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ABSTRACT: Logistics operations are among the main activities in industrial production areas. Today, 

vehicles that are usually electric and manually operated by a driver are used to perform these 

operations. Logistics robots are an important alternative that can be used in this field, and their use in 

integration with cyber physical systems in industrial fields is increasingly common. The biggest 

advantage of the logistics robots is that they provide autonomous driving capabilities and optimum 

parameters for the entire system in accordance with industry 4.0 concept.  In this study, an adaptive 

logistics robot system that can be integrated into the Cyber Physical System (CPS) system in an 

environment with cyber physical system infrastructure has been developed. In this context, positioning, 

path planning, multi-task allocation, energy management, task prioritization, optimization and obstacle 

avoidance issues are analyzed and simple solutions are proposed. The experiments have been carried 

out in eight different configurations and the average distance and energy costs have been improved by 

5.1% and 6.6%, respectively. 
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Siber Fiziksel Sistemlerde İç-Mekân Akıllı Lojistik için Adaptif İşletim Modeli 

 

ÖZ: Lojistik operasyonlar, endüstriyel üretim alanlarında ana faaliyetler arasındadır. Günümüzde bu 

işlemleri gerçekleştirmek için genellikle elektrikli olan ve bir sürücü tarafından manuel olarak çalıştırılan 

araçlar kullanılmaktadır. Lojistik robotlar bu alanda kullanılabilecek önemli bir alternatiftir ve 

endüstriyel alanlarda siber fiziksel sistemlerle entegrasyonda kullanımları giderek yaygınlaşmaktadır. 

Lojistik robotların en büyük avantajı, endüstri 4.0 konseptine uygun olarak tüm sistem için otonom 

sürüş kabiliyetleri ve optimum parametreleri sağlamasıdır. Bu çalışmada, siber fiziksel sistem altyapısı 

olan bir ortamda Siber Fiziksel Sistem (SFS) içerisine entegre edilebilen uyarlanabilir bir lojistik robot 

sistemi geliştirilmiştir. Bu kapsamda konumlandırma, yol planlama, çoklu görev dağılımı, enerji 

yönetimi, görev önceliklendirme, optimizasyon ve engellerden kaçınma konuları analiz edilerek basit 

çözümler önerilmektedir. Deneyler sekiz farklı konfigürasyonda gerçekleştirilmiş ve ortalama mesafe ve 

enerji maliyetleri sırasıyla % 5,1 ve % 6,6 oranında iyileştirilmiştir. 

 

Anahtar Kelimeler: Siber Fiziksel Sistem (CPS), Akıllı Lojistik, Otonom Robotlar, Endüstri 4.0, Robotik Kontrol 

1. INTRODUCTION 

Cyber-physical system (CPS) is the general name given to system in which physical mechanisms are 

controlled or monitored by computer-based algorithms. Cyber physical systems are more commonly 

mailto:emrahdonmez@bandirma.edu.tr
mailto:fatih.okumus@inonu.edu.tr
mailto:fatih.kocamaz@inonu.edu.tr
https://orcid.org/0000-0003-3345-8344
https://orcid.org/0000-0003-3046-9558
https://orcid.org/0000-0002-7729-8322


966                                                                                                                E. DÖNMEZ, F. OKUMUŞ, A. F. KOCAMAZ 

 

used as industrial production technologies develop. These systems are one of the most significant 

components for the multi-agent based robotic control and monitoring systems. Because CPS is used to 

monitor an environment or control electro-mechanic systems (robots, production lines etc.) to optimize, 

stabilize and/or coordinate sub-components of the controllable environments. It is possible to adapt the 

cyber-physical system designed for a general production line to perform different tasks such as control, 

monitoring and intervention. The CPS systematically ensures fast and accurate interventions, 

coordinates physical systems, organize and transfer processed/measured data. This system can also 

provide efficient and low-cost solutions for multi-robot controlling and monitoring processes as well. 

One of the most common physical elements are mobile robots in the multi-robot management systems. 

Mobile robots are interdisciplinary technological systems consisting of electronic, mechanical and 

software components that perform progress and maneuvering behaviors on a floor with moving 

transmission organs such as wheels, tracks, etc., and sensors for sensing the movement pattern / 

environment. They have been used for a wide variety of purposes in many sectors. Mobile robots 

become major actors in industrial production centers day by day. They collaborate collectively to 

perform given tasks in the environment. This collaboration is required multi-robot management and 

monitoring infrastructure to distribute and organize the available tasks. There are systems called smart 

and autonomous logistic systems where each agent collaborates one another to perform load handling 

tasks. All these management and monitoring processes are handled by the cyber-physical systems. 

