1−λ )
g(w)

w
+λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w)≺ 1+Aw

1+Bw
, (w ∈ D) (1.6)

where g(w) = f−1(w) for w ∈ D.
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By taking different values of the parameters p,q,λ ,δ ,A,B, we may obtain several new and known subclasses of the family
NΣ(p,q;λ ,δ ,A,B); for instance we have

(i) GΣ(q;λ ,δ ,A,B)≡NΣ(1,q;λ ,δ ,A,B).
(ii) DΣ(p,q;λ , 1+Az

1+Bz )≡NΣ(p,q;λ ,0,A,B).
(iii) RΣ(λ ,δ ,α)≡NΣ(1,1;λ ,δ ,1−2α,−1),(0≤ α < 1), [9].
(iv) TΣ(λ ,α)≡NΣ(1,1;λ ,0,1−2α,−1),(0≤ α < 1), [10].
(v) HΣ(α)≡NΣ(1,1;1,0,1−2α,−1),(0≤ α < 1), [11].

(vi) MΣ(δ ,α)≡NΣ(1,1;1,δ ,1−2α,−1),(0≤ α < 1), [12].

Remark 1.3. Note that the class GΣ(q;λ ,δ ,A,B) in (i) is a new generalized class of bi-uivalent functions defined by
Dq = limp→1 Dp,q given in (1.4).

Remark 1.4. The class DΣ(p,q;λ , 1+Az
1+Bz ) in (ii) may be obtained by letting ϕ = 1+Az

1+Bz in the class DΣ(p,q;λ ,ϕ) which was
studied in 2017 by Altınkaya and Yalçın [13]. The results in our paper improve the estimates of the corresponding bounds in
[13]. Similarly, our results are also better than those determined in [11].

In view of the relations witnessed in (i) to (vi) and Remarks 1.3 and 1.4, we conclude that the generalized class NΣ(p,q;λ ,δ ,A,B)
unifies several subclasses of Σ.

2. Main results

We first give coefficient estimates of a function f in the class NΣ(p,q;λ ,δ ,A,B) for all the coefficients except for the first
initial coefficients a2 and a3.

Theorem 2.1. For 0 < q < p ≤ 1, δ ≥ 0, λ ≥ 1, −1 ≤ B < A ≤ 1, let the function f given by (1.1) be in the class
NΣ(p,q;λ ,δ ,A,B). If am = 0,(2≤ m≤ n−1), then

|an| ≤
A−B

|1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ |
, (n≥ 4). (2.1)

Proof. If a function f given by (1.1) is in NΣ(p,q;λ ,δ ,A,B), then by using (1.2) and (1.3), the left side of (1.5) gives

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z) = 1+

∞

∑
n=2

[
1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ

]
anzn−1. (2.2)

In view of (1.2), (1.3) and Lemma 1.1, the left side of (1.6) yields

(1−λ ) g(w)
w +λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w)

= 1+∑
∞
n=2
[
1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ

]
bnwn−1

= 1+∑
∞
n=2
[
1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ

]
× 1

n K−n
n−1(a2,a3, ...,an)wn−1,

(2.3)

where K−n
n−1(a2,a3, ...,an) are given in Lemma 1.1.

On the other hand, (1.5) and (1.6) imply the existence of two Schwarz functions φ(z) = ∑
∞
n=1 cnzn, (z ∈ D) and ψ(w) =

∑
∞
n=1 dnzn,(w ∈ D) so that

(1−λ )
f (z)

z
+λ (Dp,q f )(z)+δ zDp,q(Dp,q f )(z) =

1+Aφ(z)
1+Bφ(z)

(2.4)

and

(1−λ )
g(w)

w
+λ (Dp,qg)(w)+δwDp,q(Dp,qg)(w) =

1+Aψ(w)
1+Bψ(w)

. (2.5)

Moreover, by using the method given in [8] and [14], Jahangiri and Hamidi in [15] observed that

1+Aφ(z)
1+Bφ(z)

= 1−
∞

∑
n=1

(A−B)K−1
n (c1,c2, ...,cn,B)zn, (2.6)

and

1+Aψ(w)
1+Bψ(w)

