

REVIEW ARTICLE

Local abelian Kato-Parshin reciprocity law: A survey

Kâzım İlhan İkeda^{*1,2}^(D), Erol Serbest³^(D)

¹Department of Mathematics, Boğaziçi University, 34342 Bebek, İstanbul, Turkey ²Feza Gürsey Center for Physics and Mathematics, Boğaziçi University-Kandilli Campus, Rasathane Cad., Kandilli Mah., 34684, İstanbul, Turkey

³Department of Mathematics, Yeditepe University, İnönü Mah. Kayışdağı Cad. 326A, 26 Ağustos Yerleşimi, 34755 Ataşehir, İstanbul, Turkey

-In memory of Seydin Serbest-

Abstract

Let K denote an n-dimensional local field. The aim of this expository paper is to survey the basic arithmetic theory of the n-dimensional local field K together with its Milnor Ktheory and Parshin topological K-theory; to review Kato's ramification theory for finite abelian extensions of the n-dimensional local field K, and to state the local abelian higherdimensional K-theoretic generalization of local abelian class field theory of Hasse, which is developed by Kato and Parshin. The paper is geared toward non-abelian generalization of this theory.

Mathematics Subject Classification (2020). 11S70, 19F05

Keywords. higher-dimensional local fields, Milnor K-theory, local class field theory

1. Introduction

The aim of this paper is to survey the local abelian higher-dimensional K-theoretic generalization of the local abelian class field theory of Hasse [16] developed by Parshin (in positive characteristic) [42, 44, 45] and by Kato (in general) [22, 23, 25] in the late 1970s and early 80's; namely, the local abelian Kato-Parshin class field theory, which has later been simplified, made explicit, and cohomology free by Fesenko [7–9].

For a field K, let K^{ab} denote the maximal abelian extension of K in a fixed separable closure K^{sep} of K. Then the maximal abelian Hausdorff quotient G_K^{ab} of the absolute Galois group $G_K = \text{Gal}(K^{sep}/K)$ is naturally isomorphic to $\text{Gal}(K^{ab}/K)$. In particular, if K is a non-archimedean local field; i.e., a complete discrete valuation field with finite residueclass field $\kappa_K = O_K/\mathfrak{p}_K$ of $q = p^f$ elements, where O_K denotes the ring of integers of K, \mathfrak{p}_K its unique maximal ideal, and p a prime number; that is, if K is either a finite extension of \mathbb{Q}_p in case char(K) = 0, or a finite extension of $\mathbb{F}_p((X))$ in case char(K) = p > 0, then

^{*}Corresponding Author.

Email addresses: kazimilhan.ikeda@boun.edu.tr (K. I. Ikeda), erol.serbest@yeditepe.edu.tr (E. Serbest) Received: 01.12.2020; Accepted: 27.03.2021

 $\operatorname{Gal}(K^{\operatorname{ab}}/K)$ and the profinite completion $\widehat{K^{\times}}$ of the multiplicative group K^{\times} of the nonarchimedean local field K are both algebraically and topologically isomorphic via local abelian Hasse reciprocity law

$$\operatorname{\mathsf{Rec}}_K:\widehat{K^{\times}}\xrightarrow{\sim}\operatorname{Gal}(K^{\operatorname{ab}}/K)$$

of K. This isomorphism has many salient features. For instance, via this arrow, K^{\times} encodes all of the arithmetic information on the abelian extensions of the non-archimedean local field K, which is the subject matter of local abelian class field theory of K. A detailed exposition of local fields and local abelian class field theory in modern terms can be found in [15, 21].

Now, let F be a global field; that is, F is either a finite extension of \mathbb{Q} in case char(F) = 0, or a finite extension of $\mathbb{F}_p(X)$ in case char(F) = p > 0. The completion F_{ν} of F with respect to a finite place ν of F is a non-archimedean local field. Following the "idèlic philosophy" of Chevalley, global class field theory of F can be constructed by glueing the local abelian class field theories of F_{ν} for all ν [2]. In recent years however, the arithmetic study of global fields extended its scope and instead of considering only global fields; that is, integral schemes X of absolute dimension 1, higher-dimensional integral schemes X are taken into consideration. In this setting, let F denote the field of rational functions on an integral scheme X of absolute dimension n. Then to any flag of irreducible non-singular subschemes $X_0 \subset X_1 \subset \cdots \subset X_n = X$ of X with $\dim(X_i) = i$ for $i = 0, 1, \cdots, n$, Parshin introduced a completion $F_{(X_0,\dots,X_n)}$ of F, which is an example of an n-dimensional local field. Recall that, an *n*-dimensional local field has an inductive definition: for $n \ge 1$, an *n*-dimensional local field is a complete discrete valuation field whose residue field is an (n-1)-dimensional local field, where in this terminology 0-dimensional local fields are finite fields and 1-dimensional local fields are the "classical" non-archimedean local fields. The collection of such n-dimensional local fields $F_{(X_0, \dots, X_n)}$ over all possible flags (X_0, \dots, X_n) of the scheme X plays a central role in the global class field theory of the scheme X, a grand theory again created by Parshin^{\dagger}, Bloch^{\ddagger}, Kato and S. Saito[§], which is constructed, following the "higher-dimensional idèlic philosophy" of Beilinson and Parshin [18], by glueing the local abelian n-dimensional class field theories of $F_{(X_0,\dots,X_n)}$ for all $(X_0,\cdots,X_n).$

The aim of this work is to survey the local abelian n-dimensional class field theory; namely, the study of arithmetic information on the abelian extensions of an n-dimensional local field K encoded in the local abelian n-dimensional reciprocity law

$$\operatorname{\mathsf{Rec}}_K: \widehat{\mathsf{K}}_n^{\operatorname{top}}(K) \xrightarrow{\sim} \operatorname{Gal}(K^{\operatorname{ab}}/K)$$

of the *n*-dimensional local field K, where $\widehat{\mathsf{K}}_n^{\mathrm{top}}(K)$ is the profinite completion of the *n*-th Parshin topological K-group $\mathsf{K}_n^{\mathrm{top}}(K)$ of K, which is an algebraic, analytic and topological object depending only and solely to the ground field K. Moreover, in the particular case n = 1, this arrow reduces to the ordinary local abelian Hasse reciprocity law of K. In the local abelian *n*-dimensional theory:

– Non-archimedean local fields K are replaced by n-dimensional local fields K

non-archimedean local fields $K \rightsquigarrow n$ -dimensional local fields K,

[†]Parshin developed the global class field theory of algebraic surfaces using his 2-dimensional adèles [43,44]. [‡]Bloch is one of the first researchers who used algebraic K-theory to construct the class field theory of arithmetic surfaces [4].

 $^{^{\$}}$ Kato and S. Saito studied the global class field theory of arithmetic surfaces and then extended their results to arbitrary dimensional arithmetic schemes [26,27].

– and multiplicative groups K^{\times} of non-archimedean local fields K are replaced by the *n*-th Parshin topological K-groups $\mathsf{K}_n^{\mathrm{top}}(K)$ of *n*-dimensional local fields K

the group
$$\widehat{K^{\times}} \rightsquigarrow$$
 the group $\widehat{\mathsf{K}}_n^{\mathrm{top}}(K)$,

hence the name "K-theoretic generalization" of local abelian class field theory, or the local abelian Kato-Parshin class field theory.

The paper is organised as follows. In Sections 2 and 3, we shall respectively review the basic arithmetical theory and the topological theory of *n*-dimensional local fields. Next, in Sections 4 and 5, Milnor K-theory and Parshin topological K-theory of n-dimensional local fields are discussed. In Section 6, after reviewing ramification theory for non-archimedean local fields, we sketch Kato's ramification theory, which is defined only for abelian extensions of *n*-dimensional local fields introduced in [24, 28], and note that Kato's ramification theory[¶] for finite abelian extensions of n-dimensional local fields is compatible with the local abelian Kato-Parshin reciprocity law. Finally, in Section 7, we state the local abelian K-theoretic class field theory of Kato and Parshin. In this section, we stick to the methods introduced by Fesenko, as his methods have advantages for the non-abelian generalization of this theory [20].

2. *n*-dimensional local fields

The main references for this section are [33] and the excellent reviews [36, 37, 41, 50]. Let K be an *n*-dimensional local field. That is, attached to K, there exists a sequence of fields

$$K_0, K_1, \cdots, K_{n-1}, K_n = K,$$

called the Parshin chain of K, where

 $-K_{i+1}$ is a complete discrete valuation field endowed with a discrete valuation

$$\nu_{K_{i+1}}: K_{i+1} \to \mathbb{Z} \cup \{\infty\}$$

with the ring of integers $O_{\nu_{K_{i+1}}} = O_{K_{i+1}}$ having the unique maximal ideal $\mathfrak{p}_{\nu_{K_{i+1}}} = \mathfrak{p}_{K_{i+1}}$ for every $i = 0, \dots, n-1$;

- The residue-class field $\kappa_{\nu_{K_{i+1}}} = \kappa_{K_{i+1}}$ of K_{i+1} is K_i for every $i = 0, \dots, n-1$; $K_0 = \mathbb{F}_q$ the finite field with $q = p^s$ elements, where p denotes a prime number (we could have assumed K_0 is a perfect field instead).

The residue-class field K_{n-1} of K_n is called the *first residue-class field* of the *n*-dimensional local field K, and the residue-class field $K_0 = \mathbb{F}_q$ of K_1 is called the last residue-class field of the n-dimensional local field K. Moreover, K is said to be a mixed-characteristic *n*-dimensional local field if char(K) = 0 and char(K_{n-1}) = p > 0, and called an equalcharacteristic n-dimensional local field if $char(K) = char(K_{n-1})$.

Here are some examples of n-dimensional local fields:

Example 2.1. Observe that,

$$K = L((X_1)) \cdots ((X_{n-1})),$$

where L is a non-archimedean local field, is a natural example of an *n*-dimensional local field.

 $[\]P$ Note that, Kato's ramification theory introduced in [24] is for abelian extensions of n-dimensional local fields, while Abbes and T. Saito's ramification theory [1] is for general Galois extensions of *n*-dimensional local fields [49]. On the other hand, Abbes-Saito ramification theory for abelian extensions of n-dimensional local fields coincides with Kato's ramification filtration [28].

Example 2.2. Let k be a complete discrete valuation field with respect to a discrete valuation $\nu_k : k \to \mathbb{Z} \cup \{\infty\}$. The field

$$K = k\{\{X\}\} = \left\{\sum_{i=-\infty}^{+\infty} c_i X^i \mid c_i \in k, \inf\{\nu_k(c_i) \mid i \in \mathbb{Z}\} > -\infty, \lim_{i \to -\infty} \nu_k(c_i) = +\infty\right\}$$

endowed with a discrete valuation

$$\nu_K: K \to \mathbb{Z} \cup \{\infty\}$$

defined by

$$\nu_K\left(\sum_{i=-\infty}^{+\infty} c_i X^i\right) = \inf\{\nu_k(c_i) \mid i \in \mathbb{Z}\},\$$

for every $\sum_{i=-\infty}^{+\infty} c_i X^i \in K$, is a complete discrete valuation field with residue class field $\kappa_K = \kappa_k((X))$.

Therefore, for a non-archimedean local field L, and for $0 \le j \le n-1$,

$$K = L\{\{X_1\}\} \cdots \{\{X_j\}\}((X_{j+2})) \cdots ((X_n))$$

is an *n*-dimensional local field, called a *standard n-dimensional local field*, following [36, 50]. The extreme cases j = 0 and j = n - 1 mean $K = L((X_2)) \cdots ((X_n))$ and $K = L\{\{X_1\}\} \cdots \{\{X_{n-1}\}\}$, respectively.

Remark 2.3. Let k be a complete discrete valuation field with respect to a discrete valuation $\nu_k : k \to \mathbb{Z} \cup \{\infty\}$. Then, $k((X_1))\{\{X_2\}\}$ is isomorphic to $k((X_2))((X_1))$. So, it suffices to consider standard higher-dimensional local fields. For details, look at the classification theorem for n-dimensional local fields that we recall below.