Configuration of the CPS are adjusted according to the environment conditions and available tasks. The 

mobile robots are generally used to create smart logistics systems in industrial applications.    

Smart logistics (SL) are implemented in industrial production areas, sea-ports, cargo management 

fields, cargo train ports and etc. Main advantages of such SL systems are that providing systematical 

load organization, smart scheduling, cooperation, safety, optimization (capacity, path and motion 

behaviors), cost reduction and so on. SL systems can also be managed and monitored by a CPS including 

computer-based algorithms. There are several issues in CPS-assisted SL systems. System integration 

(Iarovyi, Mohammed, Lobov, Ferrer, & Lastra, 2016) is a major difficulty to design an efficient CPS 

managing the elements of the SL system. The difficulty of system integration generally stems from 

interactions and conflicts between physical system, software and platform domains. The other concern 

about SL is safety in human environment. Even though researching robotics and facilitating technologies 

for applications are forming remarkable progress, it is important to create novel approaches for the 

design, modeling, and control of robotic systems operating safely with people hosted spaces (Schirner, 

Erdogmus, Chowdhury, & Padir, 2013). The SL systems have distributed system (Sztipanovits et al., 

2012) in networked CPS elements. The distributed system provides required message transfer to create 

interaction between these networked elements. One of the most important component of the SL systems 

is Internet of Things (IoT) infrastructure (Wan et al., 2016). It simply provides accessibility to CPS objects 

regardless of location over the internet. Ultimately, by building smart data transfer layers between these 

components of SL systems, a stable coordination between CPS elements will have been done.   

The organization of the paper is as follows: In the section 2, related works are given. The materials 

and methods are described in section 3. Experimental results and observations are emphasized in section 

4. The conclusion and discussion are mentioned in section 5. The references are given in last section 6.  

2. RELATED WORKS 

There are remarkable number of studies related to CPS-structured SL systems. In each study carried 

out, a different module for CPS is considered according to the usage purpose and environment 

characteristics of multiple mobile robots. Main issues focused on these studies are; real-time 

communication, creation of optimized path plans, transportation safety, internet of things, sensor fusion, 

multi-robot management and coordination, etc. 

A Platform-as-a-Service (PaaS) model (Krainer & Kirsch, 2014) has been introduced for 

implementing information acquisition missions from multi-client. Their system manage swarm of 

unmanned vehicles operated and maintained by an external infrastructure. They emphasize that the 
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proposed system is integration of CPS and cloud computing as PaaS. A CPS system (Krueger et al., 2016) 

is proposed that it enables manufacturing tasks to be implemented with no intervention done by human. 

It is claimed that the proposed system operates even if the available environment definition (the world 

model) distresses from major uncertainties. By this way, the robot turns into an essential part of the 

manufacturing execution system. They said that the system has resulted concluding in a highly 

manageable complete system. In another study (Li et al., 2016), it has aimed to form a specific language 

called Cyber-Physical Robot Language (CPLR), that assists the cyber physical robot systems 

development and application in an efficient way. D’auria and Persia have highlighted the relevance of 

the application of CPS systems in the scope of robotic surgery (D’Auria & Persia, 2017). They introduce 

the design methodology for a cyber-physical system of collaborative robotics. This CPS model has been 

configured for surgery implementations aiming to minimize the vulnerability of robotic surgery 

systems. Semwal et al. propose a method to deal with the task execution order problem within a CPS 

that naturally organizes mutual exclusion (Semwal, Jha, & Nair, 2017). The method addresses a 

decentralized and distributed CPS that includes nodes such as computers, robots, and sensor nodes, and 

uses mobile software modules that help execute various tasks while also providing mutual exclusion of 

shared resources. Ernst has said that the robot autonomous vehicles (taxis) can decide where and when 

to go (Ernst, 2018). If necessary, it can also be controlled remotely, rather than autonomous driving, at 

least at the time of market entry where operating costs are less important. Besides, another important 

requirement is the ability to deal with faults. This requirement includes design and software faults as 

well as hardware faults and malfunctions. Laux et al.) have introduced the biological process required 

for sound signal based localization (Laux et al., 2018. In the study, a system that transfers single steps to 

a technical model is proposed to acquire a new type of localization model that uses one or two 

microphones to track an object. Their learning model is based on Support Vector Machines and Principal 

Component Analysis methods. Lee and Yang have investigated Massive MIMO (Multi-Input Multi-

Output) usage infrastructure as a wireless technology in CPS (B. M. Lee & Yang, 2018). They have 

analyzed the overall performance of Massive MIMO base station positioned in a data center to ensure a 

dense connection to multiple devices for CPS based configurations. Lee et al have developed CPS-based 

intelligent robotic warehouse model to transform conventional warehouse tasks into smart logistics (C. 