= 1−
∞

∑
n=1

(A−B)K−1
n (d1,d2, ...,dn,B)wn, (2.7)
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where K−1
n (k1,k2, ...,kn,B) are obtained by the general coefficients K j

n(k1,k2, ...,kn,B) for all j ∈ Z given by

K j
n(k1,k2, ...,kn,B) =

j!
( j−n)!(n)! kn

1Bn−1 + j!
( j−n+1)!(n−2)! kn−2

1 k2Bn−2

+ j!
( j−n+2)!(n−3)! kn−3

1 k3Bn−3

+ j!
( j−n+3)!(n−4)! kn−4

1 [k4Bn−4 + j−n+3
2 k2

3B]

+ j!
( j−n+4)!(n−5)! kn−5

1 [k5Bn−5 +( j−n+4)k3k4B]+∑ j≥6 kn− j
1 Vj,

and where Vj is a homogeneous polynomial of degree j in the variables k2,k3, ...,kn; (see [8], [14], [15]).

In view of (2.2), (2.4) and (2.6), for every n≥ 2, we get

[1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)K−1
n−1(c1,c2, ...,cn−1,B). (2.8)

Similarly, because of (2.3), (2.5) and (2.7), for every n≥ 2, we have

[1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ ]bn =−(A−B)K−1
n−1(d1,d2, ...,dn−1,B). (2.9)

Since am = 0 for 2≤ m≤ n−1, we have bn =−an and thus,

[1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)cn−1,

−[1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ ]an =−(A−B)dn−1.

Recall that for the Schwarz functions φ and ψ , we have |cn−1| ≤ 1 and |dn−1| ≤ 1 (see [1]). Taking absolute values of the last
two equalities and using |cn−1| ≤ 1 and |dn−1| ≤ 1, we obtain

|an|=
(A−B)|cn−1|

|1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ |
=

(A−B)|dn−1|
|1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ |

,

thus we arrive at

|an| ≤
A−B

|1+([n]p,q−1)λ +[n]p,q[n−1]p,qδ |
.

This completes the proof.

Setting p = 1 in (2.1) and using (i), we get the q−coefficient bounds of the Faber polynomials of the class GΣ(q;λ ,δ ,A,B).

Corollary 2.2. Let q ∈ (0,1), δ ≥ 0, λ ≥ 1 and −1≤ B < A≤ 1. If f ∈ GΣ(q;λ ,δ ,A,B) and am = 0,(2≤ m≤ n−1), then

|an| ≤
A−B

|1+([n]q−1)λ +[n]q[n−1]qδ |
, (n≥ 4).

Setting δ = 0 in (2.1) and in view of (ii) together with Remark 1.4, we get the following:

Corollary 2.3. If f ∈DΣ(p,q;λ , 1+Az
1+Bz ) and am = 0,(2≤ m≤ n−1), then

|an| ≤
A−B

|1+([n]p,q−1)λ |
, (n≥ 4).

Remark 2.4. In [13], the authors found that if f ∈DΣ(p,q;λ ,ϕ) and am = 0,(2≤ m≤ n−1), then

|an| ≤
2

|1+([n]p,q−1)λ |
, (n≥ 4). (2.10)

However, we find that the coefficient estimates in Corollary 2.3 further improve the estimates in (2.10) because

|an| ≤
A−B

|1+([n]p,q−1)λ |
≤ 2
|1+([n]p,q−1)λ |

, (n≥ 4)

for all λ ≥ 1,−1≤ B < A≤ 1, (see [13]).
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In view of (iii), Theorem 2.1 gives the next corollary:

Corollary 2.5. [9] Let λ ≥ 1,δ ≥ 0,0≤ α < 1. If f ∈RΣ(λ ,δ ,α) and am = 0,(2≤ m≤ n−1), then

|an| ≤
2(1−α)

1+(n−1)λ +n(n−1)δ
, (n≥ 4).

Since TΣ(λ ,α)≡NΣ(1,1;λ ,0,1−2α,−1) by (iv), Theorem 2.1 gives the next result:

Corollary 2.6. [16] Let λ ≥ 1, 0≤ α < 1 and am = 0,(2≤ m≤ n−1). If f ∈TΣ(λ ,α), then

|an| ≤
2(1−α)

1+(n−1)λ
, (n≥ 4).

Remark 2.7. In view of (vi), if f ∈MΣ(δ ,α), then we get corresponding result obtained in [12].

For the next theorem, we need the following lemma.

