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Abstract
In this paper we primarily introduce the local version of star-Menger property, namely
locally star-Menger property (a space with this property is called locally star-Menger)
and present some important topological observations. Certain interactions between the
new notion and star-Menger property are also observed. Some observations on effectively
locally star-Menger Pixley-Roy hyperspaces (introduced here) are obtained. Preservation
like properties under several topological operations are also interpreted carefully. Besides,
several results on decomposition and remainder of locally star-Menger spaces are also
presented.
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1. Introduction
The systematic study of selection principles in topology was initiated by Scheepers [26]

(see also [16]). Since then the study was enriched by several authors and it becomes one
of the promising research areas in set-theoretic topology. One of the important selection
principle is Sfin(O,O), nowadays called the Menger property (see [16, 26]). This property
was introduced by K. Menger [20] and later reformulated by W. Hurewicz [15] in 1925.

Generalizing the idea of selection principles, Kočinac [17] introduced star selection prin-
ciples in 1999. The seminal papers [16,26] set up a framework for studying generalization
of selection principles in many ways. Readers interested also in star-selection principles
may consult the papers [17, 19] and references therein. The star version of the Menger
property, called the star-Menger property, plays a central role in this article.

In this paper we primarily work on the localization of the star-Menger property. The
paper is organised as follows. In Section 3, we introduce a more general class of topological
spaces, namely locally star-Menger spaces. We present some equivalent formulations of
locally star-Menger spaces under zero-dimensionality, as well as under metrizability condi-
tions and consider certain situation when star-Menger property is identical with its local
variation. Later in this section, we extend our study to locally star-Menger Pixley-Roy
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hyperspaces. Moreover, another local variation, namely effectively locally star-Menger in
the context of Pixley-Roy hyperspaces is introduced and studied. In Section 4, we exhibit
several preservation like properties under topological operations in locally star-Menger
spaces. It is also pointed out that some of these properties do not hold in star-Menger
settings. In the remaining part of this section, we turn our attention to study the de-
composition [33] of locally star-Menger spaces. We further introduce another new class
M⋆ of topological spaces as a more general approach to the class of locally star-Menger
spaces. It is shown that M⋆ is identical with the class of all spaces which are obtained
as a decomposition of locally star-Menger spaces. In the final section, we make an effort
to present quite a few observations about the remainder of locally star-Menger spaces.
Most of the results of this section are obtained as a subsequent observation in the realm
of paracompact p-spaces [2, 14].

2. Preliminaries
Throughout the paper (X, τ) stands for a topological space. For undefined notions and

terminologies, see [12]. We say that a subset N is a neighbourhood of x in X if there
exists an open set U in X such that x ∈ U ⊆ N . For a subset A of a space X, A

X denotes
the closure of A in X. If no confusion arises, A

X can be denoted by A. For a subset A of
a space X and a collection C of subsets of X, St(A,C) denotes the star of A with respect
to C, that is the set ∪{B ∈ C : A ∩ B ̸= ∅}. For A = {x}, x ∈ X, we write St(x,C) instead
of St({x},C) [12]. A space X is said to be starcompact (resp. star-Lindelöf) if for every
open cover U of X there exists a finite (resp. countable) V ⊆ U such that St(∪V,U) = X
[17].

We shall use the symbol O to denote the collection of all open covers of X. A space X
is said to be Menger if it satisfies the selection principle Sfin(O,O), i.e. for each sequence
(Un) of open covers of X there is a sequence (Vn) such that for each n Vn is a finite subset
of Un and ∪n∈NVn is an open cover of X. Note that the Menger property is preserved
under countable unions, Fσ subspaces and continuous mappings [26].

A space X is said to be star-Menger if it satisfies the selection hypothesis S∗
fin(O,O),

i.e. for each sequence (Un) of open covers of X there is a sequence (Vn) such that for each
n Vn is a finite subset of Un and ∪n∈N{St(V,Un) : V ∈ Vn} is an open cover of X. It is
well known that every Menger space is star-Menger and every star-Menger paracompact
Hausdorff space is Menger [17]. Also, note that the star-Menger property is preserved
under clopen subspaces, as well as under continuous mappings [17]. For more information
about star-Menger spaces, see also [9, 30].

For a space X, let PR(X) be the space of all non-empty finite subsets of X with the
Pixley-Roy topology [11,24]: for A ∈ PR(X) and U open in X, let [A, U ] = {B ∈ PR(X) :
A ⊆ B ⊆ U}, then {[A, U ] : A ∈ PR(X), U open in X} is a base for the Pixley-Roy
topology. If X is T1, then PR(X) is zero-dimensional T1, each basic open set [A, U ] is
clopen in PR(X) and every subspace of PR(X) is metacompact. Also, for any subset Y of
X, PR(Y ) is a closed subset of PR(X). For each n let PR≤n(X) = {F ∈ PR(X) : |F | ≤ n}.
If X is a T1 space, then for each n PR≤n(X) is a closed subspace of PR(X) and in
particular, PR≤1(X) is a closed discrete subspace of PR(X).

For a space X, e(X) = sup{|Y | : Y is a closed and discrete subspace of X} is called the
extent of X. A collection C of subsets of X is said to be a network for X if for each x ∈ X
and any open set U containing x there exists a A ∈ C such that x ∈ A ⊆ U . A space
X is said to be cosmic if it has a countable network. Also, for a collection C of subsets
of X, let Cδ denote the collection of all sets that can be expressed as the intersection of
some nonempty subcollection of C and let Cδ,σ denote the collection of all sets that can be
expressed as the union of some subcollection of Cδ. We say that C is a source for a space
Y in X if Y is a subspace of X such that Y ∈ Cδ,σ. A source C for Y in X is called open
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(closed) if every member of C is open (resp. closed) in X and a source C is countable if C
is countable.