K. M. Lee, Lin, Ng, Lv, & Tai, 2019). The multiple mobile robot resource allocation problem and 

calculation of collision-free path planning have been discussed in the study. An improved A* method 

has been designed to discover all possible routes between source node and target node. Levshun et al. 

have introduced the novel model, that is a key factor of the design and verification methodology for 

secure cyber-physical systems (Levshun, Chevalier, Kotenko, & Chechulin, 2020). While the developed 

model expresses cyber-physical systems as several building blocks, each building block is the projection 

of the integrated model with the properties and connections between them. Yaacoub et al. have given a 

general review to all components in CPS systems and their connectivity, including IoT systems (Yaacoub 

et al., 2020). The study describes the main CPS security threats, vulnerabilities and attacks related to the 

utilized components and communication protocols. Finally, current CPS security models that can be 

classified as cryptographic and non-cryptographic solutions are discussed and analyzed. Lu and Asghar 

have introduced the concept of semantic CPS (SCPS) and developed technologies which allow semantic 

communication between SCPSs (Lu & Asghar, 2020). The SCPS presents a layered architecture that 

separates the implementation of traditional CPS and semantic communication. This structure makes that 

it is compatible with various CPS application architectures. Dönmez and Kocamaz have proposed a load 

balancing and task distribution system for multi agents in their study (Dönmez & Kocamaz, 2019a; 

Dönmez & Kocamaz, 2019b). They have claimed that the proposed load balancing schemes generally 

provide an optimum balance between the number of tasks and path lengths for the multi agent systems. 

They proposed a path planning and smoothing method in an obstacle hosted environment (Dönmez, 

Kocamaz, & Dirik, 2017). In another study; (Dönmez & Kocamaz, 2019), a vision-based path planning 

system is developed by using multi-cameras for CPS based environments. Okumuş and Kocamaz 

proposed path planning methods (Okumus & Kocamaz, 2018) for multi- robots and developed a cloud 
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platform (Okumuş & Kocamaz, 2019a; Okumus & Kocamaz, 2019b; Okumus, Donmez & Kocamaz 2020) 

for the multi-agent navigation management. 

As it can be seen from the literature, there are various type of studies which focus different 

components of the CPSs. Most of these studies have focused several components of the CPS 

environments. On the other hand, these studies have been generally performed at theoretical level. In 

this study, a comprehensive adaptive model for CPS-assisted SL systems have been proposed. The 

model has several layers to deal with multi mobile robot agents while providing smooth task 

scheduling, coordination, managing, planning, controlling, safety and monitoring. We have compared 

our study with the featured studies () in the following Table 1. 

 

Table 1. Comparison of the developed system in prominent related works. 

 
Chowdhury 

and Maier  
Afrin et al. Turner et al. Schillinger et al. Our Work 

Environment Assets Definition ✓ ✓ ✓ ✓ ✓ 

AGV Charging - - - ✓ ✓ 

Mapping ✓ - - ✓ ✓ 

Multi-AGV - ✓ ✓ ✓ ✓ 

Multi-Task Allocation ✓ ✓ ✓ ✓ ✓ 

Simultaneous Task Execution ✓ ✓ ✓ ✓ ✓ 

Coordination Type Centralized Centralized Decentralized Centralized Centralized 

Monitoring - - - - ✓ 

Simulation - ✓ ✓ ✓ ✓ 

Path Planning - - - STAP D* Lite 

Multi-AGV Collaboration - ✓ - ✓ ✓ 

Collision Avoidance - - - ✓ ✓ 

Pseudocode ✓ ✓ ✓ ✓ ✓ 

Cost Optimization ✓ ✓ ✓ ✓ ✓ 

Position Tracking - - - - ✓ 

 

3. MATERIAL & METHODS 

The CPS systems are mainly utilized in industrial production areas. There are a number of 

algorithms to monitor physical devices, machineries, production lines etc. Some algorithms are used to 

control some of these devices, robotic units, transfer vehicles etc. The CPS assisted SL systems are 

generalized for regular industrial production procedures within the scope of this study.   

