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Abstract

Let K denote an n-dimensional local field. The aim of this expository paper is to survey
the basic arithmetic theory of the n-dimensional local field K together with its Milnor K-
theory and Parshin topological K-theory; to review Kato’s ramification theory for finite
abelian extensions of the n-dimensional local field K, and to state the local abelian higher-
dimensional K-theoretic generalization of local abelian class field theory of Hasse, which
is developed by Kato and Parshin. The paper is geared toward non-abelian generalization
of this theory.
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1. Introduction

The aim of this paper is to survey the local abelian higher-dimensional K-theoretic
generalization of the local abelian class field theory of Hasse [16] developed by Parshin (in
positive characteristic) [42,44, 45] and by Kato (in general) [22,23,25] in the late 1970s
and early 80’s; namely, the local abelian Kato-Parshin class field theory, which has later
been simplified, made explicit, and cohomology free by Fesenko [7-9].

For a field K, let K®P denote the maximal abelian extension of K in a fixed separable
closure K*°P of K. Then the maximal abelian Hausdorff quotient G%P of the absolute Galois
group Gx = Gal(K®P/K) is naturally isomorphic to Gal(K?®"/K). In particular, if K is
a non-archimedean local field; i.e., a complete discrete valuation field with finite residue-
class field ki = O /px of ¢ = p! elements, where O denotes the ring of integers of K,
px its unique maximal ideal, and p a prime number; that is, if K is either a finite extension
of Q, in case char(K) = 0, or a finite extension of IF,((X)) in case char(K) = p > 0, then
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Gal(K?"/K) and the profinite completion K* of the multiplicative group K* of the non-
archimedean local field K are both algebraically and topologically isomorphic via local
abelian Hasse reciprocity law

Recy : K* =5 Gal(K*/K)

of K. This isomorphism has many salient features. For instance, via this arrow, KX
encodes all of the arithmetic information on the abelian extensions of the non-archimedean
local field K, which is the subject matter of local abelian class field theory of K. A detailed
exposition of local fields and local abelian class field theory in modern terms can be found
in [15,21].

Now, let F be a global field; that is, F' is either a finite extension of Q in case char(F') =
0, or a finite extension of F),(X) in case char(F') = p > 0. The completion F, of F' with
respect to a finite place v of F' is a non-archimedean local field. Following the “idelic
philosophy” of Chevalley, global class field theory of F' can be constructed by glueing the
local abelian class field theories of F,, for all v [2]. In recent years however, the arithmetic
study of global fields extended its scope and instead of considering only global fields; that
is, integral schemes X of absolute dimension 1, higher-dimensional integral schemes X are
taken into consideration. In this setting, let F' denote the field of rational functions on an
integral scheme X of absolute dimension n. Then to any flag of irreducible non-singular
subschemes Xy C X; C --- C X, = X of X with dim(X;) =14 for i =0,1,--- ,n, Parshin
introduced a completion Fx, .. x,) of F', which is an example of an n-dimensional local
field. Recall that, an n-dimensional local field has an inductive definition: for n > 1,
an n-dimensional local field is a complete discrete valuation field whose residue field is
an (n — 1)-dimensional local field, where in this terminology O-dimensional local fields
are finite fields and 1-dimensional local fields are the “classical” non-archimedean local
fields. The collection of such n-dimensional local fields Fx, .. x,) over all possible flags
(Xo,---,X,) of the scheme X plays a central role in the global class field theory of the
scheme X, a grand theory again created by Parshin', Bloch!, Kato and S. SaitoS, which is
constructed, following the “higher-dimensional idélic philosophy” of Beilinson and Parshin
[18], by glueing the local abelian n-dimensional class field theories of Fxy ... x, for all
(Xo, -, Xn).

The aim of this work is to survey the local abelian n-dimensional class field theory;
namely, the study of arithmetic information on the abelian extensions of an n-dimensional
local field K encoded in the local abelian n-dimensional reciprocity law

Reck : KIP(K) & Gal(K*?/K)

of the n-dimensional local field K, where R%OP(K ) is the profinite completion of the n-th
Parshin topological K-group K'P(K) of K, which is an algebraic, analytic and topological
object depending only and solely to the ground field K. Moreover, in the particular case
n = 1, this arrow reduces to the ordinary local abelian Hasse reciprocity law of K. In the
local abelian n-dimensional theory:

— Non-archimedean local fields K are replaced by n-dimensional local fields K

non-archimedean local fields K ~» n-dimensional local fields K,

TParshin developed the global class field theory of algebraic surfaces using his 2-dimensional adeles [43,44].
Bloch is one of the first researchers who used algebraic K-theory to construct the class field theory of
arithmetic surfaces [4].

SKato and S. Saito studied the global class field theory of arithmetic surfaces and then extended their
results to arbitrary dimensional arithmetic schemes [26,27].
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— and multiplicative groups K* of non-archimedean local fields K are replaced by
the n-th Parshin topological K-groups K°P(K) of n-dimensional local fields K

the group K* ~ the group R%OP(K),

hence the name “K-theoretic generalization” of local abelian class field theory, or the local
abelian Kato-Parshin class field theory.

The paper is organised as follows.In Sections 2 and 3, we shall respectively review the
basic arithmetical theory and the topological theory of n-dimensional local fields. Next, in
Sections 4 and 5, Milnor K-theory and Parshin topological K-theory of n-dimensional local
fields are discussed. In Section 6, after reviewing ramification theory for non-archimedean
local fields, we sketch Kato’s ramification theory, which is defined only for abelian exten-
sions of n-dimensional local fields introduced in [24,28], and note that Kato’s ramification
theory¥ for finite abelian extensions of n-dimensional local fields is compatible with the
local abelian Kato-Parshin reciprocity law. Finally, in Section 7, we state the local abelian
K-theoretic class field theory of Kato and Parshin. In this section, we stick to the methods
introduced by Fesenko, as his methods have advantages for the non-abelian generalization
of this theory [20].

2. n-dimensional local fields

The main references for this section are [33] and the excellent reviews [36, 37,41, 50].
Let K be an n-dimensional local field. That is, attached to K, there exists a sequence of
fields

K07K17 e 7Kn—17K'n = K7
called the Parshin chain of K, where

— K41 is a complete discrete valuation field endowed with a discrete valuation

VK ! Kipgn—7ZU {OO}

with the ring of integers OVKiJrl = Ok, having the unique maximal ideal Pk, , =
PK,;,, foreveryi=20,--- ,n—1;

— The residue-class field x| = kK., of Ky is K for every i = 0,---,n — 1;

- Ko = F, the finite field with ¢ = p°® elements, where p denotes a prime number

(we could have assumed K is a perfect field instead).

The residue-class field K,,_1 of K, is called the first residue-class field of the n-dimensional
local field K, and the residue-class field Ko = [, of K is called the last residue-class field
of the n-dimensional local field K. Moreover, K is said to be a mized-characteristic
n-dimensional local field if char(K) = 0 and char(K,_1) = p > 0, and called an equal-
characteristic n-dimensional local field if char(K) = char(K,_1).

Here are some examples of n-dimensional local fields:

Example 2.1. Observe that,
K =L((X1)) - (Xn-1)),
where L is a non-archimedean local field, is a natural example of an n-dimensional local

field.

MNote that, Kato’s ramification theory introduced in [24] is for abelian extensions of n-dimensional local
fields, while Abbes and T. Saito’s ramification theory [1] is for general Galois extensions of n-dimensional
local fields [49]. On the other hand, Abbes-Saito ramification theory for abelian extensions of n-dimensional
local fields coincides with Kato’s ramification filtration [28].
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Example 2.2. Let £ be a complete discrete valuation field with respect to a discrete
valuation v, : k — Z U {oo}. The field

1=—00

+o0
K =k{X}} = { Z X' | ¢ € k,inf{vp(c;) | i € Z} > —o0, lim vi(c;) = —1—00}
i——00

endowed with a discrete valuation

vk : K — Z U {0}

defined by
400 ]
VK Z X' | =inf{vg(e) | i € Z},
1=—00
for every S5 ¢, X! € K, is a complete discrete valuation field with residue class field
ki = k(X))

Therefore, for a non-archimedean local field L, and for 0 < j <n —1,

K= L{{Xa}} - {X5 11 ((Xjr2) - - (X))

is an n-dimensional local field, called a standard n-dimensional local field, following [36,
50]. The extreme cases j = 0 and j = n — 1 mean K = L((X2))---((Xy)) and K =
L{{X1}} - {{Xn-1}}, respectively.