Assumption 2.4. From now on, all through the paper, K denotes an n-dimensional local field with the corresponding Parshin chain

$$\mathbb{F}_q = K_0, K_1, \cdots, K_{n-1}, K_n = K.$$

Notation 2.5. To simplify the discussion, for $a \in O_{K_n}$ and for an integer *i* satisfying $0 \le i \le n-1$, let $\overline{a}^{(n,\dots,n-i)}$ denote the element in K_{n-i-1} defined by "successive reductions of *a* modulo maximal ideals $\mathfrak{p}_{K_n}, \dots, \mathfrak{p}_{K_{n-i}}$ respectively" as

$$a \pmod{\mathfrak{p}_{K_n}} \pmod{\mathfrak{p}_{K_{n-1}}} \cdots \pmod{\mathfrak{p}_{K_{n-i}}}$$

provided that $\overline{a}^{(n)} \in O_{K_{n-1}}, \ \overline{a}^{(n,n-1)} \in O_{K_{n-2}}, \ \cdots, \ \overline{a}^{(n,\cdots,n-i+1)} \in O_{K_{n-i}}$. Note that, $\overline{a}^{(n,\cdots,n-i)}$ is a non-zero element of K_{n-i-1} if $\overline{a}^{(n)} \in O_{K_{n-1}}^{\times} = U_{K_{n-1}}, \ \overline{a}^{(n,n-1)} \in O_{K_{n-2}}^{\times} = U_{K_{n-2}}, \ \cdots, \ \overline{a}^{(n,\cdots,n-i+1)} \in O_{K_{n-i}}^{\times} = U_{K_{n-i}}.$

An *n*-tuple $\Pi_K = (t_{1,K}, \cdots, t_{n,K})$ in K^n is called a system of local parameters of K, if (1) $t_{n,K}$ is a prime element of K_n with respect to ν_{K_n} ;

- (2) $t_{n-1,K} \in U_{K_n}$ and its residue class $\overline{t}_{n-1,K}^{(n)} := t_{n-1,K} \pmod{\mathfrak{p}_{K_n}}$ modulo \mathfrak{p}_{K_n} is a prime element of K_{n-1} with respect to $\nu_{K_{n-1}}$;
- :
- (n) $t_{1,K} \in U_{K_n}$ such that $\overline{t}_{1,K}^{(n)} \in U_{K_{n-1}}, \cdots, \overline{t}_{1,K}^{(n,\cdots,3)} \in U_{K_2}$ and $\overline{t}_{1,K}^{(n,\cdots,2)}$ is a prime element of K_1 with respect to ν_{K_1} .

So, following [33] and [42,44,45], *n*-dimensional local fields can be classified as follows. For the *n*-dimensional local field K:

- If char(K) = p, then it is possible to choose $t_1, \dots, t_n \in K$, such that

$$K \xrightarrow{\sim} \mathbb{F}_q((t_1)) \cdots ((t_n)).$$

Moreover, $(t_1, \dots, t_n) \in K^n$ becomes a system of local parameters of K;

1228

- If $char(K_1) = 0$, then it is possible to choose $t_2, \dots, t_n \in K$, such that

$$K \xrightarrow{\sim} K_1((t_2)) \cdots ((t_n)).$$

Moreover, choosing $\pi_{1,K} \in U_{K_n}$ such that $\overline{\pi}_{1,K}^{(n)} \in U_{K_{n-1}}, \cdots, \overline{\pi}_{1,K}^{(n,\cdots,3)} \in U_{K_2}$ and $\overline{\pi}_{1,K}^{(n,\cdots,2)}$ is a prime element π_{K_1} of K_1 with respect to ν_{K_1} , the *n*-tuple $(\pi_{K_1}, t_2, \cdots, t_n) \in K^n$ becomes a system of local parameters of K;

- If none of the above holds, there exists a unique $r \in \{1, \dots, n-1\}$ such that $\operatorname{char}(K_{r+1}) \neq \operatorname{char}(K_r)$. Then, there exists a unique non-archimedean local field L of char. 0, and there exist n-1 elements $t_1, \dots, t_r, t_{r+2}, \dots, t_n \in K$, such that K is a finite extension of the standard field

$$L\{\{t_1\}\}\cdots\{\{t_r\}\}((t_{r+2}))\cdots((t_n)).$$

Moreover, if $\operatorname{char}(K_0) = p$, then L may be chosen to be the unique unramified extension of \mathbb{Q}_p with residue-class field K_0 .

Now, fix a system of local parameters $\Pi_K = (t_{1,K}, \cdots, t_{n,K}) \in K^n$ of K. This system of local parameters Π_K of K naturally determines a mapping

$$\rho_{\Pi_K}: K \to K_1 \times \cdots \times K_n$$

defined by

$$\rho_{\Pi_K}: a \mapsto (a_1, \cdots, a_n),$$

where $a_n = a \in K_n$ and $a_i = \overline{a}_{i+1}^{(i+1)} \left(\overline{t}_{i+1,K}^{(n,\dots,i+1)}\right)^{-\nu_{K_{i+1}}(a_{i+1})} \in K_i$ for $1 \le i \le n-1$. Then, there exists a rank *n* discrete valuation

$$\overline{v}_K = (\nu_{K_1}, \cdots, \nu_{K_n}) \circ \rho_{\Pi_K} : K \xrightarrow{\rho_{\Pi_K}} K_1 \times \cdots \times K_n \xrightarrow{(\nu_{K_1}, \cdots, \nu_{K_n})} \mathbb{Z}^n \cup \{\infty\}$$

on K defined by

$$\overline{v}_K(a) := (\nu_{K_1}, \cdots, \nu_{K_n}) \circ \rho_{\Pi_K}(a) = (\nu_{K_1}(a_1), \cdots, \nu_{K_n}(a_n))$$

for $a \in K^{\times}$. Here, \mathbb{Z}^n is assumed to be *lexicographically ordered in the sense of Madunts* and Zhukov as follows: For $\mathbf{i} = (i_1, \cdots, i_n), \mathbf{j} = (j_1, \cdots, j_n) \in \mathbb{Z}^n$,

$$\boldsymbol{i} \prec \boldsymbol{j} \iff i_{\ell} < j_{\ell}, i_{\ell+1} = j_{\ell+1}, \cdots, i_n = j_n \text{ for some } 0 \le \ell \le n$$

Recall that, this rank n discrete valuation \overline{v}_K on K depends on the system of local parameters Π_K of K. However, if $\Pi'_K \in K^n$ is another system of local parameters of K, then the corresponding rank n discrete valuation \overline{v}'_K on K is *equivalent* to \overline{v}_K in the following sense:

$$\overline{v}'_K(a) = \overline{v}_K(a)T, \ \forall a \in K,$$

where $T = \left(v'_{K_j}(\operatorname{Proj}_j \circ \rho_{\Pi_K}(t_{i,K}))\right)_{1 \le i,j \le n} \in \mathcal{M}(n,\mathbb{Z})$, which is a lower triangular square integral matrix of size n with the unit element 1 on the main diagonal. Here, $\operatorname{Proj}_j : K_1 \times \cdots \times K_n \to K_j$ denotes the projection map on the j^{th} coordinate. As usual, $\mathcal{M}(n,\mathbb{Z})$ denotes the set of all integral square matrices of size n. The rank n discrete valuation \overline{v}_K on K is called *normalized*, if $\overline{v}_K(K^{\times}) = \mathbb{Z}^n$.

For a rank *n* discrete valuation $\overline{v}_K : K \to \mathbb{Z}^n \cup \{\infty\}$ defined on *K*, introduce the subring $O_{\overline{v}_K}$ of *K* by

$$O_{\overline{v}_K} = \{ a \in K \mid \overline{v}_K(a) \succeq \mathbf{0} \},\$$

where $\mathbf{0} = (0, \dots, 0) \in \mathbb{Z}^n$, which is called the ring of integers of K with respect to the rank n discrete valuation \overline{v}_K . Note that $O_{\overline{v}_K}$ has the unique maximal ideal $\mathfrak{p}_{\overline{v}_K}$ defined by

$$\mathfrak{p}_{\overline{v}_K} = \{ a \in O_{\overline{v}_K} \mid \overline{v}_K(a) \succ \mathbf{0} \}.$$

The quotient field $O_{\overline{v}_K}/\mathfrak{p}_{\overline{v}_K} =: \kappa_{\overline{v}_K}$, called the residue class field of K with respect to the rank n discrete valuation \overline{v}_K , is isomorphic to $K_0 = \mathbb{F}_q$.

The arithmetic structure of $O_{\overline{v}_K}$ has the following description. Introduce for each $\ell = 1, 2, \cdots, n$, the rank $n - \ell + 1$ discrete valuation

$$\overline{v}_{K,\geq\ell}: K \to \mathbb{Z}^{n-\ell+1} \cup \{\infty\}$$

on K induced from the rank n valuation \overline{v}_K of K by the rule

$$\overline{v}_{K,\geq\ell}(a) = \Pr_{\geq\ell}(\overline{v}_K(a))$$

for each $a \in K$, where

$$\Pr_{>\ell}: \mathbb{Z}^n \to \mathbb{Z}^{n-\ell+1}$$

is the projection map defined by

$$\Pr_{\geq \ell}: (m_1, \cdots, m_n) \mapsto (m_\ell, \cdots, m_n)$$

for every $(m_1, \dots, m_n) \in \mathbb{Z}^n$. In particular, the rank 1 valuation $\overline{v}_{K,\geq n}$ on K is nothing but the first valuation ν_{K_n} of K_n . Now, define a family of ideals of K, for each $\ell = 1, 2, \cdots, n$, by

$$P_{\overline{v}_K}^{(i_\ell,\cdots,i_n)} := \{ a \in K \mid \overline{v}_{K,\geq \ell}(a) \succeq (i_\ell,\cdots,i_n) \}$$

for every $(i_{\ell}, \cdots, i_n) \in \mathbb{Z}^{n-\ell+1}$. Observe that

$$\underbrace{\underbrace{(0,0,\cdots,0)}_{n\text{-tuple}}}_{P_{\overline{v}_K}} = O_{\overline{v}_K}, \qquad \underbrace{\underbrace{(1,0,\cdots,0)}_{n\text{-tuple}}}_{P_{\overline{v}_K}} = \mathfrak{p}_{\overline{v}_K}$$

Note that, the collection of all non-zero ideals of $O_{\overline{v}_K}$ consists of all ideals $P_{\overline{v}_K}^{(i_\ell, \cdots, i_n)}$

satisfying $(i_{\ell}, \cdots, i_n) \succeq \underbrace{(0, \cdots, 0)}^{(n-\ell+1)\text{-tuple}}$, for each $1 \le \ell \le n$. Thus, we see that $O_{\overline{v}_K}$ is not a Noetherian ring for n > 1.

Now, the unit group $U_{\overline{v}_K}$ and the group of principal units $V_{\overline{v}_K}$ of K relative to the rank n discrete valuation \overline{v}_K are defined by

$$U_{\overline{v}_K} = O_{\overline{v}_K}^{\times}, \qquad V_{\overline{v}_K} = 1 + \mathfrak{p}_{\overline{v}_K}.$$

It is also possible to define the higher-unit groups $U_{\overline{v}_K}^{(i_\ell,\cdots,i_n)}$ of K relative to the rank n discrete valuation \overline{v}_K by

$$U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})} = 1 + P_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})} = \{a \in K \mid \overline{v}_{K,\geq\ell}(a-1) \succeq (i_{\ell},\cdots,i_{n})\},$$
$$(n-\ell+1)\text{-tuple}$$

where $(i_{\ell}, \cdots, i_n) \in \mathbb{Z}^{n-\ell+1}$ satisfying $(i_{\ell}, \cdots, i_n) \succeq (0, \cdots, 0)$, for each ℓ satisfying $1 \leq \ell \leq n.$

In particular, in case $\ell = n$, as already mentioned the rank 1 discrete valuation $\overline{v}_{K,>n}$: $K \to \mathbb{Z} \cup \{\infty\}$ is $\nu_{K_n} : K_n \to \mathbb{Z} \cup \{\infty\}$, and in this setting:

$$U_{\overline{v}_{K}}^{(i_{n})} = \{a \in K \mid \overline{v}_{K,\geq n}(a-1) \succeq i_{n}\} = \{a \in K \mid \nu_{K_{n}}(a-1) \ge i_{n}\},\$$

where $i_n \in \mathbb{Z}$ satisfies $i_n \geq 0$. Thus, we shall use the standard notation for $U_{\overline{v}_K}^{(i_n)}$, and set

$$U_{\overline{v}_K}^{(i_n)} = U_{K_n}^{i_n},$$

for each $i_n \in \mathbb{Z}$ such that $i_n \geq 0$. Moreover, in the specific case $i_n = 1$, we further denote the group of principal units $U_{\overline{v}_K}^{(i_n=1)}$ of $K = K_n$ relative to the rank 1 discrete valuation $\overline{v}_{K,>n} = \nu_{K_n}$ of $K = K_n$ by

$$U_{\overline{v}_K}^{(i_n=1)} = V_{K_n}.$$

Remark 2.6. The objects $O_{\overline{v}_K}$, $\mathfrak{p}_{\overline{v}_K}$, $U_{\overline{v}_K}$, $V_{\overline{v}_K}$, and $P_{\overline{v}_K}^{(i_\ell,\dots,i_n)}$, $U_{\overline{v}_K}^{(i_\ell,\dots,i_n)}$ introduced so far do not depend on the choice of a system of local parameters Π_K of the *n*-dimensional local field K.