3.1. Position detection 

There are a number of methods to determine the global position of the logistic robot(s) and 

workload(s) (targets). Encoder based methods are used to locate position of the mobile robot. However, 

the encoder data may give rise to error accumulation. Since moving parts of the robot can slip, skid 

because of the floor conditions. Tag based position detection is another method to locate mobile robots 

in the operating environment. Image processing methods through camera or special scanning devices 

are used to detect tags. Such methods require more complex mathematical processes and high 

computing power. In this study we propose a RFID- based position detection by using RFID tags and 

reader. We placed the tags according to the several predefined parameters over the floor where the 

mobile robot can make movement process. These predefined parameters are signals (𝑆𝑖, 𝑆𝑛), active task 

(𝑇𝑎𝑐𝑡), distance (𝐷𝑛) between the tags (𝑇𝑛 ∈ 𝑇𝐴), distance error (𝐸𝑛) reader antenna pitch and tag locations 

(𝐶𝑥,𝑦) and antenna distance to the floor. The basic steps of the position detection algorithm are given 

below. The parameter 𝑃𝑅𝑛 is the position of the 𝑛𝑡ℎ robot. The following Algorithm 1 shows the process 

of position detection.  
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Algorithm 1 Pseudocode of the position algorithm 

1. function PositionDetection() 

2.         𝑆𝑖  𝜖 𝐴𝑖 ← signal to all tags 

3.        received signals ← 𝑆𝑛 𝜖 𝑇𝐴  

4.        while 𝑇𝑎𝑐𝑡 = 𝑡𝑟𝑢𝑒 

5.               𝐷𝑛 of 𝑇𝑛 ∈ 𝑇𝐴 ← Compute 

6.               𝐸𝑛 ← Compute  

7.               𝐶𝑥,𝑦 ← Refine 𝐶𝑥,𝑦 of 𝑇𝑛 

8.               𝑃𝑅𝑛 w.r.t. 𝑇𝑛 ← Calculate 

9.        return 𝑃𝑅𝑛 

 

3.2. Multi-task allocation  

Multi task allocation is one of the major challenges for the multi-robots in the CPS configured 

environments. An optimized task allocation can provide good balance between performance, cost and 

safety. In this study, we define several major parameters to perform multi-task allocation. These 

parameters are environment map which shows static obstacles (e.g. machineries, product lines), position 

of robots, position of available tasks, task list, definition of prioritized tasks, energy level of each robot, 

number of available robots (some may be charging, some may require fixing etc.) and P2P 

communication with CPS infrastructure. The operating scheme of the proposed adaptive operation 

model for the logistic robots in CPS based environment is demonstrated in Figure 1. In the multi task 

allocation algorithm, the energy levels of the robots are questioned after the positions of targets and 

robots are determined. Then, the optimum task assignment is carried out with other parameters 

including positions and energy levels. 
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Figure 1. The proposed adaptive operation model for logistic robots in CPS 

 

3.2.1. Path planning  

The path planning process is required to determine the tracking trajectory used by the logistic robots 

in the environment. There are multiple tasks, multiple robots and static/dynamic obstacles in the 

operating environment. There are three types of tasks in the environment; constant tasks, variable tasks 

and temporary tasks. The static obstacles are generally machineries etc. and the dynamic obstacles are 

generally other robots or humans etc. Therefore, path planning is performed by taking into account 

these variable/dynamic and constant/static parameters. There are a lot of path planning approaches in 

the literature. Dijkstra, A*, D*, APF, RRT, Probabilistic Roadmap etc. Each method has different 

advantages and complexities. The basic steps of the path planning algorithm are as following Algorithm 

2. The 𝑀𝐿𝑇𝑅 parameter the task-robot matching list, 𝑂𝑃𝑛 is optimal path, 𝐶𝑚 is the conflicts, CPS is 

central management unit, 𝑊𝑠 is warning signal and 𝑃𝐿  is local path. The parameter 𝑅𝑛 corresponds the 
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𝑛𝑡ℎ robot. Similarly, the parameter 𝑂𝐷𝑖  represents the 𝑖𝑡ℎ dynamic obstacle in the environment. 𝑇𝑛 and 𝑅𝑛 

indicate the target (or workload) and robot, respectively.  