Recall that a collection A of subsets of N is said to be an almost disjoint family if each
A ∈ A is infinite and for any two distinct elements B, C ∈ A, |B ∩ C| < ℵ0. For an almost
disjoint family A, let Ψ(A) = A ∪ N be the Isbell-Mrówka space. It is well known that
Ψ(A) is a locally compact zero-dimensional Hausdorff space (see [13,22]).

Let NN be the Baire space. A natural pre-order ≤∗ on NN is defined by f ≤∗ g if and
only if f(n) ≤ g(n) for all but finitely many n. A subset D of NN is said to be dominating
if for each g ∈ NN there exists a f ∈ D such that g ≤∗ f . Let d be the minimum cardinality
of a dominating subset of NN and c be the cardinality of the set of reals. It is well known
that ℵ0 < d ≤ c. Throughout we use the terminology that if κ is any cardinal, then κ+

denotes the smallest cardinal greater than κ.
A P -space is a space in which countable intersection of open sets is open. An equivalent

condition is that countable union of closed sets is closed.
We start with the following two observations that will be useful in our context.

Lemma 2.1 (Folklore). Every starcompact paracompact Hausdorff space is compact.
Lemma 2.2 (Folklore). If X = ∪n∈NXn, where each Xn is a star-Menger subspace of X,
then X is star-Menger.

We also mention the following observation about the Isbell-Mrówka space Ψ(A).
Lemma 2.3 (cf. [8, Corollary 11]). If |A| = c, then Ψ(A) is not star-Menger.

3. Certain investigations on the locally star-Menger spaces
3.1. Locally star-Menger property

We now introduce the main definition of the paper.
Definition 3.1. A space X is said to be locally star-Menger if for each x ∈ X there exist
an open set U and a star-Menger subspace M of X such that x ∈ U ⊆ M .

We also say that a space X has the locally star-Menger property if X is locally star-
Menger. Clearly, the class of locally star-Menger spaces properly contains the class of
star-Menger spaces. As for an example, if we consider the Isbell-Mrówka space Ψ(A),
where A is an almost disjoint family with |A| = c, then Ψ(A) is locally compact and
locally star-Menger as well. But Ψ(A) is not star-Menger by Lemma 2.3.

We say that a space X is locally starcompact if for each x ∈ X there exist an open
set U and a starcompact subspace K of X such that x ∈ U ⊆ K. Clearly, every locally
starcompact space is locally star-Menger but not conversely. To see this, we first recall the
definition of evenly spaced integer topology on the set of integers Z [28] which is generated
by sets of the form m + nZ = {m + nλ : λ ∈ Z}, where m, n ∈ Z with n ̸= 0. The set
of integers with the evenly spaced integer topology is an example of a metrizable locally
star-Menger space, which is not locally starcompact by Lemma 2.1 as it fails to be locally
compact.

The following result presents a useful characterization for locally star-Menger spaces.
Theorem 3.2. For a zero-dimensional (resp. metrizable) space X, the following asser-
tions are equivalent.

(1) X is locally star-Menger.
(2) For each x ∈ X and for each open set V with x ∈ V there exist an open set U and

a star-Menger subspace M of X such that x ∈ U ⊆ M ⊆ V .
(3) For each x ∈ X there exists an open set U with x ∈ U such that U is star-Menger.
(4) X has a base consisting of clopen (resp. closed) star-Menger neighbourhoods.
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Proof. We present the proof of (3) ⇒ (4) when X is zero-dimensional. Let x ∈ X and
V be an open set containing x. Choose an open set U in X such that x ∈ U and U is
star-Menger. If B is a base for X consisting of clopen sets, then we can choose a B ∈ B

such that x ∈ B ⊆ U ∩ V . It follows that B is star-Menger. Clearly, such B is a base
consisting of clopen star-Menger neighbourhoods.
Similarly we give a proof of (1) ⇒ (2) for the metrizable case as other implications can be
easily carried out. Let x ∈ X and V be an open set containing x. Choose an open set W
such that x ∈ W ⊆ W ⊆ V . Also, choose an open set U and a star-Menger subspace M
of X such that x ∈ U ⊆ M . Clearly, M is Menger and W ∩ U is open in X containing x.
Since the Menger property is hereditary for closed subspaces, it follows that W ∩ M is a
star-Menger subspace contained in V . Thus (2) holds. �

We now present another useful observation under the Lindelöf condition.
Proposition 3.3. Let X be Lindelöf. Then X is locally star-Menger if and only if X is
star-Menger.
Proof. We only give proof of the forward implication. Let x ∈ X. Choose an open set
Ux and a star-Menger subspace Mx such that x ∈ Ux ⊆ Mx. By Lindelöf condition,
choose a countable subcollection {Uxn : n ∈ N} of {Ux : x ∈ X} that covers X. Clearly,
X = ∪n∈NMxn is star-Menger by Lemma 2.2. �

Recall that if P is a property, then non(P) is the minimum cardinality of a set of reals
that fails have the property P. By a classical result of Hurewicz (see [16, Theorem 4.4]),
a space X is Menger if and only if every continuous image of X in NN is not dominating
and hence non(Menger) = d. Clearly, non(star-Menger) = d.
Corollary 3.4. non(locally star-Menger) = d.

Rephrasing [25, Proposition 1.7], we obtain the following.
Corollary 3.5. Every star-Lindelöf space of cardinality less than d is locally star-Menger.

We now turn our attention to observe how large the extent e(X) of a locally star-Menger
space X can be.
Example 3.6.
(1) Let X = Ψ(A) be the Isbell-Mrówka space with |A| = c. Then X is a Tychonoff
locally star-Menger space which is not star-Menger. Since A is a discrete and closed sub-
space of X, we have e(X) ≥ c.