If $\Pi_K = (t_{1,K}, \dots, t_{n,K})$ is a system of local parameters of K, then as in the classical 1-dimensional case, we can describe the multiplicative group K^{\times} of the *n*-dimensional local field K by

$$K^{\times} \simeq \mathbb{Z}t_{n,K} \oplus \mathbb{Z}t_{n-1,K} \oplus \cdots \oplus \mathbb{Z}t_{1,K} \oplus U_{\overline{v}_K}$$

and

$$U_{\overline{v}_K} \simeq R_{\overline{v}_K} \oplus V_{\overline{v}_K},$$

where $R_{\overline{v}_K}$ is the subgroup in K^{\times} consisting of Teichmüller representatives of all non-zero elements of the last-residue field $K_0 = \mathbb{F}_q$ of K. Moreover, any $a \in K$ has a unique expression as a formal power series

$$a = \sum_{\boldsymbol{b}=(b_1,\cdots,b_n)} [\theta_{\boldsymbol{b}}] t_{1,K}^{b_1} \cdots t_{n,K}^{b_n},$$

where all coefficients $[\theta_{\boldsymbol{b}}]$ are from the Teichmüller representatives of all non-zero elements of the last residue field $K_0 = \mathbb{F}_q$ of K and the summation over \boldsymbol{b} runs over the admissible set $\{\boldsymbol{b} \in \mathbb{Z}^n \mid \theta_{\boldsymbol{b}} \neq 0\}$, which is well-ordered in \mathbb{Z}^n .

For any algebraic extension L of K, there exists a unique extension \overline{w}_L of the rank n discrete valuation \overline{v}_K of K to L. Now, let in particular, L/K be a finite extension. Then, L has an n-dimensional local field structure with the corresponding Parshin chain

Let $\Pi_K = (t_{1,K}, \dots, t_{n,K}) \in K^n$ and $\Pi_L = (t_{1,L}, \dots, t_{n,L}) \in L^n$ be systems of local parameters of K and of L respectively. As usual, let \overline{v}_K and \overline{v}_L be the corresponding rank n discrete valuations on K and on L respectively. Then, for every $a \in K \subseteq L$, the *n*-tuples

$$\overline{v}_K(a) := (\nu_{K_1}, \cdots, \nu_{K_n}) \circ \rho_{\Pi_K}(a)$$

and

$$\overline{v}_L(a) := (\nu_{L_1}, \cdots, \nu_{L_n}) \circ \rho_{\Pi_L}(a)$$

are both in \mathbb{Z}^n , and they are related by

$$\overline{v}_L(a) = \overline{v}_K(a)E(L/K;\Pi_K,\Pi_L),$$

where $E(L/K; \Pi_K, \Pi_L) \in \mathcal{M}(n, \mathbb{Z})$ is the lower-triangular integral matrix given by

$$E(L/K;\Pi_K,\Pi_L) = \left(v_{L\,j}(t_{i,K})\right)_{i\,j}.$$

The diagonal entries of $E(L/K; \Pi_K, \Pi_L)$ do not depend on the choice of the systems of local parameters Π_K and Π_L . Therefore, the diagonal elements of $E(L/K; \Pi_K, \Pi_L)$ will be denoted simply by $e_1(L/K), \dots, e_n(L/K)$. As a notation, let $[L_0: K_0] = f(L/K)$. It is then easy to prove that

$$[L_i:K_i] = f(L/K)e_1(L/K)\cdots e_i(L/K),$$

for $i = 1 \cdots, n$, where

$$e_{\ell}(L/K) = e(L_{\ell}/K_{\ell}),$$

for $\ell = 1, \dots, i \leq n$. Moreover, the finite extension L/K is called:

- totally ramified, if f(L/K) = 1 (or equivalently $L_0 = K_0$);
- semi ramified if $e_n(L/K) = 1$ and L_{n-1}/K_{n-1} is separable;
- purely unramified, if the equality [L:K] = f(L/K) (or equivalently $\prod_{i=1}^{n} e_i(L/K) = 1$) holds.

If K satisfies $char(K_{n-1}) = p > 0$, then $[L_{n-1} : K_{n-1}]$ has an expression of the form

$$[L_{n-1}:K_{n-1}] = f_0.p^s,$$

where f_0 is the separable degree of L_{n-1}/K_{n-1} denoted by $f_0(L/K)$, and p^s is the inseparable degree of L_{n-1}/K_{n-1} denoted by s(L/K).

Now, assume that L/K is an infinite algebraic extension in a fixed algebraic closure \overline{K} . The infinite algebraic extension L/K is called:

- totally ramified, if every finite subextension F/K of L/K inside \overline{K} is totally ramified. Thus, if M/K is any subextension of a totally ramified extension L/K, then M/K is totally ramified as well. Moreover, L/K is called maximal totally ramified, if there is no totally ramified extension E/K satisfying $L \subsetneq E \subset \overline{K}$. A maximal totally ramified extension of K in \overline{K} exists but it is not unique. Note that, the compositum of a collection of totally ramified extensions of K inside \overline{K} is not necessarily totally ramified over K.
- purely unramified, if every finite subextension F/K of L/K inside \overline{K} is purely unramified. Thus, if M/K is any subextension of a purely unramified extension L/K, then M/K is purely unramified as well. The compositum of a collection of purely unramified extensions of K in \overline{K} is again purely unramified over K. Therefore, the compositum K^{pur} of all purely unramified extensions of K in \overline{K} is the maximal purely unramified extension of K in \overline{K} . Moreover,

$$K^{\mathrm{pur}} = \bigcup_{(m,p)=1} K(\zeta_m),$$

where ζ_m is a primitive m^{th} root of unity with m relatively prime to p. Thus, it follows that K^{pur} is Galois over K. A topological generator φ_K of $\text{Gal}(K^{\text{pur}}/K)$ which is mapped on the topological generator Frob_q of $\text{Gal}(\mathbb{F}_q^{\text{sep}}/\mathbb{F}_q)$ is called the *Frobenius automorphism* of K. So, for each $0 < d \in \mathbb{Z}$, there exists a unique purely unramified extension $K^{\text{pur},d}$ of degree d over K, which is the splitting field of the polynomial $X^{p^d} - X \in K[X]$ over K. Moreover, note that, if L/K is purely unramified, and $\Pi_K \in K^n$ is a system of local parameters of K, then $\Pi_K \in L^n$ remains a system of local parameters of L as well.

The proof of the following proposition is clear.

Proposition 2.7. If L/K is any algebraic extension, then its unique maximal purely unramified subextension L_o/K is nothing but $L_o = L \cap K^{\text{pur}}$.

Moreover,

Proposition 2.8. Let L/K be a finite extension. Then the unique maximal purely unramified subextension L_o/K of L/K is the splitting field of the polynomial $X^{p^{f(L/K)}} - X \in K[X]$ over K. Moreover, L/L_o is a totally ramified extension, and

$$[L: L_o] = e_1(L/K) \cdots e_n(L/K), \quad [L_o:K] = f(L/K).$$

A special case of this proposition reads as follows: Let L/K be an algebraic extension. Then,

$$L/K$$
: totally ramified $\Leftrightarrow L_o = K.$ (2.1)

3. Topologies on an *n*-dimensional local field

There are several topologies related to the n-dimensional local field K with the corresponding Parshin chain

$$K_0, K_1, \cdots, K_{n-1}, K_n = K.$$

- The complete discrete valuation $\nu_{K_n} : K_n \to \mathbb{Z} \cup \{\infty\}$ on K_n defines a natural topology on $K_n = K$, called the discrete valuation topology on K, denoted by \mathscr{V}_{K_n} . With respect to \mathscr{V}_{K_n} :
 - K has a natural complete and Hausdorff topological field structure;
 - As a topological field, K is not locally compact in case $n \ge 2$ as $\kappa_{K_n} = K_{n-1}$ is not a finite field;
 - Moreover, again in case $n \geq 2$, the elements of K, which can be considered as formal series $\sum_i a_i t_{n,K}^i$ in the first local parameter $t_{n,K}$ of K via the structure theorem of higher-dimensional local fields, do not converge, as $|a_i|_{\nu_{K_n}} = 1$ whenever $a_i \neq 0$.

Let $\Pi_K = (t_{1,K}, \dots, t_{n,K}) \in K^n$ be a system of local parameters of K and $\overline{v}_K : K \to \mathbb{Z}^n \cup \{\infty\}$ be the corresponding rank n discrete valuation on K introduced in Section 2.

- There is a natural topology \mathscr{T}_K on K, called the higher topology on K, which is defined recursively by the higher topologies on the residue fields K_{n-1}, \dots, K_1 and K_0 , where the higher topology \mathscr{T}_{K_1} on K_1 coincides with the discrete valuation topology \mathscr{V}_{K_1} on K_1 , look at [50] for details. With respect to the topology \mathscr{T}_K :
 - K does not have a topological field structure. In fact, K is a complete and Hausdorff sequential ring; that is, the additive group K^+ is a topological group, multiplication $K \times K \xrightarrow{\times} K$ on K is sequentially continuous. In general, the inversion $K^{\times} \xrightarrow{\iota} K^{\times}$ on K^{\times} is not sequentially continuous with respect to the induced topology of \mathscr{T}_K on K^{\times} . Look at [5,6] for an overview of sequential algebraic structures;
 - The map $K \to K$ defined by multiplication with a fixed non-zero $a_o \in K$ as $a \mapsto a_o.a$ for every $a \in K$ is a homeomorphism;
 - The residue homomorphism $O_{\overline{v}_K} \to K_{n-1}$ is continuous and open, where $O_{\overline{v}_K}$ is equipped with the subspace topology induced from the higher topology \mathscr{T}_K of K and K_{n-1} is endowed with its higher topology $\mathscr{T}_{K_{n-1}}$;
 - The unique formal power series expression of $a \in K$ given by

$$a = \sum_{\boldsymbol{b}=(b_1,\cdots,b_n)} [\theta_{\boldsymbol{b}}] t_{1,K}^{b_1} \cdots t_{n,K}^{b_n},$$

where all coefficients $[\theta_{\mathbf{b}}]$ are from the Teichmüller representatives of all nonzero elements of the last residue field $K_0 = \mathbb{F}_q$ of K and the summation is over the admissible well-ordered set $\{\mathbf{b} \in \mathbb{Z}^n \mid \theta_{\mathbf{b}} \neq 0\}$, is absolutely convergent.

– There is also a natural topology $\mathscr{T}_{K^{\times}}$ on the multiplicative group K^{\times} , called the higher topology on K^{\times} , which is defined as the initial (that is, weakest) topology on K^{\times} that makes the map

$$K^{\times} \to K \times K$$

given by

$$a \mapsto (a, a^{-1}),$$

for every $a \in K^{\times}$ sequentially continuous. Equivalently, the topology $\mathscr{T}_{K^{\times}}$ on K^{\times} is defined as follows:

If char $(K_{n-1}) = p > 0$, then the topology $\mathscr{T}_{K^{\times}}$ on K^{\times} is defined to be the unique topology on K^{\times} that turns the isomorphism

$$K^{\times} \xrightarrow{\sim} \langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle \times R_{\overline{v}_K} \times V_{\overline{v}_K}$$

into a topological group isomorphism. Here, as introduced in the previous section, $R_{\overline{v}_K}$ is the subgroup of K^{\times} consisting of Teichmüller representatives of all non-zero elements of the last-residue field $K_0 = \mathbb{F}_q$ of K, $V_{\overline{v}_K}$ is the group of principal units of K relative to \overline{v}_K , and the topology on $\langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle \times R_{\overline{v}_K} \times V_{\overline{v}_K}$ is the product topology defined by the discrete topology on $\langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle \times R_{\overline{v}_K}$ and the topology on $V_{\overline{v}_K}$ induced from the topology \mathscr{T}_K on K.