Remark 2.3. Let k£ be a complete discrete valuation field with respect to a discrete
valuation vy : k — Z U {oo}. Then, k((X1)){{X2}} is isomorphic to k((X2))((X1)). So,
it suffices to consider standard higher-dimensional local fields. For details, look at the
classification theorem for n-dimensional local fields that we recall below.

Assumption 2.4. From now on, all through the paper, K denotes an n-dimensional local
field with the corresponding Parshin chain

Fy =Ko, K1, -, Kp1, K = K.

Notation 2.5. To simplify the discussion, for a € Og, and for an integer i satisfying
0<1<n—1,let @™ =1 denote the element in K,,_;_1 defined by “succesive reductions

of @ modulo maximal ideals pg,,- - ,pk, , respectively” as
a (mOd pKn) (mOd pK’nfl) T (mOd pKn—i)
provided that @™ € O, ,, a™" V) ¢ Ok, _,, ---, @™ ") ¢ Ok, .. Note that,

@™ =1 i5 a non-zero element of K,_,;_q if a™ € O[X(w1 = Uk, ,,a™ b ¢ OIX(TH2 =
(e m—it1
UKn—27 s a(n7 n—i+ ) (= O;(n_l = Uani'

An n-tuple g = (t1,k, - ,tn,x) in K™ is called a system of local parameters of K, if
(1) tp K is a prime element of K, with respect to vk, ;
2) t,_1 Kk € Uk, and its residue class f("_) = t,_1.x (mod pg, ) modulo pg, is a
’ n n 1K ) n n
prime element of K,_; with respect to vk, ,;

(n) t1,x € Uk, such that fgnl)( € Uk, ,, - ,fgtljg"?’) € Uk, and f%’;ﬂ) is a prime
element of K; with respect to v, .

So, following [33] and [42,44,45], n-dimensional local fields can be classified as follows.
For the n-dimensional local field K:

— If char(K) = p, then it is possible to choose t1,--- ,t, € K, such that
K = Fy((t1)) - ((tn))-

Moreover, (t1,--- ,t,) € K™ becomes a system of local parameters of K;
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— If char(K7) = 0, then it is possible to choose tg,- - ,t, € K, such that

K = Ki((t2)) -+ ((tn))-

(n) -:3)

Moreover, choosing 71 g € Uk, such that Tk € Uk, 1, ,ﬁgnK € Uk,
and ﬁgt}"’m is a prime element 7g, of K; with respect to vg,, the n-tuple
(TKy ta, -+, tn) € K™ becomes a system of local parameters of K;

— If none of the above holds, there exists a unique r € {1,---,n — 1} such that
char(K,4+1) # char(K,). Then, there exists a unique non-archimedean local field
L of char. 0, and there exist n — 1 elements t1,--- ,t;,t;42, -+ ,t, € K, such that

K is a finite extension of the standard field

L{{ta}} - {tr 13 ((tr42)) - - ((E0))-

Moreover, if char(Ky) = p, then L may be chosen to be the unique unramified
extension of (@, with residue-class field Kj.

Now, fix a system of local parameters IIx = (t1,k, - ,tn,x) € K™ of K. This system
of local parameters Il of K naturally determines a mapping

pHK:K—>K1X---XKn

defined by
prig ca (a1, - ,an),
where a,, = a € K,, and a; = ngll) (fgi’l';'K’Hl))_VK”l(aiH) € K; for 1 <7 <n—1. Then,

there exists a rank n discrete valuation

Vg = (VKM' .. 7I/Kn) o PrIy K pH_K> K % x K, (Viy s VEn) 7 U {OO}
on K defined by
@K(a) = (VKl’ . ,VKn) OpHK(a) = (yKl(al)’ e 7VKn(an))

for a € K*. Here, Z" is assumed to be lexicographically ordered in the sense of Madunts
and Zhukov as follows: For i = (i1,--- ,ipn), 5 = (J1, -+ ,jn) € Z",

i <J < ¢ < Jo,le41 = Jetr1, 0 5 in = Jn for some 0 < £ < n.

Recall that, this rank n discrete valuation Tx on K depends on the system of local param-
eters Il of K. However, if II%. € K™ is another system of local parameters of K, then
the corresponding rank n discrete valuation U on K is equivalent to Tk in the following
sense:
T (a) = Tx(a)T, Ya € K,
where T' = (v’KJ_ (Proj; o priy (t“{)))lq%n € M(n,Z), which is a lower triangular square
integral matrix of size n with the unit element 1 on the main diagonal. Here, Proj; :
Ky x -+ x K, — K denotes the projection map on the j* coordinate. As usual, M(n,Z)
denotes the set of all integral square matrices of size n. The rank n discrete valuation T
on K is called normalized, if i (K*) = Z".
For a rank n discrete valuation T : K — Z"U{oo} defined on K, introduce the subring

05}( of K by

Oz, ={a € K |vk(a) = 0},
where 0 = (0,---,0) € Z", which is called the ring of integers of K with respect to the
rank n discrete valuation Tx. Note that Og, has the unique maximal ideal pg, defined
by

5, =1{a € Oy, | Uk (a) - 0}.
The quotient field Oz, /p5, =: Ky, , called the residue class field of K with respect to the
rank n discrete valuation Uk, is isomorphic to Ko = F,.
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The arithmetic structure of Og, has the following description. Introduce for each
£=1,2,---  n, the rank n — £ + 1 discrete valuation

Vg > K — vy {0}
on K induced from the rank n valuation v of K by the rule
Tk, >e(a) = Pr>¢(Tk (a))

for each a € K, where
Prs,: 72" — /s

is the projection map defined by

Pl“ze : (mla"' 7mn) = (mé,"' 7mn)
for every (mq,--- ,my) € Z". In particular, the rank 1 valuation U >, on K is nothing but
the first valuation vk, of K,. Now, define a family of ideals of K, for each ¢/ =1,2,--- ,n,
P = fa € K | B se(a) = (igy--- in)}
for every (ig,--- ,in) € Z"**1. Observe that
(0,0,---,0) (1,0,---,0)
—— ——
n-tuple n-tuple
PEK ’ = OEK’ PEK ’ = pEK :

Note that, the collection of all non-zero ideals of Og, consists of all ideals Pi(zz")
(n — £+ 1)-tuple
—

satisfying (i, -+ ,in) = (0,---,0) , for each 1 < ¢ <n. Thus, we see that Oy, is not a
Noetherian ring for n > 1.

Now, the unit group Uy, and the group of principal units V5, of K relative to the rank
n discrete valuation Tx are defined by

Uy, = OX

VK

VEK =1 +p5K‘

It is also possible to define the higher-unit groups U@(zm) of K relative to the rank n
discrete valuation vx by

(n — £+ 1)-tuple
B B Z . .
where (ig,--- ,i,) € Z"“*1 satisfying (ig,--- ,in) = (0,---,0) , for each ¢ satisfying

1</t <n.
In particular, in case ¢ = n, as already mentioned the rank 1 discrete valuation U >, :
K — ZU{oo} is vk, : Ky — Z U {0}, and in this setting:

Uv(i?) ={a€ K |Ug>n(a—1) zin} ={a € K |vk,(a—1) >y},
)

where i, € Z satisfies i,, > 0. Thus, we shall use the standard notation for Uﬁ(i: , and set

i = Ui
for each i,, € Z such that 7,, > 0. Moreover, in the specific case i,, = 1, we further denote
the group of principal units Uéi:zl) of K = K, relative to the rank 1 discrete valuation
VK, >n = VK, of K = K, by

U=t = v,

Remark 2.6. The objects Oz, v3,, Usy, Vo, and PE(Z""’Z'"), Uéiﬁ""’i”) introduced so
far do not depend on the choice of a system of local parameters IIx of the n-dimensional

local field K.
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If g = (t1,k, - ,tnx) is a system of local parameters of K, then as in the classical
1-dimensional case, we can describe the multiplicative group K* of the n-dimensional

local field K by
KX o~ Tty ® Lt 15 @ ® Lty g ® Usy
and
Us, ~ Ry @ Vi s
where Ry, is the subgroup in K consisting of Teichmiiller representatives of all non-zero

elements of the last-residue field Ko = F,; of K. Moreover, any a € K has a unique
expression as a formal power series

b bn
a= Y [B)ti'k b
b=(by,,bn)

where all coefficients [fp] are from the Teichmiiller representatives of all non-zero elements
of the last residue field Ky = F, of K and the summation over b runs over the admissible
set {b € Z" | 6y # 0}, which is well-ordered in Z".