(2) Let κ be any infinite cardinal and D be a set of cardinality κ ≥ ℵ0. Take X =
[0, κ+) ∪ D. We define a topology on X as follows. [0, κ+) has the usual order topology
and [0, κ+) is an open subspace of X with a basic neighbourhood of a point d ∈ D is
of the form Oβ(d) = {d} ∪ (β, κ+), where β < κ+. Clearly, X is T1. We now show
that X is locally star-Menger. Let x ∈ X. If x ∈ [0, κ+), then [0, κ+) is the required
star-Menger open subspace as it is starcompact. Also, for x ∈ D, choose an open set
Oβ(x) = {x} ∪ (β, κ+) for some β < κ+. By Lemma 2.2, {x} ∪ [0, κ+) is a star-Menger
subspace of X with Oβ(x) ⊆ {x} ∪ [0, κ+). Thus X is locally star-Menger. Since D is a
discrete closed subspace of X, we have e(X) ≥ κ.

By [25, Proposition 2.12], if Y is a closed and discrete subspace of a normal star-Menger
space X, then |Y | < d, i.e. e(X) ≤ d holds. This relation can not be outstretched to locally
star-Menger cases.
Example 3.7. Let X be a discrete space with |X| > c. Then X is normal and locally
star-Menger. If we take Y = X, then Y is a closed and discrete subspace of X with |Y | > c
and hence e(X) > c holds.
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3.2. Some observations on Pixley-Roy hyperspaces
The first study of star-Mengerness in Pixley-Roy spaces was appeared in [18] (see also

[25]). For recent developments of the study of star selection principles in hyperspaces, see
[10]. We begin with an illustrative example (Proposition 3.9) of a Pixley-Roy space which
is locally star-Menger without being star-Menger. The following result is required.

Proposition 3.8 (cf. [25, Corollary 4.8]). If PR(X) is star-Menger, then |X| < c holds.
Hence under CH, PR(X) is star-Menger if and only if X is countable.

Recall that a collection A of sets is said to be a ∆-system if and only if there is a fixed
set R, called the root of the ∆-system, such that for any two distinct members A, B ∈ A,
A ∩ B = R [32].

Proposition 3.9. For each positive integer n and each cardinal κ ≥ c, PR≤n(κcof) is
locally star-Menger but not star-Menger, where κcof is the cardinal κ with the cofinite
topology.

Proof. Choose a cardinal κ ≥ c and let F ∈ PR≤n(κcof). Clearly, [F, κ] is open in PR(κcof)
containing F . We first show that [F, κ] is countably compact. Let {Fm : m ∈ N} be a
subset of [F, κ]. Without loss of generality assume that |Fm| = k (finite) for each m and
hence {Fm : m ∈ N} forms a ∆-system with root A. Clearly, A is a limit point of {Fm :
m ∈ N} in [F, κ] and hence [F, κ] is countably compact. Now [F, κ] is a compact subspace
of PR(κcof) as [F, κ] is metacompact. Clearly, [F, κ] ∩ PR≤n(κcof) is a compact subspace
of PR≤n(κcof) and hence [F, κ] ∩ PR≤n(κcof) is star-Menger. Since [F, κ] ∩ PR≤n(κcof) is
open in PR≤n(κcof), PR≤n(κcof) is locally star-Menger.

To complete the proof we show that PR≤n(κcof) is not star-Menger. Assume on the
contrary that PR≤n(κcof) is star-Menger. Since ∪n∈NPR≤n(κcof) = PR(κcof), PR(κcof) is
star-Menger by Lemma 2.2. It follows that κ < c (see Proposition 3.8), a contradiction. �

We now introduce another variety of the star-Menger property that will be useful in
this context.

Definition 3.10. Let X be a space. The Pixley-Roy space PR(X) is said to be effectively
locally star-Menger if for each F ∈ PR(X) there exists an open set U in X such that
F ∈ PR(U) and PR(U) is a star-Menger subspace of PR(X).

It is immediate that the effectively locally star-Menger property of PR(X) lies between
the star-Menger and locally star-Menger property.

Proposition 3.11. For a space X the following assertions are equivalent.
(1) PR(X) is effectively locally star-Menger.
(2) For each F ∈ PR(X) there exist an open set U in X and a set Y ⊆ X such that

PR(Y ) is a star-Menger subspace of PR(X) and F ∈ [F, U ] ⊆ PR(Y ).

Proof. (2) ⇒ (1). Let F ∈ PR(X). Choose an open set U in X and a Y ⊆ X such that
PR(Y ) is star-Menger and F ∈ [F, U ] ⊆ PR(Y ). Since U is open in X, PR(U) is clopen in
PR(X). Thus F ∈ PR(U) ⊆ PR(Y ) and consequently PR(U) is the required star-Menger
subspace of PR(X). �

We now make few observations about this local variation of the star-Menger property.
Since star-Menger implies both effectively locally star-Menger and locally star-Menger, we
restate [25, Proposition 4.2] into our language in the following.

Proposition 3.12. If X is a cosmic space of cardinality less than d, then every finite
power of PR(X) is effectively locally star-Menger and also locally star-Menger.

Corollary 3.13. If X is a subspace of reals with cardinality less than d, then every finite
power of PR(X) is effectively locally star-Menger and locally star-Menger as well.
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Also, the following result is useful.

Lemma 3.14 (cf. [25, Theorem 4.12]). If PR(X) is star-Menger, then every finite power
of X is Menger.

In the following example we show that there exists a subspace X of reals with cardinality
d such that PR(X) is not effectively locally star-Menger.