If $\operatorname{char}(K) = \cdots = \operatorname{char}(K_{m+1}) = 0$, $\operatorname{char}(K_m) = p > 0$ for some $m \leq n-2$, then the natural topology $\mathscr{T}_{K^{\times}}$ on K^{\times} is defined to be the unique topology on K^{\times} that turns the isomorphism

$$K^{\times} \xrightarrow{\sim} \langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle \times R_{\overline{v}_K} \times V_{\overline{v}_K}$$

into a topological group isomorphism, where the topology on $\langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle \times R_{\overline{v}_K} \times V_{\overline{v}_K}$ is the product topology defined by the discrete topology on $\langle t_{n,K} \rangle \times \cdots \times \langle t_{1,K} \rangle$ and the topology on $U_{\overline{v}_K} = R_{\overline{v}_K} \times V_{\overline{v}_K}$ induced from the natural subspace topology on $U_{\overline{v}_{K_{m+1}}}$ given by $\mathscr{T}_{K_{m+1}^{\times}}$ via the canonical short exact sequence

$$1 \to 1 + P^{(1,0,\cdots,0)}_{\overline{v}_K} \to U_{\overline{v}_K} \to U_{\overline{v}_{K_{m+1}}} \to 1.$$

The basic properties of the topology $\mathscr{T}_{K^{\times}}$ on K^{\times} are the following :

- Every Cauchy sequence in K^{\times} with respect to the topology $\mathscr{T}_{K^{\times}}$ converges in K^{\times} ;
- Multiplication $K^{\times} \times K^{\times} \xrightarrow{\times} K^{\times}$ on K^{\times} is sequentially continuous and the inversion $K^{\times} \xrightarrow{\iota} K^{\times}$ on K^{\times} is sequentially continuous. That is, K^{\times} becomes a sequential group;
- If $n \leq 2$, then the multiplicative group K^{\times} is furthermore a topological group with respect to $\mathscr{T}_{K^{\times}}$ with a countable base of open subgroups. If $n \geq 3$, then the multiplicative group K^{\times} is not a topological group with respect to $\mathscr{T}_{K^{\times}}$; - The unique formal product expression of $a \in K^{\times}$ given by

$$a = t_{1,K}^{r_1} \cdots t_{n,K}^{r_n} \theta \prod_{\mathbf{b} = (b_1, \cdots, b_n)} (1 + [\theta_{\mathbf{b}}] t_{1,K}^{b_1} \cdots t_{n,K}^{b_n}),$$

where $r_1, \dots, r_n \in \mathbb{Z}$, all coefficients $[\theta_b]$ and θ are from the Teichmüller representatives of all non-zero elements of the last residue field $K_0 = \mathbb{F}_q$ of Kand the product is over the admissible well-ordered set $\{\boldsymbol{b} \in \mathbb{Z}^n \mid \theta_{\boldsymbol{b}} \neq 0\}$, is absolutely convergent.

For details about the topology $\mathscr{T}_{K^{\times}}$, look at [50].

As Fesenko points out, the higher topology \mathscr{T}_K on K and the higher topology $\mathscr{T}_{K^{\times}}$ on K^{\times} are indeed "the appropriate topologies" for class field theoretic investigations for K. It is also quite possible, as suggested by Braunling, that a totally new theory, like "condensed mathematics" of Clausen and Scholze [46] or "pyknotic mathematics" of Barwick and Haine [3], is needed to settle the topological problems of K.

4. Milnor *K*-theory

Let F be any field. For any integer m > 0, the m^{th} Milnor K-group $K_m^{Milnor}(F)$ of F is defined by the quotient

$$\mathbf{K}_m^{\mathrm{Milnor}}(F) := F^{\times \otimes m} / J_m(F),$$

where $F^{\times \otimes m} = \overbrace{F^{\times} \otimes \cdots \otimes F^{\times}}^{m\text{-copies}}$ is the *m*-fold tensor product of F^{\times} and $J_m(F)$ is the subgroup of $F^{\times \otimes m}$ defined by

$$\left\langle x_1 \otimes \cdots \otimes x_m \mid x_i + x_j = 1, \exists i, j, \ 1 \le i \ne j \le m \right\rangle.$$

For $x_1, \dots, x_m \in F^{\times}$, the element $x_1 \otimes \dots \otimes x_m \pmod{J_m(F)}$ in $\mathcal{K}_m^{\text{Milnor}}(F)$ is simply denoted by $\{x_1, \dots, x_m\}$ and called the *generalized Steinberg symbol of* x_1, \dots, x_m . In case m = 0, we set $\mathcal{K}_{m=0}^{\text{Milnor}}(F) = \mathbb{Z}$.

Milnor K-theory $\mathcal{K}_m^{\text{Milnor}}$ defines a functor from the category of fields to the category of abelian groups. Let L/F be any extension. Then the natural embedding $j_{L/F}: F \hookrightarrow L$ induces a group homomorphism

$$\mathbf{K}^{\mathrm{Milnor}}_{m}(j_{L/F}) = j^{\mathrm{Milnor}}_{L/F} \colon \mathbf{K}^{\mathrm{Milnor}}_{m}(F) \to \mathbf{K}^{\mathrm{Milnor}}_{m}(L)$$

In case m = 0, the homomorphism $j_{L/F}^{\text{Milnor}}$ is the identity arrow $\text{id}_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$.

By a theorem of Bass, Tate and Kato, there exists, for each finite extension L/F, a group homomorphism

$$\mathbf{N}_{L/F}^{\mathrm{Milnor}}:\mathbf{K}_{m}^{\mathrm{Milnor}}(L)\to\mathbf{K}_{m}^{\mathrm{Milnor}}(F),$$

called the (K-theoretic) norm map from L to F. The basic properties of this arrow are the following:

- The norm map $N_{L/F}^{\text{Milnor}}: K_m^{\text{Milnor}}(L) \to K_m^{\text{Milnor}}(F)$ from L to F is transitive in the sense that, for every chain $F \subset M \subset L$ of extensions of F, the equality

$$\mathbf{N}_{L/F}^{\mathrm{Milnor}} = \mathbf{N}_{M/F}^{\mathrm{Milnor}} \circ \mathbf{N}_{L/M}^{\mathrm{Milnor}}$$

holds;

– In the low-dimensional cases, the homomorphism

$$\mathbf{N}_{L/F}^{\mathrm{Milnor}}:\mathbf{K}_{m}^{\mathrm{Milnor}}(L)\to\mathbf{K}_{m}^{\mathrm{Milnor}}(F)$$

reduces to the multiplication by [L:F] mapping if m = 0, and to the usual norm map of fields $N_{L/F}: L^{\times} \to F^{\times}$ if m = 1;

– The composition

$$\mathbf{K}_{m}^{\mathrm{Milnor}}(F) \xrightarrow{j_{L/F}^{\mathrm{Milnor}}} \mathbf{K}_{m}^{\mathrm{Milnor}}(L) \xrightarrow{\mathbf{N}_{L/F}^{\mathrm{Milnor}}} \mathbf{K}_{m}^{\mathrm{Milnor}}(F)$$

is the mapping defined as the multiplication by [L:F];

- If $\sigma \in \operatorname{Aut}_F(L)$, then

$$N_{L/F}^{\text{Milnor}} \circ K_m^{\text{Milnor}}(\sigma) = N_{L/F}^{\text{Milnor}},$$

where $\mathbf{K}_{m}^{\text{Milnor}}(\sigma) : \mathbf{K}_{m}^{\text{Milnor}}(L) \to \mathbf{K}_{m}^{\text{Milnor}}(L)$ is the homomorphism induced by the *F*-automorphism $\sigma : L \to L$.

For details about Milnor K-theory, look at Chapter IX of [15].

In case, K is the n-dimensional local field with the corresponding Parshin chain

$$\mathbb{F}_q = K_0, K_1, \cdots, K_{n-1}, K_n = K,$$

there exists a surjective homomorphism called the (K-theoretic) valuation map

$$\nu_{\mathcal{K}_{n}^{\mathrm{Milnor}}(K)} : \mathcal{K}_{n}^{\mathrm{Milnor}}(K) \to \mathbb{Z}$$

$$(4.1)$$

on $\mathrm{K}^{\mathrm{Milnor}}_n(K)$ defined by the composition

$$\nu_{\mathcal{K}_{n}^{\mathrm{Milnor}}(K)} : \mathcal{K}_{n}^{\mathrm{Milnor}}(K_{n}) \xrightarrow{\partial_{n-1}^{n}} \mathcal{K}_{n-1}^{\mathrm{Milnor}}(K_{n-1}) \xrightarrow{\partial_{n-2}^{n-1}} \cdots \xrightarrow{\partial_{0}^{1}} \mathcal{K}_{0}^{\mathrm{Milnor}}(K_{0}) = \mathbb{Z}, \quad (4.2)$$

where the arrows

$$\partial_{i-1}^i : \mathbf{K}_i^{\mathrm{Milnor}}(K_i) \to \mathbf{K}_{i-1}^{\mathrm{Milnor}}(K_{i-1})$$

for $i = 1, 2, 3, \dots, n$, are the boundary homomorphisms in Milnor K-theory defined by

$$\partial_{i-1}^{i}(\{u_1,\cdots,u_{i-1},x\})=\nu_{K_i}(x)\{\overline{u}_1,\cdots,\overline{u}_{i-1}\}$$

for each $u_1, \dots, u_{i-1} \in O_{K_i}^{\times} = U_{K_i}$ and $x \in K_i^{\times}$, where $\overline{u}_1, \dots, \overline{u}_{i-1} \in K_{i-1}$ are defined by reduction modulo \mathfrak{p}_{K_i} of the elements u_1, \dots, u_{i-1} in K_i . Let L be a finite extension of K. Then the K-theoretic valuation map

$$\nu_{\mathbf{K}_n^{\mathrm{Milnor}}(L)} : \mathbf{K}_n^{\mathrm{Milnor}}(L) \to \mathbb{Z}$$

on $\mathbf{K}_n^{\text{Milnor}}(L)$ satisfies

$$\nu_{\mathbf{K}_{n}^{\mathrm{Milnor}}(L)} = \frac{1}{f(L/K)} \nu_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)} \circ \mathbf{N}_{L/K}^{\mathrm{Milnor}},$$

where $f(L/K) = [L_0 : K_0]$, because the diagram

$$\begin{array}{c|c} \mathbf{K}_{n}^{\mathrm{Milnor}}(L) \xrightarrow{\partial_{n-1}^{n}} \mathbf{K}_{n-1}^{\mathrm{Milnor}}(L_{n-1}) \\ \mathbf{N}_{L/K}^{\mathrm{Milnor}} & & & & \downarrow \mathbf{N}_{L_{n-1}/K_{n-1}}^{\mathrm{Milnor}} \\ \mathbf{K}_{n}^{\mathrm{Milnor}}(K) \xrightarrow{\partial_{n-1}^{n}} \mathbf{K}_{n-1}^{\mathrm{Milnor}}(K_{n-1}) \end{array}$$

is commutative. An element $\Pi_{K^{\text{Milnor}}(K)}$ of $K_n^{\text{Milnor}}(K)$ is called a prime element of $\mathbf{K}_n^{\mathrm{Milnor}}(K)$ if

$$\nu_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)}(\Pi_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)}) = 1.$$

Note that, a prime element $\Pi_{K_n^{\text{Milnor}}(K)}$ of $K_n^{\text{Milnor}}(K)$ can be expressed as

$$\Pi_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)} = \{t_{1,K}, \cdots, t_{n,K}\} + \varepsilon,$$

where $\Pi_K = (t_{1,K}, \cdots, t_{n,K}) \in K^n$ is a system of local parameters of the *n*-dimensional local field K and the element ε lies in $\operatorname{Ker}(\nu_{\mathrm{K}^{\operatorname{Milnor}}_{n}(K)})$.

Continue to assume that K is an n-dimensional local field. Then, choosing a system of local parameters $\Pi_K = (t_{1,K}, \cdots, t_{n,K}) \in K^n$ of K, Π_K determines a rank n discrete valuation

$$\overline{v}_K: K \to \mathbb{Z}^n \cup \{\infty\}$$

of K, which determines a collection $\left\{ U_{\overline{v}_K}^{(i_\ell, \cdots, i_n)} \mathbf{K}_m^{\text{Milnor}}(K) \right\}_{(i_\ell, \cdots, i_n)}$ consisting of subgroups $U^{(i_\ell,\cdots,i_n)}_{\overline{v}_K} \mathcal{K}^{\mathrm{Milnor}}_m(K)$ of $\mathcal{K}^{\mathrm{Milnor}}_m(K)$ given by

$$U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})}\mathbf{K}_{m}^{\mathrm{Milnor}}(K) = \left\langle \{x_{1},\cdots,x_{m}\} \in \mathbf{K}_{m}^{\mathrm{Milnor}}(K) \mid x_{1} \in U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})} \right\rangle,$$
$$(n-\ell+1)\text{-tuple}$$

where $(i_{\ell}, \cdots, i_n) \in \mathbb{Z}^{n-\ell+1}$ satisfies $(i_{\ell}, \cdots, i_n) \succeq (0, \cdots, 0)$, for each ℓ satisfying $1 \le \ell \le n.$

In particular, in case $\ell = n$, the group $U_{\overline{v}_K}^{(i_n)} \mathbf{K}_m^{\text{Milnor}}(K)$ is denoted by $U_{K_n}^{i_n} \mathbf{K}_m^{\text{Milnor}}(K)$ for each $i_n \in \mathbb{Z}$ satisfying $i_n \geq 0$. Moreover,

- if $i_n = 0$, the group $U_{\overline{v}_K}^{(i_n=0)} \mathbf{K}_m^{\text{Milnor}}(K)$ is denoted by $U_{K_n} \mathbf{K}_m^{\text{Milnor}}(K)$; if $i_n = 1$, the group $U_{\overline{v}_K}^{(i_n=1)} \mathbf{K}_m^{\text{Milnor}}(K)$ is denoted by $V_{K_n} \mathbf{K}_m^{\text{Milnor}}(K)$.