 

Algorithm 2. Pseudocode of the path planning algorithm 

1. function PathPlan() 

2.        𝑀𝐿𝑇𝑅 ← Target – Robot matching 

3.        𝑂𝑃𝑛 ← between 𝑇𝑛 and 𝑅𝑛 

4.        𝐶𝑚 ← between 𝑂𝑃𝑛 

5.        if 𝐶𝑚 = 𝑡𝑟𝑢𝑒 then 

6.               recalculate 𝑂𝑃𝑛 

7.        if 𝐶𝑚 = 𝑓𝑎𝑙𝑠𝑒 then 

8.               𝑂𝑃𝑛 → 𝑅𝑛  

9.        TrackRobot(𝑅𝑛) 

10.        if 𝑅𝑛 send 𝑂𝐷𝑖 = 𝑡𝑟𝑢𝑒 then 

11.               run InformCentral() ← CPS management unit 

12.        𝑅𝑛  → 𝑊𝑠 

13.        Determine 𝑃𝐿  to avoid 𝑂𝐷𝑖  

14.        if 𝑇𝑛 is max then 

15.        return 𝑂𝑃𝑛 and 𝑃𝐿  

 

3.2.2. Energy management  

Logistic robots have battery pack to perform its motions. When the battery goes down to the critical 

level it needs to be recharged to maintain given tasks. If the tasks are distributed without considering the 

energy level of the robots, then there may be interruption between tasks and this interruption may affect 

the whole CPS environment. There may be production delay and critical processes increase the cost and 

decrease the efficiency. To overcome this problem, energy level of each robot (𝐸𝐿𝑛
) is checked and to 

perform the given 𝑇𝑛 task energy consumption (𝐸𝐶𝑛) is calculated. If the energy level is not enough to 

complete the given task, then the 𝑅𝑛 robot is directed to the charge station (𝐶𝑆𝑖). If the energy level of the 

robot decreases to the critical threshold level after completing the given task, then the robot is directed to 

the charge station to charge the battery, similarly. After battery analysis of the robot, the most suitable 

robot is assigned to the related task. The 𝑇𝑙𝑖𝑠𝑡  and 𝑅𝑛𝑒𝑥𝑡 represent the task list and the next available 

robot, respectively. The pseudocode of the energy management Algorithm 3 is given below. 

 

Algorithm 3. Pseudocode of the energy management algorithm 

1. function EnergyManagement() 

2.        𝐸𝐶𝑛 of 𝑅𝑛 for 𝑇𝑛 ∈ 𝑇𝑙𝑖𝑠𝑡  ← Calculate  

3.        𝐸𝐿𝑛
 of 𝑅𝑛 for 𝑇𝑛  ← Check 

4.        if 𝐸𝐿𝑛
 is not feasible ↔ 𝐸𝐶𝑛 then 

5.               𝑅𝑛 → nearest 𝐶𝑆𝑖  

6.               𝑇𝑛 → nearest 𝑅𝑛𝑒𝑥𝑡 

7.        return 𝐸𝐿𝑛
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3.2.3. Task prioritization  

The regular tasks for the logistic robots are realized according to the process order of robotic 

systems, machineries and conveyer belts etc. in the CPS. The order of processes is adjusted with respect 

to logical order of product processing. However, there may be a process that interrupts the whole 

logistic/production operations. Therefore, an approach is required to put in order the prioritized 

task/process in task list without stopping the operations. We have developed a task prioritization 

algorithm to optimize the system bay adding new tasks/jobs. The pseudocode of this process is given in 

Algorithm 4. The parameter 𝑇𝑙𝑖𝑠𝑡  is the available task list. The 𝑄𝑝 prioritization queue holding prioritized 

tasks. The 𝑇𝑝 represents the prioritized task. The 𝐿𝑃𝑇 label is used to mark 𝑇𝑝 in 𝑇𝑙𝑖𝑠𝑡 .  