Example 3.15. We first choose a subspace X of reals with cardinality d which is not
Menger. Now, if possible, suppose that PR(X) is effectively locally star-Menger. For each
x ∈ X choose an open set Ux containing x and a subset Yx of X such that the subspace
PR(Yx) of PR(X) is star-Menger and [{x}, Ux] ⊆ PR(Yx). By Lemma 3.14, each Yx is
Menger. Since X is Lindelöf, choose a countable collection {Uxn : n ∈ N} such that
X = ∪n∈NUxn and hence X = ∪n∈NYxn . It now follows that X is Menger, a contradiction.
Thus PR(X) is not effectively locally star-Menger.

Remark 3.16. In view of Example 3.15 and Corollary 3.13, we have the following equality.
d = min{|X| : X ⊆ R and PR(X) is not effectively locally star-Menger}.

Theorem 3.17. If PR(X) is effectively locally star-Menger, then every finite power of X
is locally star-Menger.

Proof. Let m ∈ N and (x1, x2, . . . , xm) ∈ Xm. Choose F = {x1, x2, . . . , xm}. Then
F ∈ PR(X) and since PR(X) is effectively locally star-Menger, there exist an open set
U in X and a set Y ⊆ X such that PR(Y ) is a star-Menger subspace of PR(X) and
F ∈ [F, U ] ⊆ PR(Y ). Clearly, Um is open in Xm and by Lemma 3.14, Y m is a star-Menger
subspace of Xm with (x1, x2, . . . , xm) ∈ Um ⊆ Y m. Thus Xm is locally star-Menger. �
Proposition 3.18. Let X be a space with the condition that PR(Y ) is star-Menger for
every star-Menger subspace Y of X. If X is locally star-Menger, then PR(X) is effectively
locally star-Menger.

Proof. Let F ∈ PR(X). For each x ∈ F choose an open set Ux and a star-Menger subspace
Mx of X such that x ∈ Ux ⊆ Mx. Define U = ∪x∈F Ux and M = ∪x∈F Mx. Clearly, U
is open and M is star-Menger with F ⊆ U ⊆ M . It follows that F ∈ [F, U ] ⊆ PR(M),
where PR(M) is a star-Menger subspace of PR(X). Thus PR(X) is effectively locally
star-Menger. �
Proposition 3.19. If Y is open in X and PR(X) is effectively locally star-Menger, then
also PR(Y ) is effectively locally star-Menger.

Proof. Let F ∈ PR(Y ). Choose an open set U in X such that F ∈ PR(U) and PR(U) is
a star-Menger subspace of PR(X). Also, PR(Y ) is clopen in PR(X) as Y is open. Clearly,
PR(U) ∩ PR(Y ) = PR(U ∩ Y ) is the required star-Menger subspace of PR(Y ). �
Proposition 3.20. Let f : X → Y be an open continuous mapping from a space X onto a
space Y . If PR(X) is effectively locally star-Menger, then PR(Y ) is also effectively locally
star-Menger.

Proof. Define a mapping φ : PR(X) → PR(Y ) by φ(F ) = f(F ). Clearly, φ is surjective
and continuous. Now let F ∈ PR(Y ). Choose a F ′ ∈ PR(X) such that φ(F ′) = F .
Since PR(X) is effectively locally star-Menger, there exists an open set U in X such that
F ′ ∈ PR(U) and PR(U) is a star-Menger subspace of PR(X). Now F ∈ φ(PR(U)) and
φ(PR(U)) is a star-Menger subspace of PR(Y ). Also, φ(PR(U)) = PR(f(U)) and f(U) is
open in Y . Consequently, PR(Y ) is effectively locally star-Menger. �

We end this section with the following remark on the extent of effectively locally star-
Menger Pixley-Roy spaces.
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Remark 3.21. First observe that for any space X, we have e(PR(X)) = |X|, since the
one-point subsets of X form a closed discrete subspace of PR(X). By Proposition 3.8,
e(PR(X)) < c holds if PR(X) is star-Menger. The situation is quite different for effectively
locally star-Menger Pixley-Roy spaces. If κ is any infinite cardinal and D is a discrete
space with cardinality κ, then PR(D) is effectively locally star-Menger with e(PR(D)) = κ,
i.e. the extent can be sufficiently large in this case.

4. Preservation like properties
4.1. Preservation properties

We now exhibit some preservation properties in locally star-Menger spaces. Let κ be
an infinite cardinal. A space X is said to be κ-concentrated (see [7, 29]) on a set Y ⊆ X
if |X \ U | < κ for any open set U in X containing Y . Let cf(d) be the cofinality of d.

Assume that cf(d) < d. By [29, Theorem 2.10], there exist two sets of reals X and Y
such that |X| < d and Y is d-concentrated, but X × Y is not Menger. We use this fact to
show that product of two locally star-Menger spaces need not be locally star-Menger.

Example 4.1. Assume that cf(d) < d. First observe that any subset of reals with car-
dinality less than d is Menger. Also, any d-concentrated set of reals is Menger (see [29]).
We use Proposition 3.3 to conclude that there exist two locally star-Menger sets of reals
X and Y such that X × Y is not locally star-Menger.

Recall that the product of a star-Menger space with a compact space is again star-
Menger [17, Theorem 2.13]. If we replace ‘compact’ by ‘locally compact’, then the product
need not be star-Menger, even if we consider a star-Menger Tychonoff space instead of a
star-Menger space. Consider the Tychonoff star-Menger space X = (aD × [0, c+)) ∪ (D ×
{c+}), where D is a discrete space of cardinality c and aD is its one point compactification
(see [27, Example 2.2]). The Isbell-Mrówka space Y = Ψ(A) is locally compact. If we
assume that |A| = c, then Y is not star-Menger by Lemma 2.3. Clearly, X × Y is not
star-Menger as star-Menger property is preserved under continuous mappings. Still we
prove the following result.

Proposition 4.2. If X is locally star-Menger and Y is locally compact, then X × Y is
locally star-Menger.