Lemma 2.8. [15] Let φ(z) = ∑
∞
n=1 cnzn be a Schwarz function satisfying |φ(z)|< 1 for |z|< 1. If γ ≥ 0, then

|c2 + γc2
1| ≤ 1+(γ−1)|c1|2.

Theorem 2.9. For 0 < q < p ≤ 1, δ ≥ 0, λ ≥ 1, −1 ≤ B ≤ A ≤ 1, let the function f given by (1.1) be in the class
NΣ(p,q;λ ,δ ,A,B). If

t = [3]p,q = p2 + pq+q2

µ = [2]p,q = p+q,
(2.11)

then

|a2| ≤min



A−B√∣∣∣(A−B) [1+(t−1)λ + tµδ ]+ (1+B) [1+(µ−1)λ +µδ ]2
∣∣∣ , B≤ 0

A−B
|1+(µ−1)λ +µδ |

,

(2.12)

|a3| ≤
(A−B)2

[1+(µ−1)λ +µδ ]2
+

A−B
|1+(t−1)λ + tµδ |

(2.13)

and

∣∣a3−2a2
2
∣∣≤ (A−B)

[
1− (1+B)

(1+(µ−1)λ +µδ )2 |a2|2

(A−B)2

]
|1+(t−1)λ + tµδ |

(B≤ 0) . (2.14)

These results are sharp.

Proof. Upon setting 2 in place of n in (2.8), we obtain

[1+([2]p,q−1)λ +[2]p,qδ ]a2 = (A−B)K−1
1 (c1) =−(A−B)c1. (2.15)

Again, replacing n = 3 in (2.8), we have

[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ]a3 = (A−B)K−1
2 (c2) =−(A−B)(Bc2

1− c2). (2.16)

Similarly, by substituting n = 2 and n = 3, respectively in (2.9), we observe

−[1+([2]p,q−1)λ +[2]p,qδ ]a2 =−(A−B)d1, (2.17)

and

[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ](2a2
2−a3) =−(A−B)(Bd2

1 −d2). (2.18)
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Using |c1| ≤ 1 and |d1| ≤ 1, it follows from (2.15) and (2.17) that c1 =−d1 and

|a2|=
(A−B)|c1|

|1+([2]p,q−1)λ +[2]p,qδ |
=

(A−B)|d1|
|1+([2]p,q−1)λ +[2]p,qδ |

,

then we get

|a2| ≤
A−B

|1+(µ−1)λ +µδ |
,

where µ is given by (2.11) and for −1≤ B≤ A≤ 1.

Adding (2.16) to (2.18), and simple calculations gives

2[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ]a2
2 = (A−B)(c2 +(−B)c2

1 +d2 +(−B)d2
1).

Taking absolute values of both sides, we get∣∣2[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ]
∣∣|a2|2 ≤ (A−B)

[∣∣c2 +(−B)c2
1
∣∣+ ∣∣d2 +(−B)d2

1
∣∣].

If B≤ 0, then by Lemma 2.8 we have

2
∣∣1+([3]p,q−1)λ +[3]p,q[2]p,qδ

∣∣|a2|2 ≤ (A−B)
[
2− (B+1)(|c1|2 + |d1|2)

]
.

Upon substituting c1 and d1 from (2.15) and (2.17), we obtain

2
∣∣1+([3]p,q−1)λ +[3]p,q[2]p,qδ

∣∣|a2|2 ≤ (A−B)
[

2−2(B+1)

(
1+([2]p,q−1)λ +[2]p,qδ

)2

|a2|2

(A−B)2

]
,

or equivalently

|a2| ≤
A−B√∣∣(A−B)

(
1+(t−1)λ + tµδ

)
+(1+B)

(
1+(µ−1)λ +µδ

)2∣∣ ,
where t and µ are given by (2.11). This completes the proof of (2.12).

In order to obtain the coefficient estimates for |a3|, we subtract (2.18) from (2.16), and we get

[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ](−2a2
2 +2a3) =−(A−B)

[
(Bc2

1− c2)− (Bd2
1 −d2)

]
,

or

a3 = a2
2 +

(A−B)(c2−d2)

2[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ]
. (2.19)

Upon substituting the value of a2
2 from (2.15) into (2.19), it follows that

a3 =
(A−B)2c2

1
(1+([2]p,q−1)λ +[2]p,qδ )2 +

(A−B)(c2−d2)

2[1+([3]p,q−1)λ +[3]p,q[2]p,qδ ]
.