In case L is an algebraic extension of K and \overline{w}_L is the unique extension of the rank n discrete valuation \overline{v}_K of K to L, the subgroup

$$U_{\overline{w}_L}^{(i_\ell,\cdots,i_n)} \mathcal{K}_m^{\text{Milnor}}(L) = \left\langle \{x_1,\cdots,x_m\} \in \mathcal{K}_m^{\text{Milnor}}(L) \mid x_1 \in U_{\overline{w}_L}^{(i_\ell,\cdots,i_n)} \right\rangle,$$

of $\mathbf{K}_{m}^{\text{Milnor}}(L)$ is denoted by $U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})}\mathbf{K}_{m}^{\text{Milnor}}(L)$, where $(i_{\ell},\cdots,i_{n}) \in \mathbb{Z}^{n-\ell+1}$ satisfies $(n-\ell+1)$ -tuple

 $(i_{\ell}, \cdots, i_n) \succeq (0, \cdots, 0)$, for each ℓ satisfying $1 \le \ell \le n$.

In particular, in case $\ell = n$, the group $U_{\overline{v}_K}^{(i_n)} \mathbf{K}_m^{\text{Milnor}}(L)$ is denoted by $U_{K_n}^{i_n} \mathbf{K}_m^{\text{Milnor}}(L)$ for each $i_n \in \mathbb{Z}$ satisfying $i_n \ge 0$. Moreover,

- if $i_n = 0$, the group $U_{\overline{v}_K}^{(i_n=0)} \mathbf{K}_m^{\text{Milnor}}(L)$ is denoted by $U_{K_n} \mathbf{K}_m^{\text{Milnor}}(L)$; if $i_n = 1$, the group $U_{\overline{v}_K}^{(i_n=1)} \mathbf{K}_m^{\text{Milnor}}(L)$ is denoted by $V_{K_n} \mathbf{K}_m^{\text{Milnor}}(L)$.

1236

5. K^{top}-groups

Let F be a field such that F^{\times} is endowed with a topology \mathscr{T} . The topology \mathscr{T} on F^{\times} introduces a natural topology $\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(F)}$ on $\mathrm{K}^{\mathrm{Milnor}}_{m}(F)$. The sequential saturation $(\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(F)})_{\mathrm{seq}}$ of $\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(F)}$ is the strongest topology on $\mathrm{K}^{\mathrm{Milnor}}_{m}(F)$ that makes the mappings

$$(\alpha, \beta) \mapsto \alpha - \beta, \ \forall \alpha, \beta \in \mathcal{K}_m^{\mathrm{Milnor}}(F)$$

and

$$(a_1, \cdots, a_m) \mapsto \{a_1, \cdots, a_m\}, \ \forall a_1, \cdots, a_m \in F^{\times}$$

continuous. Look at Remark 1 in [14]. With respect to the topology $(\mathscr{T}_{K_m^{\text{Milnor}}(F)})_{\text{seq}}$ defined on $K_m^{\text{Milnor}}(F)$, Parshin introduced

$$\Lambda_{\mathrm{K}^{\mathrm{Milnor}}_{m}(F)} := \bigcap_{\mathscr{O}} \mathscr{O},$$

where \mathscr{O} runs over all open neighbourhoods of the identity element $0_{K_m^{\text{Milnor}}(F)}$ of $K_m^{\text{Milnor}}(F)$, which is a closed subgroup of $K_m^{\text{Milnor}}(F)$. The quotient group

$$\mathbf{K}_m^{\mathrm{top}}(F) := \mathbf{K}_m^{\mathrm{Milnor}}(F) / \Lambda_{\mathbf{K}_m^{\mathrm{Milnor}}(F)}$$

endowed with the quotient topology of $(\mathscr{T}_{\mathrm{K}_{m}^{\mathrm{Milnor}}(F)})_{\mathrm{seq}}$; that is, the maximal Hausdorff quotient of $\mathrm{K}_{m}^{\mathrm{Milnor}}(F)$ with respect to $(\mathscr{T}_{\mathrm{K}_{m}^{\mathrm{Milnor}}(F)})_{\mathrm{seq}}$, is called the m^{th} Parshin topological K-group of the field F. For $x_{1}, \cdots, x_{m} \in F^{\times}$, the element $\{x_{1}, \cdots, x_{m}\} \pmod{\Lambda_{\mathrm{K}_{m}^{\mathrm{Milnor}}(F)}}$ is denoted by $\{x_{1}, \cdots, x_{m}\}^{\mathrm{top}}$ and called the topological Steinberg symbol of x_{1}, \cdots, x_{m} . Let L be any "compatible" extension of F in the sense that:

- Let L be any "compatible" extension of F in the sens
 - L^{\times} is endowed with a topology \mathscr{T}' ;
 - The topology \mathscr{T} on F^{\times} is induced from \mathscr{T}' .

Then, the inclusion $j_{L/F}^{\text{Milnor}}(\Lambda_{\mathbf{K}_{m}^{\text{Milnor}}(F)}) \subseteq \Lambda_{\mathbf{K}_{m}^{\text{Milnor}}(L)}$ clearly follows, and the group homomorphism $j_{L/F}^{\text{Milnor}}: \mathbf{K}_{m}^{\text{Milnor}}(F) \to \mathbf{K}_{m}^{\text{Milnor}}(L)$ extends uniquely to a continuous homomorphism

$$j_{L/F}^{\mathrm{top}} : \mathrm{K}_m^{\mathrm{top}}(F) \to \mathrm{K}_m^{\mathrm{top}}(L).$$

For the *n*-dimensional local field K, let $\mathscr{T}_{K^{\times}}$ be the higher topology on K^{\times} introduced in Section 3. As in the preceding paragraph, the strongest topology on $K_m^{\text{Milnor}}(K)$ that makes the mappings

$$(\alpha, \beta) \mapsto \alpha - \beta, \ \forall \alpha, \beta \in \mathrm{K}_{m}^{\mathrm{Milnor}}(K)$$

- X_{seq} is sequentially saturated, namely $(X_{\text{seq}})_{\text{seq}} = X_{\text{seq}}$;
- The universal mapping property satisfied by X_{seq} : If Y is a sequentially saturated space, then any continuous map $f: Y \to X$ factors naturally as

- where the induced map $f_{seq}: Y \to X_{seq}$ is continuous;
- If Y is a topological space and $f: Y \to X$ is any sequentially continuous map, then the induced map $f_{\text{seq}}: Y_{\text{seq}} \to X_{\text{seq}}$ is continuous.

Let X be a set endowed with a topology \mathscr{T} . Recall that $U \subseteq X$ is called sequentially open (with respect to \mathscr{T}), if for any sequence (x_n) in X converging to $u \in U$, there exists n_o such that $x_n \in U$ for every $n \ge n_o$. The collection of sequentially open subsets of X (with respect to \mathscr{T}) defines a topology \mathscr{T}_{seq} on X finer than \mathscr{T} , called the *sequential saturation of* \mathscr{T} , and the topological space (X, \mathscr{T}_{seq}) the *sequential saturation of* the topological space (X, \mathscr{T}_{seq}) the sequential saturation of the topological space (X, \mathscr{T}) . To simplify the notation, the sequential saturation of the topological space X is simply denoted by X_{seq} . If $X = X_{seq}$ (that is, if $\mathscr{T} = \mathscr{T}_{seq}$), then X is called a sequentially saturated topological space. Note that, the topological space X_{seq} has the following basic properties:

and

$$(a_1, \cdots, a_m) \mapsto \{a_1, \cdots, a_m\}, \ \forall a_1, \cdots, a_m \in K^{\times}$$

continuous is the sequential saturation $(\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)})_{\mathrm{seq}}$ of the topology $\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)}$ on $\mathrm{K}^{\mathrm{Milnor}}_{m}(K)$, where $\mathscr{T}_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)}$ denotes the topology on $\mathrm{K}^{\mathrm{Milnor}}_{m}(K)$ induced from the higher topology $\mathscr{T}_{K^{\times}}$ of K^{\times} .

Note that, by [14], the closed subgroup $\Lambda_{\mathrm{K}_m^{\mathrm{Milnor}}(K)}$ of $\mathrm{K}_m^{\mathrm{Milnor}}(K)$ is also equal to

$$\Lambda_{\mathcal{K}_m^{\mathrm{Milnor}}(K)} = \bigcap_{\ell \neq p} \ell \mathcal{K}_m^{\mathrm{Milnor}}(K).$$

where ℓ runs over all primes different than $p = char(K_0)$. Therefore, the boundary homomorphism in Milnor K-theory

$$\partial_{i-1}^i : \mathbf{K}_i^{\mathrm{Milnor}}(K_i) \to \mathbf{K}_{i-1}^{\mathrm{Milnor}}(K_{i-1})$$

naturally induces the following morphism

$$\partial_{i-1}^i : \Lambda_{\mathbf{K}_i^{\mathrm{Milnor}}(K_i)} \to \Lambda_{\mathbf{K}_{i-1}^{\mathrm{Milnor}}(K_{i-1})}$$

and thereby defines the boundary homomorphism in topological Milnor K-theory

$$(\partial_{i-1}^i)^{\operatorname{top}} : \mathrm{K}_i^{\operatorname{top}}(K_i) \to \mathrm{K}_{i-1}^{\operatorname{top}}(K_{i-1}),$$

where

$$(\partial_{i-1}^{i})^{\operatorname{top}}(\{u_{1},\cdots,u_{i-1},x\}^{\operatorname{top}}) = (\partial_{i-1}^{i})^{\operatorname{top}}\left(\{u_{1},\cdots,u_{i-1},x\} \pmod{\Lambda_{\mathrm{K}_{i-1}^{\operatorname{Milnor}}(K_{i})}\right)$$
$$= \nu_{K_{i}}(x)\{\overline{u}_{1},\cdots,\overline{u}_{i-1}\} \pmod{\Lambda_{\mathrm{K}_{i-1}^{\operatorname{Milnor}}(K_{i-1})}$$
$$= \nu_{K_{i}}(x)\{\overline{u}_{1},\cdots,\overline{u}_{i-1}\}^{\operatorname{top}},$$

for each $u_1, \dots, u_{i-1} \in O_{K_i}^{\times} = U_{K_i}$ and $x \in K_i^{\times}$, where $\overline{u}_1, \dots, \overline{u}_{i-1} \in K_{i-1}$ are defined by reduction modulo \mathfrak{p}_{K_i} of the elements u_1, \dots, u_{i-1} in K_i , for each $i = 1, 2, \dots, n$. Therefore, there exists a surjective homomorphism called the *(topological K-theoretic)* valuation map

$$\nu_{\mathbf{K}_{n}^{\mathrm{top}}(K)}:\mathbf{K}_{n}^{\mathrm{top}}(K)\to\mathbb{Z}$$
(5.1)

on $K_n^{\text{top}}(K)$ defined by the composition

$$\nu_{\mathbf{K}_{n}^{\mathrm{top}}(K)}: \mathbf{K}_{n}^{\mathrm{top}}(K_{n}) \xrightarrow{(\partial_{n-1}^{n})^{\mathrm{top}}} \mathbf{K}_{n-1}^{\mathrm{top}}(K_{n-1}) \xrightarrow{(\partial_{n-2}^{n-1})^{\mathrm{top}}} \cdots \xrightarrow{(\partial_{0}^{1})^{\mathrm{top}}} \mathbf{K}_{0}^{\mathrm{top}}(K_{0}) = \mathbb{Z}.$$
 (5.2)