Proof. Let (x, y) ∈ X ×Y . Choose an open set U in X and a star-Menger subspace M of
X such that x ∈ U ⊆ M . Also, we can choose an open set V and a compact subspace K
of Y such that y ∈ V ⊆ K. Clearly, X ×Y is locally star-Menger as M ×K is star-Menger
and (x, y) ∈ U × V ⊆ M × K. �

It is to be noted that locally star-Menger property is not hereditary, not even in regular
spaces. The real line R with usual topology is regular and locally star-Menger. The
subspace S of all irrational numbers is not star-Menger. By Proposition 3.3, S can not be
locally star-Menger, as it is Lindelöf. However we prove the following.

Proposition 4.3. Locally star-Menger property is hereditary for clopen subspaces.

Proof. Let Y be a clopen subspace of a locally star-Menger space X. Let y ∈ Y and
choose an open set U and a star-Menger subspace M of X such that y ∈ U ⊆ M . Clearly,
Y ∩ M is a clopen subset of M and hence Y ∩ M is star-Menger. It now follows that Y is
locally star-Menger. �

We now observe preservation of locally star-Menger property under certain mappings
for the next couple of results. We first recall the following definitions (from [21]). A
surjective continuous mapping f : X → Y is said to be

(1) weakly perfect if f is closed and f−1(y) is Lindelöf for every y ∈ Y .
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(2) bi-quotient if whenever y ∈ Y and U is a cover of f−1(y) by open sets in X, then
finitely many f(U) with U ∈ U cover some open set containing y in Y .

It is immediate that surjective continuous open (and also perfect) mappings are bi-
quotient.

Theorem 4.4. Let X be locally star-Menger.
(1) If f : X → Y is weakly perfect, then Y is locally star-Menger.
(2) If f : X → Y is bi-quotient, then Y is locally star-Menger.

Proof. (1). Let y ∈ Y . For each x ∈ f−1(y) choose an open set Ux and a star-Menger
subspace Mx of X such that x ∈ Ux ⊆ Mx. Since f−1(y) is Lindelöf, there is a countable
subcollection {Uxn : n ∈ N} of {Ux : x ∈ f−1(y)} that covers f−1(y). Consequently,
f−1(y) ⊆ ∪n∈NMxn . Moreover y ∈ Y \ f(X \ ∪n∈NUxn) ⊆ f(∪n∈NMxn). Since f is closed,
Y \f(X \∪n∈NUxn) is an open set in Y containing y. Also, since ∪n∈NMxn is star-Menger,
f(∪n∈NMxn) is a star-Menger subspace of Y .
(2). For each x ∈ X choose an open set Ux and a star-Menger subspace Mx of X such that
x ∈ Ux ⊆ Mx. Let y ∈ Y and consider f−1(y). Since f is a bi-quotient mapping, there
exist a finite subset {Uxi : 1 ≤ i ≤ k} of {Ux : x ∈ X} and an open set V containing y in Y
such that V ⊆ ∪k

i=1f(Uxi). Clearly, y ∈ Int f(∪k
i=1Uxi) and f(∪k

i=1Mxi) is a star-Menger
subspace of Y with Int f(∪k

i=1Uxi) ⊆ f(∪k
i=1Mxi). Thus Y is locally star-Menger. �

Corollary 4.5. If f : X → Y is a perfect (or an open continuous) mapping from a locally
star-Menger space X onto a space Y , then Y is locally star-Menger.

Next we define star-Menger covering mapping.

Definition 4.6. A continuous mapping f : X → Y is said to be a star-Menger covering
mapping if for each star-Menger subspace N of Y , there is a star-Menger subspace M of
X such that f(M) = N .

For example, the projections pX : X × Y → X and pY : X × Y → Y are star-Menger
covering mappings.

Proposition 4.7. Locally star-Menger property is an inverse invariant under injective
star-Menger covering mappings (as well as under injective closed open continuous map-
pings).

Proof. We only give proof for the case of star-Menger covering mappings. Let f : X → Y
be an injective star-Menger covering mapping from a space X onto a locally star-Menger
space Y . Let x ∈ X. Choose an open set U in Y and a star-Menger subspace M ⊆ Y
such that f(x) ∈ U ⊆ M . We can also choose a star-Menger subspace N of X such
that f(N) = M , i.e. N = f−1(M). Clearly, x ∈ f−1(U) ⊆ N and hence X is locally
star-Menger. �

Observe that the locally star-Menger property is not an inverse invariant under open,
as well as under star-Menger covering mappings.

Example 4.8. By Corollary 3.4, there is a set of reals X with cardinality d which is
not locally star-Menger. The Isbell-Mrówka space Y = Ψ(A) is locally star-Menger. By
considering the projection onto the first component (and also by Corollary 4.5), we obtain
X × Y is not locally star-Menger. The projection onto second component witnesses that
the locally star-Menger property is not an inverse invariant under open, as well as under
star-Menger covering mappings.

Let {Xα : α ∈ Λ} be a collection of topological spaces. Let X = ⊕α∈ΛXα be the
topological sum which is defined as ⊕α∈ΛXα = ∪α∈Λ{(x, α) : x ∈ Xα}. For each α ∈ Λ,
let φα : Xα → X be defined by φα(x) = (x, α). The topology on X is defined as follows.
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A subset U of X is open in X if and only if φ−1
α (U) is open in Xα for each α ∈ Λ. Also,

if for each α ∈ Λ the space Xα is homeomorphic to a fixed space Y , then the topological
sum ⊕α∈ΛXα is homeomorphic to Y × Λ, where Λ has the discrete topology.

Proposition 4.9. Let Λ be an arbitrary index set.
(1) If X = ∪α∈ΛYα, where each Yα is an open locally star-Menger subspace of X, then

X is locally star-Menger.
(2) The topological sum ⊕α∈ΛXα is locally star-Menger if and only if each Xα is locally

star-Menger.