For any algebraic extension L of K, there exists a unique extension wj of the rank n
discrete valuation Tx of K to L. Now, let in particular, L /K be a finite extension. Then,
L has an n-dimensional local field structure with the corresponding Parshin chain

Lo e L1 L,=1

Ko o Kn1 K, = K.

Let I = (t1k, - ,tnkx) € K" and I, = (t1,1,- ,tn,) € L™ be systems of local
parameters of K and of L respectively. As usual, let T and Ty be the corresponding
rank n discrete valuations on K and on L respectively. Then, for every a € K C L, the
n-tuples
vk (a) == (Vkys 5 VK,) © prig(a)
and

®L<a) = (VL17 T 7’/Ln) o pHL(a>

are both in Z", and they are related by
vp(a) =0k (a)E(L/K; g, 1),

where E(L/K;Ilg,111) € M(n,Z) is the lower-triangular integral matrix given by
E(L/K;lg, 1) = (ULj(ti,K))m-

The diagonal entries of E(L/K;Ilk,II1) do not depend on the choice of the systems of
local parameters IIx and II;. Therefore, the diagonal elements of E(L/K;k, 1) will
be denoted simply by e;(L/K), -+ ,en,(L/K). As a notation, let [Ly : Ko = f(L/K). It
is then easy to prove that

[Li - Ki] = f(L/K)er(L/K) - ei(L/K),
fori=1---,n, where
er(L/K) = e(L¢/Ky),
for ¢ =1,---,7 < n. Moreover, the finite extension L/K is called:
— totally ramified, if f(L/K) =1 (or equivalently Ly = Ky);
— semi ramified if e, (L/K) =1 and L,_1/K,_ is separable;

— purely unramified, if the equality [L : K] = f(L/K) (or equivalently [T, e;(L/K) =
1) holds.
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If K satisfies char(K,,—1) = p > 0, then [L,—; : K,_1] has an expression of the form
[Lnfl : anl] = fO'psa

where fj is the separable degree of L,_1/K,_1 denoted by fo(L/K), and p® is the insep-
arable degree of L,,_1/K,_1 denoted by s(L/K).

Now, assume that L/K is an infinite algebraic extension in a fixed algebraic closure K.
The infinite algebraic extension L/K is called:

— totally ramified, if every finite subextension F/K of L/K inside K is totally rami-
fied. Thus, if M/K is any subextension of a totally ramified extension L/K, then
M/K is totally ramified as well. Moreover, L/ K is called mazimal totally ramified,
if there is no totally ramified extension E/K satisfying L C E C K. A maximal
totally ramified extension of K in K exists but it is not unique. Note that, the
compositum of a collection of totallly ramified extensions of K inside K is not
necessarily totally ramified over K.

— purely unramified, if every finite subextension F/K of L/K inside K is purely
unramified. Thus, if M/K is any subextension of a purely unramified extension
L/K, then M/K is purely unramified as well. The compositum of a collection
of purely unramified extensions of K in K is again purely unramified over K.
Therefore, the compositum KP"™ of all purely unramified extensions of K in K is
the maximal purely unramified extension of K in K. Moreover,

KM= K(Gn),
(m,p)=1

where (,, is a primitive m!* root of unity with m relatively prime to p. Thus, it

follows that KP" is Galois over K. A topological generator ¢ of Gal(KP"/K)
which is mapped on the topological generator Frob, of Gal(Fg®? /) is called the
Frobenius automorphism of K. So, for each 0 < d € Z, there exists a unique
purely unramified extension KP"¢ of degree d over K, which is the splitting field
of the polynomial X -Xxe K[X] over K. Moreover, note that, if L/K is purely
unramified, and Il € K" is a system of local parameters of K, then Il € L"
remains a system of local parameters of L as well.

The proof of the following proposition is clear.

Proposition 2.7. If L/K is any algebraic extension, then its unique mazimal purely
unramified subextension L,/K is nothing but L, = L N KP".

Moreover,

Proposition 2.8. Let L/K be a finite extension. Then the unique mazimal purely unram-
ified subextension L,/ K of L/K is the splitting field of the polynomial xP' Y _x e K[X]
over K. Moreover, L/L, is a totally ramified extension, and

[L:Ly) = e1(L/K) - en(L/K), |Lo:K]= f(L/K).

A special case of this proposition reads as follows: Let L/K be an algebraic extension.
Then,

L/K : totally ramified < L, = K. (2.1)

3. Topologies on an n-dimensional local field

There are several topologies related to the n-dimensional local field K with the corre-
sponding Parshin chain

Ko, K1, -, Kp_1, K, = K.
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— The complete discrete valuation vg, : K, — Z U {oco} on K, defines a natural
topology on K, = K, called the discrete valuation topology on K, denoted by 7k, .
With respect to 7k, :

— K has a natural complete and Hausdorff topological field structure;

— As a topological field, K is not locally compact in case n > 2 as kg, = Kn—1
is not a finite field;

— Moreover, again in case n > 2, the elements of K, which can be considered as
formal series >, aitfu x in the first local parameter ¢,  of K via the structure

theorem of higher-dimensional local fields, do not converge, as | a; [, = 1
whenever a; # 0.
Let IIg = (ti,kx, - ,thx) € K™ be a system of local parameters of K and 7 : K —

Z™ U {oo} be the corresponding rank n discrete valuation on K introduced in Section 2.

— There is a natural topology Jk on K, called the higher topology on K, which is
defined recursively by the higher topologies on the residue fields K, _1,--- , K7 and
Ky, where the higher topology Jk, on K; coincides with the discrete valuation
topology ¥k, on K1, look at [50] for details. With respect to the topology Jik:

— K does not have a topological field structure. In fact, K is a complete and
Hausdorff sequential ring; that is, the additive group KT is a topological

group, multiplication K x K = K on K is sequentially continuous. In general,
the inversion K* - K* on K* is not sequentially continuous with respect to
the induced topology of 7k on K*. Look at [5,6] for an overview of sequential
algebraic structures;

— The map K — K defined by multiplication with a fixed non-zero a, € K as
a — ao.a for every a € K is a homeomorphism;

— The residue homomorphism Ogz,, — K,_1 is continuous and open, where Oz,
is equipped with the subspace topology induced from the higher topology Jx
of K and K,_; is endowed with its higher topology Jk, ,;

— The unique formal power series expression of a € K given by

b bn
a= Y [Ob]t1 s -t
b=(b1,,bn)

where all coefficients [6p] are from the Teichmiiller representatives of all non-
zero elements of the last residue field Ky = [F, of K and the summation is over
the admissible well-ordered set {b € Z" | 0 # 0}, is absolutely convergent.
— There is also a natural topology = on the multiplicative group K*, called the
higher topology on K, which is defined as the initial (that is, weakest) topology
on K* that makes the map

K* - KxK

given by

a— (a,at),
for every a € K* sequentially continuous. Equivalently, the topology Jx on K*
is defined as follows:
If char(K,,—1) = p > 0, then the topology Jxx on K* is defined to be the unique
topology on K* that turns the isomorphism

K* 5 (thk) X - X (t1x) X Ry x Vi

into a topological group isomorphism. Here, as introduced in the previous section,
Ry, is the subgroup of K* consisting of Teichmiiller representatives of all non-zero
elements of the last-residue field Ko = [, of K, V5, is the group of principal units
of K relative to T, and the topology on (t, i) X -+ X (t1 k) X Ry, X Vg, is the
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product topology defined by the discrete topology on (t, k) X - -+ X (t1 k) X Ry,
and the topology on Vg, induced from the topology Jx on K.