Taking the absolute value and by using |c1| ≤ 1, |c2| ≤ 1 and |d2| ≤ 1, we get

|a3| ≤
(A−B)2

(1+(µ−1)λ +µδ )2 +
A−B

|1+(t−1)λ + tµδ |
,

where t and µ are given by (2.11). This proves the inequality in (2.13).

Finally, (2.18) yields

2a2
2−a3 =

(A−B)(d2 +(−B)d2
1)

1+([3]p,q−1)λ +[3]p,q[2]p,qδ
.

By taking the absolute value of the above equation, we find

|a3−2a2
2| ≤

(A−B)|d2 +(−B)d2
1 |

|1+([3]p,q−1)λ +[3]p,q[2]p,qδ |
.
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If B≤ 0, then by Lemma 2.8 we have

|a3−2a2
2| ≤

(A−B)(1+(−B−1)|d1|2

|1+([3]p,q−1)λ +[3]p,q[2]p,qδ |
.

Upon substituting the value of d1 from (2.17), we get

|a3−2a2
2| ≤

(A−B)
(

1− (1+B) (1+([2]p,q−1)λ+[2]p,qδ )2|a2|2
(A−B)2

)
|1+([3]p,q−1)λ +[3]p,q[2]p,qδ |

.

This proves the inequality given by (2.14).

In view of (i) and (ii), Theorem 2.9 leads to the following corollaries.

Corollary 2.10. Let q ∈ (0,1),λ ≥ 1,δ ≥ 0 and −1≤ B < A≤ 1. If f ∈ GΣ(q;λ ,δ ,A,B) and am = 0,(2≤ m≤ n−1), then

|a2| ≤min


A−B√∣∣∣(A−B) [1+(q+q2)λ +(1+q+q2)(1+q)δ ]+ (1+B) [1+qλ +(1+q)δ ]2

∣∣∣ , B≤ 0

A−B
1+qλ+(1+q)δ ,

|a3| ≤
(A−B)2

(1+qλ +(1+q)δ )2 +
A−B

1+(q+q2)λ +(1+q+q2)(1+q)δ

and

∣∣a3−2a2
2
∣∣≤ (A−B)

[
1− (1+B) [

1+qλ+(1+q)δ 2]|a2|2

(A−B)2

]
1+(q+q2)λ +(1+q+q2)(1+q)δ

(B≤ 0) .

Corollary 2.11. Let 0 < q < p≤ 1,λ ≥ 1,−1≤ B < A≤ 1. If f ∈DΣ(p,q;λ , 1+Az
1+Bz ) and am = 0,(2≤ m≤ n−1), then

|a2| ≤min


A−B

|1+(p+q−1)λ |
,

A−B√∣∣∣(A−B) [1+(p2 + pq+q2−1)λ ]+ (1+B) [1+(p2 + pq+q2−1)λ ]2
∣∣∣
 ,

|a3| ≤
(A−B)2

(1+(p+q−1)λ )2 +
A−B

|1+(p2 + pq+q2−1)λ |
.

Remark 2.12. Let λ ≥ 1,δ ≥ 0,0 ≤ α < 1. If f ∈RΣ(λ ,δ ,α) and am = 0,(2 ≤ m ≤ n− 1), then Theorem 2.9 yields the
corresponding results obtained in [9] for coefficients a2, a3 and a3−2a2

2.

Remark 2.13. Let λ ≥ 1,0≤α < 1. If f ∈TΣ(λ ,α) and am = 0,(2≤m≤ n−1), then Theorem 2.9 satisfies the corresponding
results obtained in [16] for coefficients a2 and a3−2a2

2.

Remark 2.14. Setting p = 1,q→ 1−,A = 1− 2α,(0 ≤ α < 1),B = −1 and δ = 0, Theorem 2.9 yields the corresponding
results in [10] for coefficients a2 and a3.

Remark 2.15. Setting p= 1,q→ 1−,A= 1−2α,(0≤α < 1),B=−1,δ = 0 and λ = 1, Theorem 2.9 yields the corresponding
results in [11] for coefficient a2.

3. Conclusion

In this paper, we defined a new subclass of bi-univalent functions associated with (p,q)-derivative operator and investigated
Faber polynomial coefficient estimates for this new class. We also concluded that the results are generalization of the
corresponding results obtained by recent researchers.
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