Proof. We only present proof of (2). Let X = ⊕α∈ΛXα. Since each Xα ×{α} is clopen in
X, it follows that Xα ×{α} is locally star-Menger. Clearly, each Xα is locally star-Menger.
For the other direction let y ∈ X. Choose x ∈ Xβ for some β ∈ Λ such that y = (x, β).
Also, choose an open set U and a star-Menger subspace M of Xβ such that x ∈ U ⊆ M .
Now U ′ = U × {β} and M ′ = M × {β} are respectively open and star-Menger subspace
of X such that y ∈ U ′ ⊆ M ′. Consequently, X is locally star-Menger. �

In contrast to the local version, the above result fails in star-Menger settings.

Example 4.10.
(1) Let X = Ψ(A) be the Isbell-Mrówka space with |A| = c. Since X is locally compact
zero-dimensional and Hausdorff, there exists a cover {Kx : x ∈ X} for X such that each
Kx is an open compact subspace of X. Clearly, X is a union of open star-Menger sub-
spaces, but X is not star-Menger by Lemma 2.3.

(2) Let X be the topological sum of ω1 copies of [0, 1]. Then X is homeomorphic to
[0, 1] × D, where D is a discrete space with |D| = ω1. Observe that [0, 1] × D (and hence
X) is not star-Menger.

Theorem 4.11. If X = ∪α∈ΛXα, where each Xα is a closed locally star-Menger subspace
of X and the collection {Xα : α ∈ Λ} is locally finite in X, then X is locally star-Menger.

Proof. Let Y = ⊕α∈ΛXα. By Proposition 4.9(2), Y is locally star-Menger. Define f :
Y → X by f(x, α) = x and also for each α define φα : Xα → Y by φα(x) = (x, α). We now
show that f is a perfect mapping. Clearly, f is continuous. Let F be closed in Y . Since
for each α φ−1

α (F ) is closed in X, it follows that f(F ) = ∪α∈Λφ−1
α (F ) is also closed in X

as {Xα : α ∈ Λ} is locally finite in X. Thus f is closed. Now let x ∈ X. Choose an open
set V containing x in X that intersects only finitely many members of {Xα : α ∈ Λ}, say
{Xαi : 1 ≤ i ≤ k}. Now f−1(x) = ⊕{αi:1≤i≤k}{x} and hence f−1(x) is a compact subspace
of Y . Thus f is a perfect mapping and the conclusion now follows from Corollary 4.5. �

We end this section with a similar assertion in the context of a P -space. First we need
the following observation.

Lemma 4.12 (Folklore). Let X be a P -space. If {Xα : α ∈ Λ} is a locally countable
family of closed sets in X, then ∪α∈ΛXα is also closed in X.

Theorem 4.13. If X = ∪α∈ΛXα is a P -space, where each Xα is a closed locally star-
Menger subspace of X and the collection {Xα : α ∈ Λ} is locally countable in X, then X
is locally star-Menger.

4.2. Decomposition of locally star-Menger spaces
We say that a space X decomposes into the collection D of subsets of X if D forms

a partition of X. The function φ : X → D defined by φ(x) = Dx, where x ∈ Dx, is
called the decomposition mapping. The topology on D is defined as follows. A subset U

of D is open in D if and only if φ−1(U) is open in X. In this case we say that D is a
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decomposition space (or in short, a decomposition) of X [33]. The decomposition mapping
φ : X → D is clearly surjective and continuous. The natural decomposition in X of a
mapping f : X → Y is the collection of disjoint sets f−1(y), y ∈ Y .

Definition 4.14. We say that a space X belongs to the class M⋆ if there exists a cover
M of X consisting of star-Menger subspaces and a subset U of X is open if U ∩ M is open
in M for each M ∈ M (or, equivalently a subset F of X is closed if F ∩ M is closed in M
for each M ∈ M).

Clearly, every locally star-Menger space belongs to the class M⋆.

Lemma 4.15. Let D be a decomposition of X. If X belongs to the class M⋆, then D also
belongs to the class M⋆.

Proof. Choose a cover M of X consisting of star-Menger subspaces of X. Let φ : X → D

be the decomposition mapping. Clearly, φ(M) = {φ(M) : M ∈ M} is a cover of D

consisting of star-Menger subspaces. Let U ⊆ D be such that U∩φ(M) is open in φ(M) for
each M ∈ M. The proof will be complete if we show that U is open in D. Let M ∈ M. Since
φ−1(U∩φ(M)) = φ−1(U)∩φ−1(φ(M)), it follows that φ−1(U)∩M = φ−1(U∩φ(M))∩M .
It is easy to see that φ−1(U∩ φ(M)) is open in φ−1(φ(M)). Also, since M ⊆ φ−1(φ(M)),
we have φ−1(U) ∩ M is open in M . Clearly, φ−1(U) is open in X as the choice of M ∈ M

is arbitrary. Thus U is open in D. �
Theorem 4.16. Every member of the class M⋆ is homeomorphic to a decomposition of
some locally star-Menger space.

Proof. Let M = {Xα : α ∈ Λ} be a cover of X which witnesses X ∈ M⋆. Define
Y = ∪α∈ΛYα, where Yα’s are pairwise disjoint open star-Menger subspaces of Y such
that for each α there is a homeomorphism hα : Yα → Xα. Clearly, Y is locally star-
Menger. The mapping f : Y → X given by f(y) = hα(y) for y ∈ Yα is continuous and
surjective. Also, since X ∈ M⋆, if f−1(V ) is open in Y , then V is also open in X. Now
D = {f−1(x) : x ∈ X} is a decomposition of Y . The mapping that sends each element x
of X to f−1(x) is clearly a homeomorphism. �
Corollary 4.17. The class of all spaces which are obtained as a decomposition of locally
star-Menger spaces is identical with the class M⋆.