If char(K) = --- = char(Kn4+1) = 0, char(K,,) = p > 0 for some m < n — 2,
then the natural topology Jx on K* is defined to be the unique topology on K*
that turns the isomorphism

K* 5 (thr) X - X (t1x) X Ry x Vi

into a topological group isomorphism, where the topology on (t, ) X - - x (t1 k) X
Ry, x V5. is the product topology defined by the discrete topology on (t,, k) x- - - X
(tl’ k) and the topology on Uy, = Ry, X Vg, induced from the natural subspace

topology on Uy, . given by 7 x X via the canonical short exact sequence
m m+

151+ P2 S Uy Ugy = 1
The basic properties of the topology %~ on K* are the following :

— Every Cauchy sequence in K* with respect to the topology Jxx converges
in K*;

— Multiplication K* x K* X K> on K* is sequentially continuous and the
inversion K* < K* on K* is sequentially continuous. That is, K> becomes
a sequential group;

— If n < 2, then the multiplicative group K* is furthermore a topological group
with respect to Tk = with a countable base of open subgroups. If n > 3, then
the multiplicative group K> is not a topological group with respect to Jjx;

— The unique formal product expression of a € K* given by

n b bn
a=t, -t TL (U4 [ty s - 1),
b=(b1, ,bn)

where 71, -+, 1, € Z, all coefficients [6p] and 6 are from the Teichmiller
representatives of all non-zero elements of the last residue field Ko = I, of K
and the product is over the admissible well-ordered set {b € Z" | 6 # 0}, is
absolutely convergent.
For details about the topology Jxx, look at [50].
As Fesenko points out, the higher topology Jk on K and the higher topology Zzx on K*
are indeed “the appropriate topologies” for class field theoretic investigations for K. It is
also quite possible, as suggested by Braunling, that a totally new theory, like “condensed
mathematics” of Clausen and Scholze [46] or “pyknotic mathematics” of Barwick and
Haine [3], is needed to settle the topological problems of K.

4. Milnor K-theory

Let I be any field. For any integer m > 0, the m™* Milnor K -group KMnor(F) of F is
defined by the quotient
K (F) = FXE ) (F),

m-copies
—_—
where F*®™ = FX @...® F* is the m-fold tensor product of F* and Jp,(F) is the

subgroup of F*®™ defined by
(11® - @am |2+ 2;=1,71,j, 1<i#j<m).

For x1,--- , &, € F*, the element 21 ® - ® 2y, (mod Jp,(F)) in KMilmor(FY is simply
denoted by {x1,---,x,} and called the generalized Steinberg symbol of x1,--+ ,xp. In
case m = 0, we set KMInor([7) = 7,
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Milnor K-theory KMilnor defines a functor from the category of fields to the category of
abelian groups. Let L/F be any extension. Then the natural embedding jr/p : F' < L
induces a group homomorphism

K%ﬁlnor (]L/F) — j[l\,/[/ig‘lor . K71\7/1[ilnor(F) N K71\7/1[ilnor(L).

In case m = 0, the homomorphism j%/[/i}?or is the identity arrow idy : Z — Z.

By a theorem of Bass, Tate and Kato, there exists, for each finite extension L/F, a
group homomorphism
le/l/lanor . K%llnor(L) N K%ﬂnor(F),
called the (K-theoretic) norm map from L to F. The basic properties of this arrow are
the following:
— The norm map N%/[/ﬂ;or : KMimor (7)) KMilnor (1) from [ to F is transitive in the
sense that, for every chain F' C M C L of extensions of F'| the equality
N = N o N
holds;
— In the low-dimensional cases, the homomorphism
N%/[/ﬂ}?or . K%ilnor(L) N KTI\’/{ilnor(F)
reduces to the multiplication by [L : F] mapping if m = 0, and to the usual norm
map of fields Ny /p : L™ — F>* if m = 1;
— The composition

. jMilnor . Milnor .
K%ﬂnor (F) L/F K%IIHOI(L) L/r K%llnor(F)

is the mapping defined as the multiplication by [L : F;
— If 0 € Autp(L), then

Milnor Milnor __ n7Milnor
NL/F oKm (U) - NL/F )

where KMilnor () . gMilnor( 1y _y gMilnor(1y ig the homomorphism induced by the
F-automorphism o : L — L.

For details about Milnor K-theory, look at Chapter IX of [15].
In case, K is the n-dimensional local field with the corresponding Parshin chain

IFq :K()yKlu”' 7Kn—1aKn :K7

there exists a surjective homomorphism called the (K -theoretic) valuation map

Vigutitnor () + KNP (K) — Z (4.1)
on KMilmor (i) defined by the composition
Milnor O Milnor 8:11:21 aé Milnor
VK Milnor (f¢) Kn (Kn) — Kn—l (anl) —_— s — KO (Kg) =7, (42)

where the arrows
% . KMilnor K; KMilnor K
i—1 1y (KG) = Ko™ (Ki-),
fori=1,2,3,---,n, are the boundary homomorphisms in Milnor K-theory defined by

81?71({7‘17 T 7ui—17x}) = VKi(x){ﬂla T 7ﬂi—1}
for each uy, -+ ,uj_1 € O[XQ = Uk, and = € K, where uy,--- ,u;—1 € K,_1 are defined
by reduction modulo pg, of the elements uy,--- ,u;—1 in K;. Let L be a finite extension

of K. Then the K-theoretic valuation map

VKMilnor(L) . KnMﬂnor(L) — 7
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on KMilmor (1)) satisfies

1 )
VKMH“OT(L) = WVKMHHOY(K) ¢} Nli/[/ﬂ]r{lor,

where f(L/K) = [Lo : Kol, because the diagram

n

) ay_ .
K7l\l/hlnor (L) L K%il?or (Ln— 1 )

NMilnor NMilnor
L/K Lp—1/Kpn_1
n

. on_ .
K}}L/Illnor (K) L K%il{lor (anl )

is commutative. An element Ilymimor gy of KMilnor (F7) s called a prime element of
KnMilnor(K) if
Z/KTI\L/Iilnor(K) (HKly\Llilnor(K)) == 1

Note that, a prime element Hgnminor ) of KMilnor (1) can be expressed as
HKI'I\L/Iilnor(K) ={tik, - thk}+e,

where IIgx = (t1k, - ,tn,x) € K" is a system of local parameters of the n-dimensional
local field K and the element ¢ lies in Ker(vgnimor x))-

Continue to assume that K is an n-dimensional local field. Then, choosing a system
of local parameters IIgx = (t1,x, - ,tn,x) € K" of K, Il determines a rank n discrete
valuation

Uk K — Z" U {o0}
of K, which determines a collection {Uéz ’i")K%ﬂnor(K )} ~_consisting of subgroups
Zl7... 7ln
plier i gMior (¢ of KMinor(¢) given by
U(iéy-- Jn)K%ﬁlnor(K) _ <{$1, . ,xm} e K%ilnor(K) ’ T € UE(ZI? ,in)> ,

UK

(n — £+ 1)-tuple
. Z . .
where (ig,--- ,i,) € Z" L satisfies (ig,--- ,i,) = (0,---,0) , for each ¢ satisfying

1</t <n.
In particular, in case ¢ = n, the group UE(ZL)K%HHOY(K ) is denoted by U[igbK%ilnor(K )
for each i,, € Z satisfying i,, > 0. Moreover,