 

Algorithm 4. Pseudocode of the task prioritization algorithm 

1. function Prioritization() 

2.        𝑇𝑙𝑖𝑠𝑡 ← Get 

3.        𝑇𝑛 ∈ 𝑇𝑙𝑖𝑠𝑡  by FIFO ← Perform conventional queue balance 

4.        𝑄𝑝 queue ← Check 

5.        if ∀ 𝑇𝑝 ∈ 𝑄𝑝then 

6.               Add 𝑇𝑝 to 𝑇𝑙𝑖𝑠𝑡  with 𝐿𝑃𝑇 label 

7.        𝑇𝑝 acc. to 𝐿𝑃𝑇 order in 𝑇𝑙𝑖𝑠𝑡  ← Perform 

8.        completed 𝑇𝑝 ∈ 𝑇𝑙𝑖𝑠𝑡 ← Remove 

9. return  

 

3.2.4. Path optimization 

Path optimization is a critical issue in terms of cost reduction and efficiency increase. When the tasks 

are distributed among the available logistic robots in the CPS; firstly, positions of both robots and targets 

are identified. Then energy level of each robot is checked and shortest path between target and robots 

are calculated. The robot closest to the target is assigned to this target. This process is repeated for all 

available robots for logistics. If there are some targets (𝑇𝑖) that are not assigned to any robot, those 

targets will be queued to be assigned to the appropriate robot that completed the given task.  After 

robot-task assignment process, the possible conflicts (𝑃𝐶𝑙𝑖𝑠𝑡) between the paths are analyzed and 

alternative paths are created if there is a critical conflict that have to be eliminated. Another issue is 

prioritized tasks (𝑄𝑝) that defined after all general process are completed while robots perform the given 

tasks. These tasks may give rise to the changes in optimized path trajectories. The paths are recalculated 

if the prioritized tasks interrupt the logistic operation.  The Algorithm 5 being pseudocode is 

summarized all these processes. The 𝑇𝑙𝑖𝑠𝑡  and 𝑅𝑙𝑖𝑠𝑡  are the available task and robot lists. The parameters 

𝑃𝑠, 𝑇𝑚 and 𝑅𝑛 are path, task and robot, respectively. The 𝑃𝑂𝑛
 parameter represents the optimized 𝑛𝑡ℎ path 

between 𝑅𝑛 and 𝑇𝑚. 
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Algorithm 5.  Pseudocode of the path optimization algorithm 

1. function PathOptimization() 

2.        𝑇𝑙𝑖𝑠𝑡  and 𝑅𝑙𝑖𝑠𝑡 ← Get 

3.        𝑃𝑠 between 𝑇𝑚 and 𝑅𝑛 ← Calculate 

4.        𝑅𝑛 → 𝑇𝑚 

5.        store 𝑃𝑂𝑛
← PathPlan() 

6.        if ∀ 𝑇𝑖 ∈ 𝑇𝑙𝑖𝑠𝑡 that is not assigned to any 𝑅𝑛 then 

7.               Queue 𝑇𝑖 → 𝑄𝑝 

8.        Calculate 𝑃𝐶𝑙𝑖𝑠𝑡  

9.        𝑃𝐶𝑗 ∈ 𝑃𝐶𝑙𝑖𝑠𝑡 ← Optimize conflicted path 

10.        if ∀ 𝑇𝑝 ∈ 𝑄𝑝then 

11.               return 𝑃𝑂𝑛
 

 

3.2.5. Obstacle avoidance 

There are two types of obstacles in the operating environment of CPS. The first type of obstacle is 

static obstacles and second type is dynamic obstacles. The static obstacles are again two types; 

permanent static obstacles and temporary static obstacles. The permanent static obstacles are 

machineries, conveyor belts, fixed electronic devices etc. The temporary static obstacles are obstacles 

which is placed to a position for a temporary time. The environment map is used to create the path 

plans. This map includes static obstacles. The permanent ones are predefined to the map. The temporary 

ones are defined to the map together a time label. Both obstacle types don’t affect the path trajectories 

when robot have performed the assigned task(s). However, the main issue in terms of the obstacles are 

dynamic obstacles. Their behavior is not predictable to create a static path plan. When they emerge and 

which direction, they came are ambiguous. The dynamic obstacles can be detected with local (onboard) 

sensors (𝑆𝑣) placed on the robots to overcome behaviors of dynamic obstacles. After detection process of 

the dynamic obstacles, the robot sends sound and light warning without attempting any movements. If 

the obstacle(s) does not respond, the operator(s) of the CPS infrastructure are informed. The robot 

creates the local path plan to avoid obstacle. This local path plan provides that the robot temporarily 

goes out from the main path plan and when the obstacle is passed the robot goes into the main path 

plan. In addition, the robot passes the obstacle with a predefined safe distance threshold. The dynamic 

obstacle avoidance Algorithm 6 is given below. The parameter 𝑂𝐷𝑖
 represents the 𝑖𝑡ℎ dynamic obstacle in 

the environment. The 𝑊𝑠 is the warning signal mentioned before. The 𝑂𝑃(𝐶𝑃𝑆) corresponds to the CPS 

operator. The parameters 𝑃𝐿  and 𝑃𝑀 are local path and main path, respectively. The 𝑇𝑖  is the 𝑖𝑡ℎ task 

actively processed. 
 