We now present a characterization of locally star-Menger spaces under bi-quotient map-
pings. First recall that bi-quotient image of a second countable space is again second
countable.

Theorem 4.18. A zero-dimensional Hausdorff space X is obtained as the image of a
locally star-Menger metrizable space under a bi-quotient mapping if and only if X is locally
star-Menger and locally metrizable.

Proof. Let Y be locally star-Menger metrizable and g : Y → X be a bi-quotient mapping.
By Theorem 4.4(2), X is locally star-Menger. We now show that X is locally metrizable.
Since Y is locally star-Menger, choose an open cover U = {Vy : y ∈ Y } of Y such that
y ∈ Vy ⊆ My, where My is star-Menger for each y. Let x ∈ X and choose y ∈ g−1(x).
Since g is a bi-quotient mapping, there exist a finite subset {Vyi : 1 ≤ i ≤ k} of U and
an open set U in X containing x such that U ⊆ ∪k

i=1g(Vyi). Clearly, M = ∪k
i=1Myi is a

metrizable Menger subspace of Y and hence M is second countable. Thus g(M) is second
countable and hence a metrizable subspace of X, as zero-dimensionality implies complete
regularity. Thus U is the required metrizable subspace of X.

For the other direction, assume that X is locally star-Menger and locally metrizable.
By Theorem 3.2, X has a base consisting of clopen star-Menger neighbourhoods. It is
easy to observe that there exists a cover {Xα : α ∈ Λ} of X such that for each α, Xα is a
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clopen metrizable star-Menger subspace of X. Similarly as in the proof of Theorem 4.16,
we define a space Y as follows.

(1) Y = ∪α∈ΛYα with each Yα is star-Menger and metrizable.
(2) For each α Yα is open in Y and Yα ∩ Yβ = ∅ for α ̸= β.
(3) For each α there exists a homeomorphism hα : Yα → Xα.

Clearly, such Y is metrizable and locally star-Menger as well. The mapping f : Y → X
defined by f(y) = hα(y) for y ∈ Yα is open, continuous and surjective. Thus f is a
bi-quotient mapping. �
Corollary 4.19. A zero-dimensional Hausdorff space X is obtained as the image of a
locally star-Menger metrizable space under an open continuous mapping if and only if X
is locally star-Menger and locally metrizable.

5. Remainder of locally star-Menger spaces
All spaces in this section are assumed to be Tychonoff. By a remainder of a space X

we mean the subspace bX \ X of a compactification bX of X. Recall that a space X is
a p-space [2, 14] if in any (in some) compactification bX of X there exists a countable
family {Un : n ∈ N} with for each n Un is a collection of open sets in bX such that for
each x ∈ X, x ∈ ∩{St(x,Un) : n ∈ N} ⊆ X. It is well known that every metrizable space
is a p-space [1, 3]. In [23], continuous images of Lindelöf p-spaces are called as Lindelöf
Σ-spaces. A space X is said to be an s-space if there exists a countable open source for
X in any (in some) compactification bX of X [5, 6]. It is well known that every Lindelöf
p-space is an s-space [6]. Also, if X is a Lindelöf p-space, then any remainder of X is a
Lindelöf p-space [3, Theorem 2.1].
In this section we present some observations about the remainder of locally star-Menger
spaces. We start with a basic observation about p-spaces.

Proposition 5.1. The property of being a p-space is hereditary for closed subspaces.

Proof. Let F be a closed set in a p-space X. Choose a compactification bX of X and a
countable family {Un : n ∈ N} that satisfies the condition of p-spaces. Since Y = F

bX is
compact and F is dense in Y , it follows that Y is a compactification of F . For each n let
Vn = {U∩Y : U ∈ Un}. The collection {Vn : n ∈ N} is countable, where each Vn consists of
open subsets of Y . Let y ∈ F . We now show that y ∈ ∩{St(y,Vn) : n ∈ N} ⊆ F . Clearly,
y ∈ St(y,Un) for each n. Thus for each n there exists a Un ∈ Un such that y ∈ Un, i.e.
y ∈ Un ∩ Y ∈ Vn. Thus y ∈ ∩{St(y,Vn) : n ∈ N}. Observe that St(y,Vn) = St(y,Un) ∩ Y
holds for each n and also by the given condition ∩{St(y,Un) : n ∈ N} ∩ Y ⊆ X ∩ Y ,
i.e. ∩{St(y,Vn) : n ∈ N} ⊆ X ∩ Y . Since F = F

X = Y ∩ X, we can conclude that
y ∈ ∩{St(y,Vn) : n ∈ N} ⊆ F . Hence F is a p-space. �

Let Y be a subspace of a space X. We say that X has the property P outside of Y if
each closed set F in X with Y ∩ F = ∅ has the property P.

Theorem 5.2. Let U be an open cover of a paracompact p-space X such that U is star-
Menger for each U ∈ U. If Y is a remainder of X, then there exists a compact subspace
K of Y such that Y is a Lindelöf p-space outside of K (and hence Y is an s-space outside
of K).