Clearly, the valuation $\nu_{\mathcal{K}_n^{\mathrm{Milnor}}(K)} : \mathcal{K}_n^{\mathrm{Milnor}}(K) \to \mathbb{Z}$ factors through

$$\nu_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)}: \mathbf{K}_{n}^{\mathrm{Milnor}}(K) \xrightarrow{\mathrm{red}_{\Lambda_{\mathbf{K}_{n}^{\mathrm{Milnor}}(K)}}} \mathbf{K}_{n}^{\mathrm{top}}(K) \xrightarrow{\nu_{\mathbf{K}_{n}^{\mathrm{top}}(K)}} \mathbb{Z}$$

as the diagram

$$K_{n}^{\text{top}}(K) \xrightarrow{(\mathcal{O}_{n-1}^{n})^{\text{top}}} K_{n-1}^{\text{top}}(K_{n-1}) \xrightarrow{(\partial_{n-2}^{n-1})^{\text{top}}} \cdots \xrightarrow{(\partial_{0}^{1})^{\text{top}}} K_{0}^{\text{top}}(K_{0}) = \mathbb{Z}$$

$$\stackrel{\text{red}_{\Lambda_{K_{n}^{\text{Milnor}}(K)}}}{\overset{M_{n-1}^{n}}{\overset{M_{n-1}^{n}}} K_{n-1}^{\text{Milnor}}(K_{n-1})} \xrightarrow{(\mathcal{O}_{n-2}^{n-1})} \cdots \xrightarrow{(\mathcal{O}_{0}^{1})^{\text{top}}} K_{0}^{\text{top}}(K_{0}) = \mathbb{Z}$$

$$\stackrel{\nu_{K_{n}^{\text{Milnor}}(K)}}{\overset{\nu_{K_{n}^{\text{Milnor}}(K)}}{\overset{\nu_{K_{n}^{\text{Milnor}}(K)}}} \cdots \xrightarrow{(\mathcal{O}_{0}^{1})^{\text{top}}} K_{0}^{\text{Milnor}}(K_{0}) = \mathbb{Z}$$

is commutative. An element $\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(K)}$ of $\mathbf{K}_{n}^{\mathrm{top}}(K)$ is called a *prime element* of $\mathbf{K}_{n}^{\mathrm{top}}(K)$ if $\nu_{\mathbf{K}_{n}^{\mathrm{top}}(K)}(\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(K)}) = 1.$ Note that, a prime element $\Pi_{\mathbf{K}_n^{\mathrm{top}}(K)}$ of $\mathbf{K}_n^{\mathrm{top}}(K)$ can be expressed as

$$\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(K)} = \{t_{1,K}, \cdots, t_{n,K}\}^{\mathrm{top}} + \varepsilon,$$

where $\Pi_K = (t_{1,K}, \cdots, t_{n,K})$ is a system of local parameters of K and the element ε lies in $\operatorname{Ker}(\nu_{K_n^{\operatorname{top}}(K)})$.

Let L be a finite extension of the n-dimensional local field K. As $N_{L/K}^{\text{Milnor}}(\Lambda_{\mathbf{K}_{m}^{\text{Milnor}}(L)}) \subseteq \Lambda_{\mathbf{K}_{m}^{\text{Milnor}}(K)}$, the norm map

$$\mathbf{N}_{L/K}^{\mathrm{Milnor}}:\mathbf{K}_m^{\mathrm{Milnor}}(L)\to\mathbf{K}_m^{\mathrm{Milnor}}(K)$$

induces a unique homomorphism

$$\mathcal{N}_{L/K}^{\mathrm{top}}: \mathcal{K}_m^{\mathrm{top}}(L) \to \mathcal{K}_m^{\mathrm{top}}(K)$$

satisfying, following [38],

$$\mathcal{N}_{L/K}^{\mathrm{top}}(\mathrm{open \ subgroup \ of \ } \mathcal{K}_m^{\mathrm{top}}(L)) \subseteq \mathrm{open \ subgroup \ of \ } \mathcal{K}_m^{\mathrm{top}}(K)$$

with the usual transitivity property; namely, $N_{L/K}^{top} = N_{M/K}^{top} \circ N_{L/M}^{top}$ for every chain $K \subseteq M \subseteq L$ of finite extensions of K. Moreover,

- The composition

$$\mathbf{K}_{m}^{\mathrm{top}}(K) \xrightarrow{j_{L/K}^{\mathrm{top}}} \mathbf{K}_{m}^{\mathrm{top}}(L) \xrightarrow{\mathbf{N}_{L/K}^{\mathrm{top}}} \mathbf{K}_{m}^{\mathrm{top}}(K)$$
(5.3)

is the multiplication by [L:K] mapping;

- If $\sigma \in \operatorname{Aut}_K(L)$, then

$$\mathbf{N}_{L/K}^{\mathrm{top}} \circ \mathbf{K}_{m}^{\mathrm{top}}(\sigma) = \mathbf{N}_{L/K}^{\mathrm{top}},\tag{5.4}$$

where $K_m^{top}(\sigma) : K_m^{top}(L) \to K_m^{top}(L)$ is the homomorphism induced by the *K*-automorphism $\sigma : L \to L$.

For any finite extension L of K, the topological K-theoretic valuation map

$$\nu_{\mathrm{K}_{n}^{\mathrm{top}}(L)}:\mathrm{K}_{n}^{\mathrm{top}}(L)\to\mathbb{Z}$$

on $\mathbf{K}_n^{\mathrm{top}}(L)$ satisfies

$$\nu_{\mathbf{K}_n^{\mathrm{top}}(L)} = \frac{1}{f(L/K)} \nu_{\mathbf{K}_n^{\mathrm{top}}(K)} \circ \mathbf{N}_{L/K}^{\mathrm{top}},$$

where $f(L/K) = [L_0 : K_0]$, because the diagram

$$\begin{aligned}
\mathbf{K}_{n}^{\mathrm{top}}(L) & \stackrel{(\partial_{n-1}^{n})^{\mathrm{top}}}{\longrightarrow} \mathbf{K}_{n-1}^{\mathrm{top}}(L_{n-1}) \\
\mathbf{N}_{L/K}^{\mathrm{top}} & \downarrow \mathbf{N}_{L_{n-1}/K_{n-1}}^{\mathrm{top}} \\
\mathbf{K}_{n}^{\mathrm{top}}(K) & \stackrel{(\partial_{n-1}^{n})^{\mathrm{top}}}{\longrightarrow} \mathbf{K}_{n-1}^{\mathrm{top}}(K_{n-1})
\end{aligned} \tag{5.5}$$

is commutative.

Note that, the commutative diagram (5.5) naturally induces a homomorphism

$$(\partial_{n-1}^{n})^{\text{top}}_{*}: \mathrm{K}^{\text{top}}_{n}(K)/\mathrm{N}^{\text{top}}_{L/K}(\mathrm{K}^{\text{top}}_{n}(L)) \to \mathrm{K}^{\text{top}}_{n-1}(K_{n-1})/\mathrm{N}^{\text{top}}_{L_{n-1}/K_{n-1}}(\mathrm{K}^{\text{top}}_{n-1}(L_{n-1}))$$

for every finite extension L of K.

The system of local parameters $\Pi_K = (t_{1,K}, \cdots, t_{n,K}) \in K^n$ of K determines a rank n discrete valuation

$$\overline{v}_K: K \to \mathbb{Z}^n \cup \{\infty\}$$

of K, which naturally determines a collection $\left\{ U_{\overline{v}_K}^{(i_\ell,\cdots,i_n)} \mathbf{K}_m^{\mathrm{top}}(K) \right\}_{(i_\ell,\cdots,i_n)}$ of subgroups $U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})}\mathrm{K}_{m}^{\mathrm{top}}(K)$ of $\mathrm{K}_{m}^{\mathrm{top}}(K)$, where $U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})}\mathrm{K}_{m}^{\mathrm{top}}(K)$ is defined by the image

$$\operatorname{red}_{\Lambda_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)}}: U^{(i_{\ell}, \cdots, i_{n})}_{\overline{v}_{K}} \mathrm{K}^{\mathrm{Milnor}}_{m}(K) \mapsto \operatorname{red}_{\Lambda_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)}} \left(U^{(i_{\ell}, \cdots, i_{n})}_{\overline{v}_{K}} \mathrm{K}^{\mathrm{Milnor}}_{m}(K) \right)$$

in $\mathcal{K}_m^{\mathrm{top}}(K)$ of $U_{\overline{v}_K}^{(i_\ell,\cdots,i_n)}\mathcal{K}_m^{\mathrm{Milnor}}(K)$ under the natural homomorphism

$$\operatorname{red}_{\Lambda_{\mathrm{K}^{\mathrm{Milnor}}_{m}(K)}} : \mathrm{K}^{\mathrm{Milnor}}_{m}(K) \to \mathrm{K}^{\mathrm{top}}_{m}(K),$$

$$(n-\ell+1)$$
-tuple

where $(i_{\ell}, \cdots, i_n) \in \mathbb{Z}^{n-\ell+1}$ satisfies $(i_{\ell}, \cdots, i_n) \succeq \overbrace{(0, \cdots, 0)}^{(n-\ell+1)\text{-tuple}}$, for each ℓ satisfying $1 \leq \ell \leq n$. The collection $\left\{ U_{\overline{v}_K}^{(i_{\ell}, \cdots, i_n)} \mathbf{K}_m^{\mathrm{top}}(K) \right\}_{(i_{\ell}, \cdots, i_n)}$ is a neighborhood basis of the identity element of $K_m^{top}(K)$.

In particular, in case $\ell = n$, the group $U_{\overline{v}_K}^{(i_n)} \mathbf{K}_m^{\text{top}}(K)$ is denoted by $U_{K_n}^{i_n} \mathbf{K}_m^{\text{top}}(K)$ for each $i_n \in \mathbb{Z}$ satisfying $i_n \ge 0$. Moreover,

- if $i_n = 0$, the group $U_{\overline{v}_K}^{(i_n=0)} \mathbf{K}_m^{\mathrm{top}}(K)$ is denoted by $U_{K_n} \mathbf{K}_m^{\mathrm{top}}(K)$; if $i_n = 1$, the group $U_{\overline{v}_K}^{(i_n=1)} \mathbf{K}_m^{\mathrm{top}}(K)$ is denoted by $V_{K_n} \mathbf{K}_m^{\mathrm{top}}(K)$.

In case *L* is an algebraic extension of *K* and \overline{w}_L is the unique extension of the rank *n* discrete valuation \overline{v}_K of *K* to *L*, the subgroup $U_{\overline{w}_L}^{(i_\ell, \dots, i_n)} \mathrm{K}_m^{\mathrm{top}}(L)$ of $\mathrm{K}_m^{\mathrm{top}}(L)$, which is denoted by $U_{\overline{v}_K}^{(i_\ell, \dots, i_n)} \mathrm{K}_m^{\mathrm{top}}(L)$, is defined by the image $\mathrm{red}_{\Lambda_{\mathrm{K}_m^{\mathrm{Milnor}}(L)}} \left(U_{\overline{v}_K}^{(i_\ell, \dots, i_n)} \mathrm{K}_m^{\mathrm{Milnor}}(L) \right)$ in $\mathrm{K}_{m}^{\mathrm{top}}(L)$ of $U_{\overline{v}_{K}}^{(i_{\ell},\cdots,i_{n})}\mathrm{K}_{m}^{\mathrm{Milnor}}(L)$ under the natural homomorphism

$$\operatorname{red}_{\Lambda_{\mathrm{K}^{\mathrm{Milnor}}_{m}(L)}}:\mathrm{K}^{\mathrm{Milnor}}_{m}(L)\to\mathrm{K}^{\mathrm{top}}_{m}(L),$$

$$(n-\ell+1)$$
-tuple

where $(i_{\ell}, \cdots, i_n) \in \mathbb{Z}^{n-\ell+1}$ satisfies $(i_{\ell}, \cdots, i_n) \succeq \underbrace{(0, \cdots, 0)}^{(n-\ell+1)\text{-tuple}}$, for each ℓ satisfying $1 \leq \ell \leq n.$

In particular, in case $\ell = n$, the group $U_{\overline{v}_K}^{(i_n)} \mathbf{K}_m^{\mathrm{top}}(L)$ is denoted by $U_{K_n}^{i_n} \mathbf{K}_m^{\mathrm{top}}(L)$ for each $i_n \in \mathbb{Z}$ satisfying $i_n \geq 0$. Moreover,

- if $i_n = 0$, the group $U_{\overline{v}_K}^{(i_n=0)} \mathbf{K}_m^{\text{top}}(L)$ is denoted by $U_{K_n} \mathbf{K}_m^{\text{top}}(L)$. - if $i_n = 1$, the group $U_{\overline{v}_K}^{(i_n=1)} \mathbf{K}_m^{\text{top}}(L)$ is denoted by $V_{K_n} \mathbf{K}_m^{\text{top}}(L)$.