974                                                                                                                E. DÖNMEZ, F. OKUMUŞ, A. F. KOCAMAZ 

 

Algorithm 6. Pseudocode of the obstacle avoidance algorithm 

1. function ObstacleAvodiance()  

2.        𝑆𝑣 ← Get 

3.        if 𝑆𝑣 ! =  0 then 

4.               𝑂𝐷𝑖
 =  𝑡𝑟𝑢𝑒 

5.               𝑊𝑠 → 𝑂𝑃(𝐶𝑃𝑆) 

6.        if 𝑂𝐷𝑖
→ not respond then 

7.               Create 𝑃𝐿  & Track 𝑃𝐿  

8.        if 𝑃𝐿  completed = 𝑡𝑟𝑢𝑒 then 

9.               Track 𝑃𝑀 until 𝑇𝑖  is completed 

 

3.2.6. Job monitoring 

The job (task) monitoring module performs the tasks of viewing the list of assigned tasks, 

monitoring the status of the current tasks and monitoring the completed tasks. In this context, it 

monitors the prioritized tasks and removes the completed tasks from the task list. In this way, the CPS 

makes the minimum number of operations to focus on the remaining tasks. 

4. EXPERIMENTAL RESULTS AND OBSERVATIONS 

There are four robots and four seven tasks (targets) for the experiments.  Static obstacles are 

demonstrated with brown color. Each robot is a dynamic obstacle for the other robots. Humans other 

movable devices are assumed as dynamic obstacles as well. The experimental environment for the 

proposed adaptive operation model is demonstrated in the following Figure 2. Simulation environment 

is simply modeled in the MATLAB and Python programming environment. In the figure, R1, R2, R3 and 

R4 represent the robots. T1, T2, …, T7 correspond to the targets. The Rp1, Rp2, …, Rp5 are the 

representative RFID tags which identifies the key-positions in the main path planning. 

 

 
Figure 2. Representative operating environment 
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The RFID tags are used to locate the position of the robots. A sample path plan between the R1 robot 

and T3 target is shown in the figure as well.  The number of robots and targets can be increased. 

However, to show details of the study with simple structures, a limited number of robots and targets are 

placed to the CPS system. Robots are simply identified onboard colored tags. Each colored tag has 

different order of colors to distinct robots. The tasks are distributed by taking into account both distance 

value and number of the tasks. The path plans are created for four robots between the seven tasks in an 

obstacle hosted environment. This path plans are demonstrated in Figure 3. The following Table 2 shows 

the local coordinates of the robots. 

 
Table 2. Local (px) coordinates of the robots 

Coord. R1 R2 R3 R4 

X 69 1170 69 1170 

Y 67 67 571 571 

 

 
Figure 3. Assigned tasks to multiple robots and path plans 

 

The multitask allocation algorithm detects the closest task/target to the robot and assign that target 

to the robot. The robots perform the assigned tasks simultaneously. When the two or more robot 

encounter in the operating environment while following the paths, the foremost task in the queue is 

prioritized. Therefore, the encountered other robots give the path to the robot assigned to this foremost 

task. These robots simply get out of the path by determining a suitable position. The following Figure 4 

shows task allocation process when there are no obstacles in the environment.   
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Figure 4. Multi Task allocation without any obstacle(s) 

 

There are 7 task (or targets) and two robots in the Figure 4. The algorithm firstly calculates the 

distances between the robot and targets. Because of there is no target, distances between the targets are 

calculated as well. These process is made for all targets and a fully connected graph like structure is 

acquired. This structure is utilized to determine the shortest path between the allocated targets to the 

robots. The figure 5 demonstrates a prioritization process. The prioritized task T7 is shown with red 

color. 

 

 
Figure 5. A task prioritization scheme 

 

When a prioritized task is added to the task list, all the robots attempting to perform the assigned 

tasks are alerted about the prioritized task(s). The robots send the coordinate information of the current 

location to the CPS. Then the nearest robot to the prioritized task is directed to this target. The canceled 

task is added to the queue by checking the distances and available robot situations. Therefore, the path 

optimization algorithm is executed to check if there are any changes in the cost of the paths. The 

following Table 3 shows the local coordinates for robots when prioritization is employed. 
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Table 3. Local coordinates (px) of the robots 

Coord. R1 R2 R3 R4 

X 102 1116 162 1160 

Y 139 120 505 492 

 

 The Figure 6 shows the obstacle avoidance process between the robot and dynamic obstacle 

(another robot). 