— if 4, = 0, the group UE(ZL:O)K%HHOY(K) is denoted by UKnK%ﬂnor(K);
— if 4, = 1, the group UE(ZL:UK%IHHOT(K) is denoted by Vi, KMilmor (),
In case L is an algebraic extension of K and wy, is the unique extension of the rank n
discrete valuation vx of K to L, the subgroup

U(iz,-.. 7Z'TL)I<%ilnor(L) _ <{IL‘1, L 7Qan} c K%ilnor(L) | T, € U%i’ 72n)> ,

wr,

of KMilor(7) is denoted by UE(Z ’i”)K%“nor(L), where (ig, - ,in) € Z" ! satisfies
(n — £+ 1)-tuple
. ) ,—H
(igy-++ ,in) = (0,---,0) , for each ¢ satisfying 1 < ¢ < n.
In particular, in case £ = n, the group Uér)K%ilnor(L) is denoted by U}}an%ilnor(L) for
each i, € 7Z satisfying i,, > 0. Moreover,

— if i, = 0, the group UL~ KMilnor (1) is denoted by Uy, KMinor(L);

UK

— if 4, = 1, the group Uéi::l)K%mnor(L) is denoted by Vi, KMimor(r),
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5. K°P-groups

Let F' be a field such that F* is endowed with a topology 7. The topology .7 on
F™ introduces a natural topology Jgimor(py on KMilnor(£7) © The sequential saturation!
(Tktitnor () )seq Of Tinsimer () is the strongest topology on KMilnor([7) that makes the map-
pings _

(o, B) = o — B, Y, f € KMilnor(pry
and
(CLl,"' 7am) — {a17"' 7am}7 vala"' y m S FX
continuous. L.ook at Remark 1 in [14]. With respect to the topology (Jismor(p))seq
defined on KMimer(F) Parshin introduced

AK%ilnor(F) = m ﬁ,
%

where & runs over all open neighbourhoods of the identity element 0 g miinor gy of K Milnor ()
which is a closed subgroup of KMimor(F). The quotient group

KoP(F) := K™ (F) / Agstitnor ()
endowed with the quotient topology of (fK%um( F))Seq; that is, the maximal Hausdorff
quotient of KMnor(F) with respect to (Fkwmtimor () )seq 18 called the m!" Parshin topological
K -group of the field F. For z1,- -+ ,xp € F, the element {z1, -+, 2y} (mod Agminor(py)

is denoted by {1, , 2, }'°P and called the topological Steinberg symbol of x1,- -+ , Tp.
Let L be any “compatible” extension of F' in the sense that:

— L* is endowed with a topology .7”;

— The topology 7 on F* is induced from 7.

Then, the inclusion jll-:/l/l}?or(AK%nnor( 7)) C Agatimer (7 clearly follows, and the group homo-

morphism ]%/I/lglor : KMilnor () gMilnor(1y extends uniquely to a continuous homomor-

phism

Jih, KR (F) - KP(L).

For the n-dimensional local field K, let 9%« be the higher topology on K X introduced
in Section 3. As in the preceding paragraph, the strongest topology on KMor([) that

makes the mappings .
(o, B) = a— B, "o, B € KMinor(f)

ILet X be a set endowed with a topology 7. Recall that U C X is called sequentially open (with respect to
), if for any sequence (z,) in X converging to u € U, there exists n, such that x,, € U for every n > n,.
The collection of sequentially open subsets of X (with respect to 7) defines a topology Jseq on X finer
than .7, called the sequential saturation of .7, and the topological space (X, Zieq) the sequential saturation
of the topological space (X, 7). To simplify the notation, the sequential saturation of the topological space
X is simply denoted by Xgeq. If X = Xeq (that is, if T = Jieq), then X is called a sequentially saturated
topological space. Note that, the topological space Xseq has the following basic properties:

— Xseq i sequentially saturated, namely (Xseq)seq = Xseq;

— The universal mapping property satisfied by Xseq: If Y is a sequentially saturated space, then

any continuous map f : Y — X factors naturally as

seq
N,

Y—>X

where the induced map feeq : Y — Xseq is continuous;
— If' Y is a topological space and f : Y — X is any sequentially continuous map, then the induced
map feeq : Yseq — Xseq iS continuous.
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and
(a1, yam) — {ar, - ,am}, ‘a1, ,am € K*
continuous is the sequential saturation (Jgmimer(k))seq Of the topology Fimimer(x) on
KMilnor () ' where Tkmimor (i) denotes the topology on KMilnor (i) induced from the higher
topology T« of K*.
Note that, by [14], the closed subgroup Agnimor gy of KMilnor (K7) s also equal to
AK%ilnor(K) = m EK%ﬂnor(K),
t#p

where ¢ runs over all primes different than p = char(Ky). Therefore, the boundary homo-
morphism in Milnor K-theory

i1 KYON(EG) = KON (KG)
naturally induces the following morphism
a,;b_l . AK}L}dilnor(Ki) — AKg/iillnor(Ki_l),
and thereby defines the boundary homomorphism in topological Milnor K-theory
(DF_1)"P : KPP (K;) = K32 (Kim),

where
(D) P ({un, - uimy, }P) = (91)'P ({un, - yuimr, @} (mod Agasinore,)) )
= vk, (x){u1, - ,u—1} (mod AK%_\@lnor(KFl))
= vi, (@){ur, -+ W1 }*P,
for each uy, -+ ,u;_1 € O[XQ = Uk, and z € KZ.X, where uwq,--- , ;1 € K;_1 are defined
by reduction modulo pg, of the elements wy, - ,u;—1 in Kj, for each i« = 1,2,--- ,n.

Therefore, there exists a surjective homomorphism called the (topological K -theoretic)
valuation map

VK:lop(K) : K;OP(K) — 7 (51)
on K!P(K) defined by the composition
(Op_1)™P (Oh )P a3
aen(re) K () s KU (Ka) == - L KR (R = 2. (5.2)

Clearly, the valuation vgmimor (g : KMilnor(j¢y 3 7, factors through

red

ilnor V. top
. 1-Milnor Khilnor (g to Ky 7 (K)
VK%ilnor(K) . Kn (K) K,n p(K) Z
as the diagram
ROP ()
top (8n—1)top (al)top
t n—l) top n—2 0 top o
KP(K) —— K5 (K1) a Ko™ (Ko) = Z
redAK%“ﬂOf(Kﬁ redAK?fil?“(KnnT
o s %

qu;/[ilnor(K) n-l K%_jlfor(Kn_l) S — , K%\)/Iﬂnor(KO) -7

\__"//

VK”I;(/[ilnor(K)
is commutative. An element Iyop ) of K©P(K) is called a prime element of K°P(K) if

Yictor (i) (e (1)) = 1
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Note that, a prime element Ilyiop jy Of K%P(K) can be expressed as
HK;OP(K) = {tl,Ka to 7tn,K}top + ¢,
where Il = (t17 K, " ,tn k) is a system of local parameters of K and the element ¢ lies

in Ker(z/K%op(K)).

Let L be a finite extension of the n-dimensional local field K. As N%/[/ll;éor(AK%ilnor( L) C

Agmimor (i), the norm map
Milnor ., y-Milnor Milnor
Nk Ky (L) — Ky, """ (K)
induces a unique homomorphism

NPt KipP(L) = KiP(K)

satisfying, following [38],

Ntop

L/K(open subgroup of K!°P(L)) C open subgroup of K'P(K)

with the usual transitivity property; namely, N?}’K Nﬁ\?}; K © NtLO;)M for every chain K C
M C L of finite extensions of K. Moreover,

— The composition

jtop top
KPP (K) 225, Kiop(L) 25 K9P (K) (5.3)
is the multiplication by [L : K| mapping;
— If 0 € Autg (L), then
N T o KiP(o) = Ny, (5.4)

where K'P (o) : K% (L) — K'©P(L) is the homomorphism induced by the K-
automorphism o : L — L.