The structure of $K_n^{\text{top}}(K)$ is well-known (look at [12, 14]). In fact,

$$\mathrm{K}_{n}^{\mathrm{top}}(K) \xrightarrow{\sim} \mathbb{Z}_{p} \oplus V_{K_{n}} \mathrm{K}_{n}^{\mathrm{top}}(K)$$
 (5.6)

where, as introduced above, $V_{K_n} \mathcal{K}_n^{\text{top}}(K)$ is the image of $V_{K_n} \mathcal{K}_n^{\text{Milnor}}(K)$ under $\operatorname{red}_{\Lambda_{\mathcal{K}}^{\text{Milnor}}(K)}$. Now, introduce the subset $\mathbb{I}_{p,n}$ of \mathbb{Z}^n by

$$\mathbb{I}_{p,n} = \{ \boldsymbol{a} = (a_1, \cdots, a_n) \in \mathbb{Z}^n \colon \boldsymbol{a} \notin (p\mathbb{Z})^n, \ \boldsymbol{0} \prec \boldsymbol{a} \}.$$

For each $\boldsymbol{a} \in \mathbb{I}_{p,n}$, consider the integer $1 \leq i(\boldsymbol{a}) \leq n$ defined uniquely by the conditions :

$$-a_{i(\boldsymbol{a})+1} \equiv \cdots \equiv a_n \equiv 0 \pmod{p};$$

$$-a_{i(\boldsymbol{a})} \not\equiv 0 \pmod{p}.$$

Let $\theta_1, \dots, \theta_s$ be an \mathbb{F}_p -basis of the last residue field $K_0 = \mathbb{F}_q$, where $q = p^s$. Now, for each $\boldsymbol{a} \in \mathbb{I}_{p,n}$ and $1 \leq j \leq s$, introduce the topological Steinberg symbol $\varepsilon_{j,\boldsymbol{a}}$ in $\mathrm{K}_n^{\mathrm{top}}(K)$ by

$$\varepsilon_{j,\boldsymbol{a}} := \left\{ 1 + \theta_j \underline{t}_K^{\boldsymbol{a}}, t_{1,K}, \cdots, t_{i(\boldsymbol{a})-1,K}, t_{i(\boldsymbol{a})+1,K}, \cdots, t_{n,K} \right\}^{\text{top}}$$

where $(t_{1,K}, \dots, t_{n,K}) \in K^n$ is a system of local parameters of the *n*-dimensional local field K, and $\underline{t}_K^{\boldsymbol{a}} := t_{1,K}^{a_1} \cdots t_{n,K}^{a_n}$. Then, the collection $\{\varepsilon_{j,\boldsymbol{a}}\}_{1 \leq j \leq s}$ is a system of free topological generators of $V_{K_n} \mathbf{K}_n^{\mathrm{top}}(K)$. Therefore, any $\xi \in \mathbf{K}_n^{\mathrm{top}}(K)$ can be expressed uniquely as

$$\xi = A_o\{t_{1,K}, \cdots, t_{n,K}\}^{\operatorname{top}} + \sum_{\substack{1 \le j \le s \\ \boldsymbol{b} \in \mathbb{I}_{p,n}}} A_{j,\boldsymbol{b}} \varepsilon_{j,\boldsymbol{b}},$$

where $A_o, A_{j,\boldsymbol{b}} \in \mathbb{Z}_p$ for every $1 \leq j \leq s, \boldsymbol{b} \in \mathbb{I}_{p,n}$.

For more details about topological Milnor K-groups, look at [12, 14].

6. Ramification theory of *n*-dimensional local fields

If K is a non-archimedean (=1-dimensional) local field, then there exists a very solid theory, the ramification theory of the non-archimedean local field K [15]. Namely, for a finite Galois extension L/K with Galois group $\operatorname{Gal}(L/K) = G$, there exists a lower filtration $(G_i)_{i \in \mathbb{R}_{>-1}}$ of G defined by higher ramification subgroups $G_i := \{\gamma \in G \mid \nu_L(\gamma(x) - x) \geq 0\}$ $i+1, \forall x \in O_L$ of G in lower numbering, for $i \in \mathbb{R}_{\geq -1}$. The lower filtration $(G_i)_{i \in \mathbb{R}_{\geq -1}}$ of G behaves well with respect to "passing to the subgroups" in the sense that, for any subgroup H of G, $H_i = H \cap G_i$, for every $i \in \mathbb{R}_{\geq -1}$. On the other hand, the lower filtration $(G_i)_{i \in \mathbb{R}_{>-1}}$ of G does not behave well with respect to "taking quotients". That is, there exists H a normal subgroup of G such that $(G/H)_i \neq G_i H/H$ for some $i \in \mathbb{R}_{\geq -1}$. In fact, defining $G^j = G_{\psi_{L/K}(j)}$, for all $j \in \mathbb{R}_{\geq -1}$, where $\psi_{L/K} : \mathbb{R}_{\geq -1} \to \mathbb{R}_{\geq -1}$ the Hasse-Herbrand function of the extension L/K is the piecewise linear increasing function with inverse $\psi_{L/K}^{-1} = \phi_{L/K} : \mathbb{R}_{\geq -1} \to \mathbb{R}_{\geq -1}$ defined by $\phi_{L/K}(i) = \int_0^i \frac{dt}{[G_0:G_t]}$ for $i \in \mathbb{R}_{\geq -1}$ produces the upper filtration $(G^j)_{j \in \mathbb{R}_{\geq -1}}$ of G defined by higher ramification subgroups G^{j} of G in upper numbering, for $j \in \mathbb{R}_{>-1}$, which behaves well with respect to "taking quotients" now. That is, for any normal subgroup H of G, $(G/H)^j = G^j H/H$ for every $j \in \mathbb{R}_{\geq -1}$. Thus, higher ramification subgroups G^j of G in upper numbering, for $j \in \mathbb{R}_{\geq -1}$, can be used to define higher ramification subgroups G_K^j of the absolute Galois group G_K in upper numbering, for $j \in \mathbb{R}_{>-1}$.

If the finite extension L/K is furthermore assumed to be abelian, the most important property of the upper filtration $(G^j)_{j \in \mathbb{R}_{\geq -1}}$ of G is that the local abelian Hasse reciprocity law

$$\operatorname{\mathsf{Rec}}_{L/K_*}: K^{\times}/\operatorname{N}_{L/K}(L^{\times}) \xrightarrow{\sim} G$$

of the abelian extension L/K maps the subgroup $U_K^j/(U_K^j \cap \mathcal{N}_{L/K}(L^{\times}))$ of $K^{\times}/\mathcal{N}_{L/K}(L^{\times})$ to the higher ramification subgroup G^j of G in upper numbering for every $j \in \mathbb{R}_{\geq -1}$. Note that, both filtrations $(U_K^j)_{j \in \mathbb{R}_{\geq -1}}$ and $(G^j)_{j \in \mathbb{R}_{\geq -1}}$ form bases of neighbourhoods of K^{\times} and of G respectively.

Therefore, in principle, we should be able to define an upper ramification theory on a "valued field" K in the situations where some class field theory for the valued field K is available. For instance, using this principle, Lomadze [35] initiated the ramification theory of abelian extensions of 2-dimensional local fields of characteristic p > 0 by defining an upper filtration on corresponding abelian Galois groups using local abelian 2-dimensional class field theory, which is the subject of Section 7. On the other hand, if K is an n-dimensional local field with $n \geq 2$, we observe that there are two different, yet not totally unrelated, valuations on K. Namely, there exists a rank n discrete valuation $\overline{\nu}_K : K \to \mathbb{Z}^n \cup \{\infty\}$ defined on K, and also a discrete valuation $\nu_{K_n} : K_n \to \mathbb{Z} \cup \{\infty\}$ defined on $K_n = K$. So, there are two "seemingly different" valued field structures on K. Therefore, it is natural to expect different types of ramification theories on K, which are:

- Zhukov type ramification theory on K [49, 51], which generalizes [23, 35];
- Abbes-Saito type ramification theory on K [1,49], which generalizes [19,24].

In what follows, we shall choose Abbes-Saito type ramification theory on the *n*-dimensional local field K. In fact, in Abbes-Saito theory on K, there are two filtrations $G_{K,nlog}^{\bullet}$ and $G_{K,log}^{\bullet}$ on the absolute Galois group G_K of K both indexed by the set of non-negative rational numbers $\mathbb{Q}_{\geq 0}$, called the upper non-logarithmic ramification filtration of G_K and the upper logarithmic ramification filtration of G_K , respectively [49, Subsection 6.1]. Moreover, specializing only to abelian extensions of K, Abbes-Saito non-logarithmic ramification theory of abelian extensions of K coincides with the ramification theory of Kato, which is defined only for abelian extensions of K [28] and which also behaves well with respect to the existing local abelian Kato-Parshin reciprocity law of K^{**} [24], the main subject of this review.

The ramification theory of Kato on the *n*-dimensional local field K, which is modelled after the work of Hyodo [19], first constructs a conductor $\mathrm{KSw}(\chi)$ for $\chi \in H^1(K) = \mathrm{Hom}(G_K^{\mathrm{ab}}, \mathbb{Q}/\mathbb{Z})$, called the Kato-Swan conductor for a 1-dimensional representation $\chi : G_K^{\mathrm{ab}} \to \mathbb{Q}/\mathbb{Z}$ of G_K^{ab} , where K is a complete discrete valuation field with any residue field κ_K . The conductor $\mathrm{KSw}(\chi)$ for the 1-dimensional representation $\chi : G_K^{\mathrm{ab}} \to \mathbb{Q}/\mathbb{Z}$ of G_K^{ab} is characterized by the smallest integer $f \geq 0$ satisfying

$$U_K^{f+1} \subseteq N_{L_\chi/K} L_\chi^{\times}$$

where L_{χ}/K is the subextension of K^{ab}/K fixed by $\chi: G_K^{ab} \to \mathbb{Q}/\mathbb{Z}$. So, there exists an upper filtration $G_K^{ab,\bullet}$ on G_K^{ab} , called the Kato filtration on G_K^{ab} , satisfying

$$\mathrm{KSw}(\chi) = \inf\{a > 0 \mid G_K^{\mathrm{ab},a} \subseteq \mathrm{Ker}(\chi)\},\$$

for any $\chi: G_K^{\mathrm{ab}} \to \mathbb{Q}/\mathbb{Z}$.

7. Local abelian K-theoretic class field theory of Kato-Parshin

Fix a separable closure K^{sep} of the *n*-dimensional local field K and let $K^{\text{ab}} \subset K^{\text{sep}}$ be the maximal abelian extension of K inside K^{sep} .

The profinite completion $\widehat{K}_n^{\text{top}}(K)$ of $K_n^{\text{top}}(K)$ with respect to the norm map is defined by the projective limit

$$\widehat{\mathbf{K}}^{\mathrm{top}}_n(K) := \varprojlim_E \mathbf{K}^{\mathrm{top}}_n(K) / \mathbf{N}^{\mathrm{top}}_{E/K}(\mathbf{K}^{\mathrm{top}}_n(E)),$$

where E runs over all finite extensions of the *n*-dimensional local field K inside K^{ab} , with respect to the connecting morphisms

$$\mathbf{K}_{n}^{\mathrm{top}}(K)/\mathbf{N}_{E/K}^{\mathrm{top}}(\mathbf{K}_{n}^{\mathrm{top}}(E))\xleftarrow{c_{E}^{E'}}\mathbf{K}_{n}^{\mathrm{top}}(K)/\mathbf{N}_{E'/K}^{\mathrm{top}}(\mathbf{K}_{n}^{\mathrm{top}}(E'))$$

defined for any two finite extensions E and E' of K inside K^{ab} satisfying $E \subseteq E'$ by

$$\alpha \pmod{\mathrm{N}_{E/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(E))} \xleftarrow{c_E^{E'}} \alpha \pmod{\mathrm{N}_{E'/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(E'))},$$

for every $\alpha \in \mathrm{K}^{\mathrm{top}}_n(K)$.