 

 
Figure 6. Dynamic obstacle avoidance process 

 

The R2 and R4 robots have encountered when they trying to perform the assigned tasks. The R2 

robot is a dynamic obstacle for the R4 robot in this situation. Therefore, the R4 robot waits for the R2 

robot to pass toward to the T4 target. When the obstacle detection sensors of R4 have not detect any 

obstacles, the R4 robot maintains its movement to the assigned T5 target. The following Table 4 shows 

the local coordinates for robots when dynamic obstacle avoidance process is performed. 

 
Table 4. Local coordinates (px) of the robots 

Coord. R1 R2 R3 R4 

X 262 974 248 1070 

Y 200 215 384 265 

 

Several experiments have been conducted and their results are given in the following Table 5. The 

distance values are computed by utilizing Euclidean distance calculation.  
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Table 5. Experimental results for distance cost and energy 

Experiments 
Total Distance 

(px) 

Optimized Total 

Distance (px) 

Total Energy 

(kW) 

Optimized Total 

Energy (kW) 

Exp-1 1580 1492 21,6 20,1 

Exp-2 1635 1523 23,7 21,4 

Exp-3 1442 1411 20,4 19,8 

Exp-4 1723 1608 25,8 23,3 

Exp-5 1336 1288 19,1 18,6 

Exp-6 1434 1368 20,3 19,6 

Exp-7 1682 1603 23,9 23,3 

Exp-8 1501 1414 21,3 19,4 

Average 1541,63 1463,38 22,01 20,69 

  

Seven targets and four robots have been used in the experiments. There are eight experiments and 

each experiment has different task/target distribution. Each experiment is repeated five times and 

average value of these experiments have been calculated and placed to the table. Total distance (without 

system optimization), optimized total distance, total energy (without energy optimization) and 

optimized total energy parameters have been calculated as the performance metrics to observe the 

overall system performance. The following equation 1 is utilized the path cost. 

 

𝐷𝑆 = √∑ (𝑞𝑖 − 𝑝𝑖)
2𝑘

𝑖=1  (1) 

 

In this equation, the 𝐷𝑆 represents the distance of the simulated path. The k parameter (𝑞𝑖 , 𝑝𝑖) is the 

number of Cartesian coordinates. Parameter 𝑘 is Cartesian coordinates given in the form of (𝑞𝑖  , 𝑝𝑖) on 

the path. The cost of the path is made by combining n part consecutive edges between cartesian 

coordinates. 

Total distances have been optimized according to the path optimization algorithm given before. 

Additionally, total energy has been calculated by a rate between the total and optimized distances 

without considering all the environmental factors (e.g. coefficient of friction). However, there may be 

several dynamic obstacle avoidance operations that increase energy consumption. Therefore, it may be 

necessary to ignore external factors such as obstacle avoidance. The average has been given to 

demonstrate the average metric values of the different task configurations. The distance and required 

energy values changes according to the distribution and position of the tasks. Both distance and energy 

have been improved with the proposed system by decreasing the total distances and total energy. The 

distance and energy gains changes in each experiment; the most gained value has been about 6,9% for 

distance and 9,8% for energy in second experiment (Exp-2). The average gains have been 5,04% and 

5,99% for distance and energy optimization, respectively. 

5. CONCLUSION AND DISCUSSION 

The logistic robots in the CPS infrastructures are one of the key components for the overall 

automation performance. The main factors affecting the autonomous logistics hosted CPS environments 

are positioning, path planning, multi-task allocation, energy management, task prioritization, 

optimization and obstacle avoidance issues. All these issues are covered with simple and efficient 

approaches within the scope of this study. Specific models and pseudocodes of the proposed algorithms 

are given with their details. A simple simulation environment is created and experiments are conducted 

in this environment. The conducted experiments have showed that the proposed system can manage the 

different task configurations while improving the overall performance of logistics robot system being an 

important component of the CPS. In future, experiment will be conducted in a real laboratory 
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environment. We plan to adapt deep learning and machine vision methods in this environment to 

strengthen the proposed models for the logistic robot automation.  
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