For any finite extension L of K, the topological K-theoretic valuation map
Vgtop(p) KiP(L) — Z
on KP(L) satisfies

_ 1 NtOP
YKIP(D) T (L) KRR ) © LK

where f(L/K) = [Lg : Ko|, because the diagram

on top

KPP (L ) K3,y (Li-1) (5.5)

Nt;z{
top (G2 )mp
KP(K) —— K P (Ky,

top
Lyp—1/Kp—1

<;

is commutative.
Note that, the commutative diagram (5.5) naturally induces a homomorphism
(B KPP (K) /NP (KPP (L)) = K2y (K1) /NTP e (K2 (L)

n—1 1

for every finite extension L of K.
The system of local parameters I = (t1,k,- -+ ,tn,x) € K" of K determines a rank n
discrete valuation

UK:K%ZHU{OO}
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of K, which naturally determines a collection {UE(ZZ")K;SP(K )}( ) of subgroups
Zl"” 717,/

ylieinKtop () of KOP(K), where UE(Z n)KtP(K) is defined by the image

VK

. 77(es sin) po-Milnor
redAKMﬂnor(K) 1 Ug,e K" N(K) — redy

U(ifv“' 7in)K%ilnor(K)>

Mil ( v
K"Ll nor () K

in K% (K) of UE(Z’W ’i”)K%ﬂnor(K ) under the natural homomorphism

redn g, KON () -5 KIP(K),
(n — £+ 1)-tuple
—
where (ig,--- ,ip) € Z" 1 satisfies (ig,--- ,in) = (0,---,0) , for each ¢ satisfying
1 < ¢ < n. The collection {Uﬂ(z"”’zn)ngp(K)} e i) is a neighborhood basis of the
Zf:”' 7277.

identity element of K'P(K).
In particular, in case £ = n, the group UE(?)K%‘AZP(K ) is denoted by Uz KiP(K) for each
in, € Z satistying i,, > 0. Moreover,
— if 4, = 0, the group Uéi?zo)Kﬁgp(K) is denoted by Uk, K'P(K);
— if i, = 1, the group Uéi:zl)Kfﬁp(K) is denoted by Vi, KI°P(K).
In case L is an algebraic extension of K and wy, is the unique extension of the rank
n discrete valuation Ux of K to L, the subgroup Ugi""’Z")K;?LP(L) of K'P(L), which is
denoted by UE(Z in)KtoP (L), is defined by the image red, ylie ’i”)K%ﬂnor(LD

K%ilnor(L) ( VK
in KI(L) of UE(Z in)gMilnor (1) ynder the natural homomorphism

red, t KON (L) — KiP(L),

Mil
Kml nor

(n — £+ 1)-tuple
. . e . . . ,_/% . .
where (ig,--- ,i,) € Z" L satisfies (ig,--- ,in) = (0,---,0) , for each /¢ satisfying

1</ <n.
In particular, in case ¢ = n, the group UE(Z)KT;SP(L) is denoted by U?nKﬁgp(L) for each
in € 7Z satisfying i,, > 0. Moreover,

— if i, = 0, the group UL""YKP(L) is denoted by Uy, K'P(L).

UK

— if 4, = 1, the group U(inzl)Kﬁgp(L) is denoted by Vi, K'©P(L).

)¢
The structure of K!°P(K) is well-known (look at [12,14]). In fact,
K\P(K) = Zp & Vi, KPP (K) (5.6)

where, as introduced above, Vi, K{°P(K) is the image of Vi, KM' (i) under red

Now, introduce the subset I, , of Z" by
Ln={a= (a1, - ,an) €Z": a ¢ (pZ)", 0 < a}.

Klyvllilnor(K)

For each a € I, ,,, consider the integer 1 < i(a) < n defined uniquely by the conditions :
- Gifap1 == an =0 (mod p);
~ Gi(q) Z0 (mod p) .

Let 01,---,0s be an F),-basis of the last residue field Ko = F,, where ¢ = p°. Now, for

eacha € I,,, and 1 < j < s, introduce the topological Steinberg symbol ¢;4 in KI°P(K)
by

a top
€ja = {1 + 0it% ik, i) -1,k bita) £ 1, 7tn,K} ;
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where (t1, i, ,tn k) € K" is a system of local parameters of the n-dimensional local field
K, and t§ :=t{" -+ - t;"¢. Then, the collection {5j7a}1§]1j§ s 18 a system of free topological
acly n

generators of Vi, KI°P(K). Therefore, any ¢ € KI°P(K) can be expressed uniquely as
E=Ao{ti. ok P+ D Ajpein,

1<j<s
bely n
where A,, Ajp € Z), for every 1 < j <s,becl,,.
For more details about topological Milnor K-groups, look at [12,14].

6. Ramification theory of n-dimensional local fields

If K is a non-archimedean (=1-dimensional) local field, then there exists a very solid
theory, the ramification theory of the non-archimedean local field K [15]. Namely, for a fi-
nite Galois extension L/K with Galois group Gal(L/K) = G, there exists a lower filtration
(Gi)ier._, of G defined by higher ramification subgroups G; := {y € G | vp(vy(z) — z) >
i+1, Yo € Op} of G in lower numbering, for i € R>_1. The lower filtration (G;)icr. _,
of G behaves well with respect to “passing to the subgroups” in the sense that, for any
subgroup H of G, H; = H N G, for every ¢ € R>_1. On the other hand, the lower fil-
tration (G;)ier._, of G does not behave well with respect to “taking quotients”. That is,
there exists H a normal subgroup of G such that (G/H); # G;H/H for some i € R>_;.
In fact, defining G = GwL/K(j)v for all j € R>_1, where ¢ x : R>—1 — R>_; the
Hasse-Herbrand function of the extension L/K is the piecewise linear increasing function
with inverse w;}K = ¢r/r t R>_1 = R>_1 defined by ¢ /r (i) = [y [Gjitat] for i € R>_y
produces the upper filtration (G7);er. , of G defined by higher ramification subgroups

G’ of G in upper numbering, for j € R>_, which behaves well with respect to “taking
quotients” now. That is, for any normal subgroup H of G, (G/H)? = G'H/H for every
j € R>_1. Thus, higher ramification subgroups G’ of G in upper numbering, for j € R>_1,
can be used to define higher ramification subgroups G’ of the absolute Galois group G
in upper numbering, for j € R>_;.

If the finite extension L/K is furthermore assumed to be abelian, the most important
property of the upper filtration (G’);jeg._, of G is that the local abelian Hasse reciprocity
law

RecL/K* . KX/NL/K(LX) l) G

of the abelian extension L/K maps the subgroup Uj, /(Uj NNy (L*)) of K* /Np /g (L)
to the higher ramification subgroup G’ of G in upper numbering for every j € R>_;. Note
that, both filtrations (Uy)jer._, and (G?)er. _, form bases of neighbourhoods of K and
of G respectively. - -

Therefore, in principle, we should be able to define an upper ramification theory on a
“valued field” K in the situations where some class field theory for the valued field K is
available. For instance, using this principle, Lomadze [35] initiated the ramification theory
of abelian extensions of 2-dimensional local fields of characteristic p > 0 by defining an
upper filtration on corresponding abelian Galois groups using local abelian 2-dimensional
class field theory, which is the subject of Section 7. Omn the other hand, if K is an
n-dimensional local field with n > 2, we observe that there are two different, yet not
totally unrelated, valuations on K. Namely, there exists a rank n discrete valuation
Uk : K — Z" U {oo} defined on K, and also a discrete valuation vk, : K, — Z U {co}
defined on K,, = K. So, there are two “seemingly different” valued field structures on K.
Therefore, it is natural to expect different types of ramification theories on K, which are:

— Zhukov type ramification theory on K [49,51], which generalizes [23,35];
— Abbes-Saito type ramification theory on K [1,49], which generalizes [19,24].
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In what follows, we shall choose Abbes-Saito type ramification theory on the n-dimensional
local field K. In fact, in Abbes-Saito theory on K, there are two filtrations Gknlog and

¥ log ON the absolute Galois group Gk of K both indexed by the set of non-negative ra-
tional numbers Q>9, called the upper non-logarithmic ramification filtration of G’ and the
upper logarithmic ramification filtration of G, respectively [49, Subsection 6.1]. More-
over, specializing only to abelian extensions of K, Abbes-Saito non-logarithmic ramifi-
cation theory of abelian extensions of K coincides with the ramification theory of Kato,
which is defined only for abelian extensions of K [28] and which also behaves well with
respect to the existing local abelian Kato-Parshin reciprocity law of K** [24], the main
subject of this review.