Proof. Let Y = bX \ X, where bX is a compactification of X. For each U ∈ U choose an
open set VU in bX such that VU ∩ X = U . Let W = ∪{VU : U ∈ U} and K = bX \ W .
Then K is compact and W is open in bX with X ⊆ W and K ⊆ Y . We now show that
Y is a Lindelöf p-space outside of K. Let F be a closed set in Y such that K ∩ F = ∅.
Clearly, F

bX ⊆ W as K ∩ F
bX = ∅. Since {VU : U ∈ U} is a cover of F

bX by open
sets in bX and F

bX is compact, we can find a finite set {VUi : 1 ≤ i ≤ k} such that
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F
bX ⊆ ∪k

i=1VUi . Now M = ∪k
i=1U

X
i is a closed star-Menger subspace of X and hence is a

Menger subspace of X (since X is paracompact). By Proposition 5.1, M is a p-space. If
Z = M

bX , then Z is compact and also M is dense in Z. Clearly, Z is a compactification
of M and Z ∩ Y is the remainder of M in Z. Thus Z ∩ Y being a remainder of a Lindelöf
p-space, is again a Lindelöf p-space. Observe that ∪k

i=1VUi ∩ X
bX ⊆ ∪k

i=1VUi ∩ X
bX

, i.e.
∪k

i=1VUi ⊆ ∪k
i=1Ui

bX
⊆ M

bX = Z, i.e. F
bX ⊆ Z. Since F = F

Y = F
bX ∩ Y , we have

F ⊆ Z ∩ Y . Evidently F is closed in Z ∩ Y and hence F is a Lindelöf p-space. This
completes the proof. �
Corollary 5.3. For a locally star-Menger space X the following statements hold.

(1) If X is a zero-dimensional paracompact p-space, then for every remainder Y of X
there exists a compact subspace K of Y such that Y is a Lindelöf p-space outside of K
(and hence Y is an s-space outside of K).

(2) If X is a metrizable space, then for every remainder Y of X there exists a compact
subspace K of Y such that Y is a Lindelöf p-space outside of K (and hence Y is an s-space
outside of K).

Recall that a space X is said to be homogeneous if for any x, y ∈ X there exists a
homeomorphism f : X → X such that f(x) = y.
The result that if a space X is the union of a finite collection of its closed s-subspaces,
then X is an s-space (see [31]) will be used in our next finding.

Theorem 5.4. Let U be an open cover of a paracompact p-space X such that U is star-
Menger for each U ∈ U. If X has a homogeneous remainder Y , then Y is an s-space.

Proof. By Theorem 5.2, we can find a compact subspace K of Y such that Y is a Lindelöf
p-space outside of K. If Y = K, then the proof follows. Otherwise for each y ∈ Y \ K

there exists an open set Uy in Y such that y ∈ Uy ⊆ Uy
Y ⊆ Y \ K as Y \ K is open in Y .

Clearly, each such Uy
Y is a Lidelöf p-space. We now show that for each x ∈ Y there exists

an open set V in Y such that V
Y is a Lindelöf p-space. Let x ∈ Y and fix a y ∈ Y \ K.

Let f : Y → Y be a homeomorphism such that f(y) = x. Now choose an open set y ∈ Uy

in Y with Uy
Y is a Lindelöf p-space. Clearly, V = f(Uy) is the required open set in Y .

Consequently, we obtain a cover W of K by open sets in Y such that for each W ∈ W,
W

Y is an s-space. Choose a finite set {Wi : 1 ≤ i ≤ k} ⊆ W such that K ⊆ ∪k
i=1Wi. It

is now clear that Y \ ∪k
i=1Wi is an s-space. Thus Y = ∪k

i=1Wi
Y ∪ (Y \ ∪k

i=1Wi) is also an
s-space. �
Corollary 5.5. For a locally star-Menger space X the following statements hold.

(1) If X is a zero-dimensional paracompact p-space with a homogeneous remainder Y ,
then Y is an s-space.

(2) If X is a metrizable space with a homogeneous remainder Y , then Y is an s-space.

For the next result we need the following observation about s-spaces from [4].

Theorem 5.6 ([4, Theorem 2.7]). If X is an s-space, then any (some) remainder of X
in a compactification of X is a Lindelöf Σ-space.

Theorem 5.7. Let U be an open cover of a paracompact p-space X such that U is star-
Menger for each U ∈ U. If X has a homogeneous remainder, then X = L ∪ Z, where L is
a closed Lindelöf Σ-subspace and Z is an open locally compact subspace of X.

Proof. Let Y = bX\X be a homogeneous remainder of X, where bX is a compactification
of X. By Theorem 5.4, Y is an s-space. Also, bY = Y

bX is a compactification of Y . Now
choose L = bY ∩ X. Clearly, L is closed in X and L = bY \ Y , i.e. L is the remainder of Y
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in bY . Again by Theorem 5.6, L is a Lindelöf Σ-subspace of X. Since Z = bX \bY is open
in bX, for each x ∈ Z there exists an open set Ux in bX such that x ∈ Ux ⊆ Ux

bX ⊆ Z. It
now follows that Z is locally compact and X = L ∪ Z. �

Corollary 5.8. Let U be an open cover of a paracompact p-space X such that U is star-
Menger for each U ∈ U. If X has a homogeneous remainder and in addition X is nowhere
locally compact, then X is a Lindelöf Σ-space.

Proof. We have X = L ∪ Z, where L is a closed Lindelöf Σ-subspace and Z is an open
locally compact subspace of X. Clearly, Z = ∅ as X is nowhere locally compact. �

Corollary 5.9. For a locally star-Menger space X the following statements hold.
(1) If X is a zero-dimensional paracompact p-space with a homogeneous remainder,

then X = L∪Z, where L is a closed Lindelöf Σ-subspace and Z is an open locally compact
subspace of X.

(2) If X is a metrizable space with a homogeneous remainder, then X = L ∪ Z, where
L is a closed Lindelöf Σ-subspace and Z is an open locally compact subspace of X.

Corollary 5.10. For a locally star-Menger space X the following statements hold.
(1) If X is a zero-dimensional nowhere locally compact paracompact p-space with a

homogeneous remainder, then X is a Lindelöf Σ-space.
(2) If X is a nowhere locally compact metrizable space with a homogeneous remainder,

then X is a Lindelöf Σ-space.
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