The ramification theory of Kato on the n-dimensional local field K, which is modelled
after the work of Hyodo [19], first constructs a conductor KSw(y) for y € HY(K) =
Hom(G%,Q/Z), called the Kato-Swan conductor for a 1-dimensional representation y :
G% — Q/Z of G2, where K is a complete discrete valuation field with any residue field
#r. The conductor KSw(y) for the 1-dimensional representation x : G2 — Q/Z of G%>
is characterized by the smallest integer f > 0 satisfying

U[f;rl - NLX/KL;a

where L, /K is the subextension of K®°/K fixed by x : G52 — Q/Z. So, there exists an
upper filtration G‘r}?' on G2, called the Kato filtration on G%2, satisfying

KSw(x) = inf{a > 0 | G??’a C Ker(x)},
for any x : G2 — Q/Z.

7. Local abelian K-theoretic class field theory of Kato-Parshin

Fix a separable closure K*P of the n-dimensional local field K and let K2 C K%P be
the maximal abelian extension of K inside K.

The profinite completion KP°P(K) of K!°P(K) with respect to the norm map is defined
by the projective limit

RUP(K) = lim KiP(K) /NP, (KIP(E)),
E

where E runs over all finite extensions of the n-dimensional local field K inside K2, with
respect to the connecting morphisms

CE/
KirP (K) /NP (KPP (B)) = KP(K) /NP (KP (E))
defined for any two finite extensions E and E’ of K inside K?P satisfying E C E’ by

/
CE

o (mod NP (KIP(E))) «— o (mod Nigh (KIP(E'))),
for every o € KIP(K).

Given any finite extension L of K, then the homomorphism N‘f/pK : KIOP(L) — KIP(K)

extends to profinite completions, and defines a continuous homomorphism

N Tyt KiPP(L) = KPP (K)

*%S0, it is natural to expect that Abbes-Saito type non-logarithmic ramification theory on the n-dimensional
local field K behaves well with respect to the “hypothetical” local non-abelian Kato-Parshin reciprocity
law of K, which still needs construction [20].
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satisfying the transitivity condition, as the diagram

T/

C
KieP(L) /Ny (Kiop(T) - KieP (L) /N7 (Kie»(T"))
NT Tk, N Tk,
KPP () /NG (I (T 1K) 6 KPR /NP 1 (KIP(T 1K)
TnKab

is commutative, where the vertical arrows N?/%( are the induced morphisms from N?})K,

for each finite extension 7 and 7" of L inside L satisfying T C T".
Recall that, local abelian n-dimensional K-theoretic class field theory for K establishes
a unique natural algebraic and topological [38] isomorphism
Reck : KIP(K) & Gab,
called the local abelian n-dimensional Kato-Parshin reciprocity law of K, which, among
other things, has the following properties :
(1) For every abelian extension L/K, the surjective homomorphism

Recy,/x : KIP(K) S5, Gab L, Gal(L/K)

has kernel

Ker(Reey i) = Nif (KiP(L) = [ NEP (KiP(F) =2 0,
K C FCL

finite

and induces a topological group isomorphism

Recr)k, : KiyP(K) /My = Gal(L/K)

called the local abelian n-dimensional Kato-Parshin reciprocity law of L/ K;
(2) (Existence theorem). For each abelian extension L/K, the mapping

L/K = M

defines a bijective correspondence
{L/K :abelian} = {M: M < KPP(K)}.

“closed”

For Kato’s approach to the existence theorem, look at [25];

(3) (Functoriality). For any finite extension L/K,
Recr (2) | = Recxc (NiF () ,

for every z € KiP(L), and
Rect (JiZh(+) ) = Viyuc (Reck ()

for every z € K'P(K). That is, the following squares

= Rec ~ Rec
to L ab to L ab
KyP(L) —— G, KP(L) —— G
ﬁ?f K TS pcab i tLO /pK Vi) i :Verlagerung
S Recy —~ Recx
to ab to ab
KIP(K) —— G Ktop(K) —=, Gab

are commutative;
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(4) The square

R () — " G
(@‘:)topl J{
rotop Reck, ab
REP (K)o G2

is commutative, where the left-vertical arrow

——top ~ ~
(@n_ ) KWP(K)— Kffi’l(anl)

n
is defined by the commutativity of the diagram

(n_ )
KPP () /NIED 1 (KSeP (1) 5 KU, (K ) /NP e (KIP (B, )

/
CE/ En—l
E ‘R

n—1

()"
K9P () /N2, (K9P () “5 K9P, (K ) /NP (K (o))
where E and E’ are finite extensions of K inside K2 satisfying E C E';
(5) (Ramification theoretic properties) Let x € H'(K); that is, let x : G3% — Q/Z be a
character of G2, and let L, be the finite extension of K in K2 such that Ker(x) =
Gal(K®"/L,). The Kato-Swan conductor KSw() of the character y : G2 — Q/Z,

defined in Section 6 as the smallest integer f > 0 satisfying U ]f(ﬂ C Np, kL3, is
furthermore the smallest integer f > 0 such that

R K) € 0T

whenever i, > f.

For details about local abelian K-theoretic class field theory, look at [7-9], [22], and
42,44, 45).

There are four main approaches to construct the local abelian n-dimensional K-theoretic
class field theory:

— The explicit approach of Fesenko [7-9] is based on extending the local abelian
Hasse reciprocity law construction of Neukirch-Iwasawa [39,40] and on extending
the local norm residue symbol construction of Hazewinkel [17] to the setting of
n-dimensional local fields;

— Kato’s approach [22,25] is cohomological and extends Tate’s construction of the
local abelian Hasse reciprocity law [48];

— Koya on the other hand [30-32], using Lichtenbaum’s complexes Z(i) [34], gener-
alizes class formation approach of local abelian class field theory to construct the
local abelian 2-dimensional class field theory, which is extended and streamlined
by Spiess [47] to the n-dimensional setting;

— The final approach, due to Parshin [42,44,45], which is the genesis of the whole
program, generalizes Kawada-Satake construction of local abelian class field the-
ory [29] to construct the local abelian n-dimensional class field theory in positive
characteristic.

In this work we shall review Fesenko’s explicit approach, where as stated above, the
idea is to generalize the classical Neukirch-Iwasawa and Hazewinkel methods to higher-
dimensional local fields, which will be recalled next with extra care following closely [10,11,
13]. The explicit approach also has the advantage of extending local abelian n-dimensional
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K-theoretic class field theory to the non-abelian setting; namely, constructing the local
non-abelian n-dimensional K-theoretic class field theory [20].

As first recollection, Fesenko’s extension of Neukirch-Iwasawa method to n-dimensional
local fields can be very briefly summarized as follows: Let L denote a finite Galois extension
of the n-dimensional local field K in a fixed K*P. As usual, let LP" = LKPY. For any
o € Gal(L/K), let ¢ be any element of Gal(LP"™/K) such that:

-0 [L=0;
~ G |gouwr= Y for some i € Z.

The n-dimensional Neukirch-Iwasawa map
Ak Gal(L/K) — KPP (K) /NPT (KPP (L))
of L/K is then defined by

Nyi: 0 e Ny fe (Hgeon5y) - (mod NP (KPP(L))),

where 3 denotes the fixed field of o and Il y, any prime element of K!P(¥). This

map does not depend on the choice of lifting ¢ of o to LP" and to the choice of prime
element Ilyiop ) of K{°P(X). Moreover, the n-dimensional Neukirch-Iwasawa map A7,/ :

Gal(L/K) — KI°P(K)/ N?})K(KZOP(L)) of L/ K induces a topological group homomorphism

N+ Gal(L/K)™ — KIPP(K) /N (K (L),

which is actually the inverse of the local abelian n-dimensional reciprocity law of L/K.

As second recollection, Fesenko’s generalization of Hazewinkel’s method to n-dimensional
local fields can be sketched as follows: First assume that the n-dimensional local field K
is of positive characteristic, which is the easier case, as the Galois descent for K:iOp-groups
holds. Let L denote a finite Galois extension of K in a fixed K®*P, and let KP" denote the
maximal purely unramified extension of K in K%P. Assume further that L/K is linearly
disjoint with KP" /K; that is, the extension L/K is totally ramified by (2.1). Recall that,
the n*" topological Milnor K-group KoP(KP") of KP" is defined by the direct limit

KIoP (™) = lim KIZP(KC),
Kl

where K’ runs over all finite extensions of K in KPY, with respect to the connecting
morphisms

58 KR (K') = K (K7)
defined for any two finite extensions K’ and K” of K inside KP" satisfying K’ C K”.
Introduce the group K'©°P(LP) similary and define a subgroup V(L/K) of K!°P(LP™) by

V(L/K) = <U(Oé) —a|o e Gal(LPV/KPY), a € VKHKZOP(LPM)»

Then V(L/K) C Ker(N R, Jgcour) @nd the norm map W\ K Ktop([pur) — Klop(fPur)
which is surjective, induces a morphism
NB o+ KiP(LP) V(L) K) = KiP(KP™)

sitting in the short exact sequence

top
NLpur/Kpur

1 — Gal(LP™/KP™) 5 KPP(LP™) /V(L/K)

where the arrow

= KIP(KP™) — 0, (7.1)

c: Gal(LP™ / KP™) — KP°P(LP™) /V(L/K)
is defined by
C(U) = U(HK;OP(Lpur)) - HK:LOP(Lpur) (mod ‘/v(_[//_[{))7
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for every o € Gal(LP™/KP"), which is independent of the choice of Iyetop  fpury- Now,

for ¢ € KEI'(VK:Lop(K)) there exists 1. € KI°P(LPY) such that ¢ = N?ﬁu /Kpm(ﬁa)- Let
@ : LP"™ — LP" denote a lifting of the Frobenius automorphism g : KP" — KPY of

KPY to LPY™. Then, ¢(n:) — 1. (mod V(L/K)) € Ker(NtLOﬁlr/Kpur ) and as the sequence
(7.1) is exact, there exists o, € Gal(LP"™/KP") so that

€(5) = 5= (Mon o) ~ Mign gy (m0d V(L/K)) = o) =1 (mod V(L/K)).
Then, there exists a unique and well-defined continuous homomorphism

Hiyx  KiP(K) NP (KiP(L)) — Gal(L/K)™

satisfying
Ak € (mod N?;)K(KZOP(L))) G2 | pnan,

for all € € Ker(VKtop( K))v called the n-dimensional Hazewinkel map of L/K, where L/K

is a finite Galois extension linearly disjoint with KP" /K.

Let L/K denote a finite Galois extension which is linearly disjoint with KP" /K, where
char(K) > 0. It turns out that, the n-dimensional Neukirch-Iwasawa map of L/K and
the n-dimensional Hazewinkel map of L/K are inverses of each other; that is,

Ky © NJic = Waar e and A 0 Ay i = Wigion ey nior icev 1)

In case char(K) = 0, unfortunately the construction sketched for the positive character-
istic case does not work for p-extensions L over K in general. However, there is a method
to overcome this difficulty. In fact, there is a special class of p-extensions L over K, called
strong Artin-Schreier trees [10,11,13], where the construction outlined for char. > 0 works
perfectly well. In fact, we have the short exact sequence (7.1) for strong Artin-Schreier
trees. That is, if L/K is a strong Artin-Schreier tree, then the following sequence

top
Lpur/gpur

1 — Gal(L/K) 5 Vi, K©P(LP"™) /V(L/K) % Vi, KPP (KPP — 0, (7.2)

is exact. Therefore, for a finite strong Artin-Schreier tree L/K linearly disjoint with
KP" /K that is the extension L/K is totally ramified by (2.1), there exists a unique and
well-defined continuous homomorphism

Ay Vi KiP(K) /N (Vie, KPP (L)) — Gal(L/K)™,

the n-dimensional Hazewinkel map of L/K, constructed as in the char. > 0 case, which
further satisfies

Aok 0 Nk = Waaw - (7.3)
Therefore, if L/K is a finite strong Artin-Schreier tree linearly disjoint with KP" /K, then
the continuous homomorphism

A+ Vi K () /N e (Vie, KiPP(L)) — Gal(L/K)™

is a surjection, and the continuous homomorphism

N+ Gal(L/K)™ — KPP (K) /NP (KPP (L))

is an injection. Now, the class of all strong Artin-Schreier trees over K is “dense” in the
class of all p-extensions of K in the sense that, for any totally ramified finite Galois p-
extension L/K, there exists a totally ramified finite p-extension Q1 /K such that LQ1/Qr,
is a strong Artin-Schreier tree and LP" N QY™ = KP". So let L/K be a totally ramified
finite Galois p-extension. Then, LP*NQY™ = KP"™ implies that LNQ 1, = K, so the Galois
extension L/K and the p-extension @ /K are linearly disjoint. Therefore, the restriction
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map ResﬁQL : Gal(LQL/Qk) = Gal(L/K) is an isomorphism of profinite groups, and
the following square

P o
Gal(LQ1/Qr)* o KP(QL)INGS, o, KRP(LQL))
ResiQL 2 NSE/K
Gal(L /K e K () /N (K2 (1)

is commutative. Therefore,
N Gal(L/K)™ — KPP (K) /N (K (L))
is an injective homomorphism of topological groups, since the Neukirch-Iwasawa map
Ny Gal(LQL/Qr)™ = KiP(QL) /NS 1, (KiP(LQ1))

of LQ1/Q is an injective arrow by equality (7.3) as LQ/Qy is a finite strong Artin-
Schreier tree linearly disjoint with Q" /Qr 1. The surjectivity of the n-dimensional
Neukirch-Iwasawa map

N+ Gal(L/K)™ — KPP (K) /NP (KPP (L))

of L/K follows via induction on the degree [L : K].
Now, for a finite Galois p-extension L/K which is linearly disjoint with KP" /K, where
char(K) = 0, the n-dimensional Hazewinkel map

Hix  KP(K) /N (KP(L)) = Gal(L/K)™,
of L/K is then defined as the inverse of the n-dimensional Neukirch-Iwasawa map

Ny : Gal(L/K )™ — KPP (K) /NP (KPP (L))
of L/K.
This completes the review of Fesenko’s constructive local abelian higher-dimensional
class field theory following [10,11,13].

1t suffices to prove that LQyp N Q" = LQr N KP"Qr = Qr. Let ¢ € Qr be a primitive element
over K; namely, let Qr = K(q). Let B = {1,q,---,¢° '} be a basis of the K-vector space Qr. As
LN QL = K, the extensions Qr/K and L/K are linearly disjoint. Therefore, B is a basis of the L-vector
space LQr. Likewise, B is a basis of the KP""-vector space K*""Qr = Q}"" since the extension Qr/K is
totally ramified. Now, let @ € LQr N K" Q. Then there exists unique Ao, - -, As—1 € L and there exists
unique Ko, - - ,ks—1 € KP" such that

a=X4+ Mg+ -+ A 1" =kro+Ri1g+ - Frs1q"
Therefore,
(Mo — ko) + (M —Rk1)g+ -+ (Asm1 — stl)qsfl =0.
Now, as Qr/K and KP""'/K are linearly disjoint, it follows that LP" N Q7" = KP"" = LP"" N Q. = K.
Thus, LP"" /K and Qr /K are linearly disjoint, which implies that the K-basis B of @, is also an LP**-basis
of (LQL)P" = KP*"LQL. Therefore,
Ao — Ko ="+ = As—1 — Ks—1 =0=>)\0=H0;"' ;)\s—l = Ks—1-

The extension L/K is totally ramified. Therefore, Xo, -+, s—1 € K anda = Ao+A1q+ - -+Xs—1¢°" 1 € Qr,
which completes the proof.
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