Given any finite extension L of K, then the homomorphism $N_{L/K}^{\text{top}} : K_n^{\text{top}}(L) \to K_n^{\text{top}}(K)$ extends to profinite completions, and defines a continuous homomorphism

$$\widehat{\mathbf{N}}_{L/K}^{\mathrm{top}}: \widehat{\mathbf{K}}_n^{\mathrm{top}}(L) \to \widehat{\mathbf{K}}_n^{\mathrm{top}}(K)$$

^{**}So, it is natural to expect that Abbes-Saito type non-logarithmic ramification theory on the *n*-dimensional local field K behaves well with respect to the "hypothetical" local non-abelian Kato-Parshin reciprocity law of K, which still needs construction [20].

satisfying the transitivity condition, as the diagram

is commutative, where the vertical arrows N_{L/K_*}^{top} are the induced morphisms from $N_{L/K}^{\text{top}}$, for each finite extension T and T' of L inside L^{ab} satisfying $T \subseteq T'$.

Recall that, local abelian *n*-dimensional K-theoretic class field theory for K establishes a unique natural algebraic and topological [38] isomorphism

$$\operatorname{\mathsf{Rec}}_K: \widehat{\operatorname{K}}_n^{\operatorname{top}}(K) \xrightarrow{\sim} G_K^{\operatorname{ab}}$$

called the *local abelian n-dimensional Kato-Parshin reciprocity law of* K, which, among other things, has the following properties :

(1) For every abelian extension L/K, the surjective homomorphism

$$\operatorname{\mathsf{Rec}}_{L/K}: \widehat{\operatorname{K}}_n^{\operatorname{top}}(K) \xrightarrow{\operatorname{\mathsf{Rec}}_K} G_K^{\operatorname{ab}} \xrightarrow{\operatorname{res}_L} \operatorname{Gal}(L/K)$$

has kernel

$$\operatorname{Ker}(\operatorname{\mathsf{Rec}}_{L/K}) = \widehat{\operatorname{N}}_{L/K}^{\operatorname{top}}(\widehat{\operatorname{K}}_n^{\operatorname{top}}(L)) = \bigcap_{\substack{K \subseteq \\ \text{finite}}} F \subset L} \widehat{\operatorname{N}}_{F/K}^{\operatorname{top}}(\widehat{\operatorname{K}}_n^{\operatorname{top}}(F)) =: \mathfrak{N}_{L/K}^{\operatorname{top}},$$

and induces a topological group isomorphism

$$\operatorname{\mathsf{Rec}}_{L/K_*}: \widehat{\operatorname{K}}_n^{\operatorname{top}}(K)/\mathfrak{N}_{L/K}^{\operatorname{top}} \xrightarrow{\sim} \operatorname{Gal}(L/K)$$

called the local abelian n-dimensional Kato-Parshin reciprocity law of L/K;

(2) (Existence theorem). For each abelian extension L/K, the mapping

$$L/K \mapsto \mathfrak{N}_{L/K}^{\mathrm{top}}$$

defines a bijective correspondence

$$\{L/K : \text{abelian}\} \rightleftharpoons \{\mathfrak{N} : \mathfrak{N} \leq_{\text{``closed''}} \widehat{\mathrm{K}}_n^{\mathrm{top}}(K)\}.$$

For Kato's approach to the existence theorem, look at [25]; (3) (Functoriality). For any finite extension L/K,

$$\operatorname{\mathsf{Rec}}_{L}(x) \mid_{K^{\operatorname{ab}}} = \operatorname{\mathsf{Rec}}_{K}\left(\widehat{\operatorname{N}}_{L/K}^{\operatorname{top}}(x)\right),$$

for every $x \in \widehat{\mathbf{K}}_n^{\mathrm{top}}(L)$, and

$$\operatorname{Rec}_{L}\left(\widehat{j_{L/K}^{\operatorname{top}}}(x)\right) = V_{L/K}\left(\operatorname{Rec}_{K}(x)\right)$$

for every $x \in \widehat{\mathbf{K}}_n^{\mathrm{top}}(K)$. That is, the following squares

$$\begin{split} & \widehat{\mathbf{K}}_{n}^{\mathrm{top}}(L) \xrightarrow{\mathsf{Rec}_{L}} G_{L}^{\mathrm{ab}} & \widehat{\mathbf{K}}_{n}^{\mathrm{top}}(L) \xrightarrow{\mathsf{Rec}_{L}} G_{L}^{\mathrm{ab}} \\ & \widehat{\mathbf{N}}_{L/K}^{\mathrm{top}} \downarrow & \downarrow^{\mathrm{res}_{K\mathrm{ab}}} & \widehat{j_{L/K}^{\mathrm{top}}} \uparrow & \uparrow^{V_{L/K}:\mathrm{Verlagerung}} \\ & \widehat{\mathbf{K}}_{n}^{\mathrm{top}}(K) \xrightarrow{\mathsf{Rec}_{K}} G_{K}^{\mathrm{ab}} & \widehat{\mathbf{K}}_{n}^{\mathrm{top}}(K) \xrightarrow{\mathsf{Rec}_{K}} G_{K}^{\mathrm{ab}} \end{split}$$

are commutative;

(4) The square

is commutative, where the left-vertical arrow

$$\widehat{(\partial_{n-1}^n)}^{\operatorname{top}} : \widehat{\mathrm{K}}_n^{\operatorname{top}}(K) \to \widehat{\mathrm{K}}_{n-1}^{\operatorname{top}}(K_{n-1})$$

is defined by the commutativity of the diagram

where E and E' are finite extensions of K inside K^{ab} satisfying $E \subseteq E'$;

(5) (Ramification theoretic properties) Let $\chi \in H^1(K)$; that is, let $\chi : G_K^{ab} \to \mathbb{Q}/\mathbb{Z}$ be a character of G_K^{ab} , and let L_{χ} be the finite extension of K in K^{ab} such that $\text{Ker}(\chi) = \text{Gal}(K^{ab}/L_{\chi})$. The Kato-Swan conductor $\text{KSw}(\chi)$ of the character $\chi : G_K^{ab} \to \mathbb{Q}/\mathbb{Z}$, defined in Section 6 as the smallest integer $f \ge 0$ satisfying $U_K^{f+1} \subseteq N_{L_{\chi}/K}L_{\chi}^{\times}$, is furthermore the smallest integer $f \ge 0$ such that

$$U^{(i_1,\cdots,i_n)}_{\overline{v}_K} \mathbf{K}^{\mathrm{top}}_n(K) \subseteq \mathfrak{N}^{\mathrm{top}}_{L_\chi/K},$$

whenever $i_n > f$.

For details about local abelian K-theoretic class field theory, look at [7-9], [22], and [42, 44, 45].

There are four main approaches to construct the local abelian n-dimensional K-theoretic class field theory:

- The explicit approach of Fesenko [7–9] is based on extending the local abelian Hasse reciprocity law construction of Neukirch-Iwasawa [39, 40] and on extending the local norm residue symbol construction of Hazewinkel [17] to the setting of *n*-dimensional local fields;
- Kato's approach [22, 25] is cohomological and extends Tate's construction of the local abelian Hasse reciprocity law [48];
- Koya on the other hand [30–32], using Lichtenbaum's complexes $\mathbb{Z}(i)$ [34], generalizes class formation approach of local abelian class field theory to construct the local abelian 2-dimensional class field theory, which is extended and streamlined by Spiess [47] to the *n*-dimensional setting;
- The final approach, due to Parshin [42, 44, 45], which is the genesis of the whole program, generalizes Kawada-Satake construction of local abelian class field theory [29] to construct the local abelian n-dimensional class field theory in positive characteristic.

In this work we shall review Fesenko's explicit approach, where as stated above, the idea is to generalize the classical Neukirch-Iwasawa and Hazewinkel methods to higherdimensional local fields, which will be recalled next with extra care following closely [10,11, 13]. The explicit approach also has the advantage of extending local abelian n-dimensional

1244

K-theoretic class field theory to the non-abelian setting; namely, constructing the local non-abelian n-dimensional K-theoretic class field theory [20].

As first recollection, Fesenko's extension of Neukirch-Iwasawa method to *n*-dimensional local fields can be very briefly summarized as follows: Let L denote a finite Galois extension of the *n*-dimensional local field K in a fixed K^{sep} . As usual, let $L^{\text{pur}} = LK^{\text{pur}}$. For any $\sigma \in \text{Gal}(L/K)$, let $\tilde{\sigma}$ be any element of $\text{Gal}(L^{\text{pur}}/K)$ such that:

$$\begin{array}{l} -\widetilde{\sigma} \mid_{L} = \sigma; \\ -\widetilde{\sigma} \mid_{K^{\text{pur}}} = \varphi_{K}^{i} \text{ for some } i \in \mathbb{Z}. \end{array}$$

The *n*-dimensional Neukirch-Iwasawa map

$$\mathcal{N}_{L/K} : \operatorname{Gal}(L/K) \to \operatorname{K}_n^{\operatorname{top}}(K)/\operatorname{N}_{L/K}^{\operatorname{top}}(\operatorname{K}_n^{\operatorname{top}}(L))$$

of L/K is then defined by

$$\mathscr{N}_{L/K}: \sigma \mapsto \mathrm{N}^{\mathrm{top}}_{\Sigma/K}(\Pi_{\mathrm{K}^{\mathrm{top}}_{n}(\Sigma)}) \pmod{\mathrm{N}^{\mathrm{top}}_{L/K}(\mathrm{K}^{\mathrm{top}}_{n}(L))},$$

where Σ denotes the fixed field of $\tilde{\sigma}$ and $\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(\Sigma)}$ any prime element of $\mathbf{K}_{n}^{\mathrm{top}}(\Sigma)$. This map does not depend on the choice of lifting $\tilde{\sigma}$ of σ to L^{pur} and to the choice of prime element $\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(\Sigma)}$ of $\mathbf{K}_{n}^{\mathrm{top}}(\Sigma)$. Moreover, the *n*-dimensional Neukirch-Iwasawa map $\mathscr{N}_{L/K}$: $\mathrm{Gal}(L/K) \to \mathbf{K}_{n}^{\mathrm{top}}(K)/\mathbf{N}_{L/K}^{\mathrm{top}}(\mathbf{K}_{n}^{\mathrm{top}}(L))$ of L/K induces a topological group homomorphism

$$\mathcal{N}_{L/K}^{\mathrm{ab}} : \mathrm{Gal}(L/K)^{\mathrm{ab}} \to \mathrm{K}_n^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(L)),$$

which is actually the inverse of the local abelian *n*-dimensional reciprocity law of L/K.

As second recollection, Fesenko's generalization of Hazewinkel's method to *n*-dimensional local fields can be sketched as follows: First assume that the *n*-dimensional local field Kis of positive characteristic, which is the easier case, as the Galois descent for K_*^{top} -groups holds. Let L denote a finite Galois extension of K in a fixed K^{sep} , and let K^{pur} denote the maximal purely unramified extension of K in K^{sep} . Assume further that L/K is linearly disjoint with K^{pur}/K ; that is, the extension L/K is totally ramified by (2.1). Recall that, the n^{th} topological Milnor K-group $K_n^{top}(K^{pur})$ of K^{pur} is defined by the direct limit

$$\mathbf{K}_{n}^{\mathrm{top}}(K^{\mathrm{pur}}) = \varinjlim_{K'} \mathbf{K}_{n}^{\mathrm{top}}(K'),$$

where K' runs over all finite extensions of K in K^{pur} , with respect to the connecting morphisms

$$j^{\mathrm{top}}_{K''/K'}: \mathrm{K}^{\mathrm{top}}_n(K') \to \mathrm{K}^{\mathrm{top}}_n(K'')$$

defined for any two finite extensions K' and K'' of K inside K^{pur} satisfying $K' \subseteq K''$. Introduce the group $K_n^{\text{top}}(L^{\text{pur}})$ similary and define a subgroup V(L/K) of $K_n^{\text{top}}(L^{\text{pur}})$ by

$$V(L/K) = \left\langle \sigma(\alpha) - \alpha \mid \sigma \in \operatorname{Gal}(L^{\operatorname{pur}}/K^{\operatorname{pur}}), \alpha \in V_{K_n} \mathrm{K}_n^{\operatorname{top}}(L^{\operatorname{pur}}) \right\rangle.$$

Then $V(L/K) \subseteq \operatorname{Ker}(\operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}^{\operatorname{top}})$ and the norm map $\operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}^{\operatorname{top}} : \operatorname{K}_{n}^{\operatorname{top}}(L^{\operatorname{pur}}) \to \operatorname{K}_{n}^{\operatorname{top}}(K^{\operatorname{pur}})$, which is surjective, induces a morphism

$$N_{L^{pur}/K^{pur}*}^{top}: K_n^{top}(L^{pur})/V(L/K) \to K_n^{top}(K^{pur})$$

sitting in the short exact sequence

$$1 \to \operatorname{Gal}(L^{\operatorname{pur}}/K^{\operatorname{pur}}) \xrightarrow{c} \operatorname{K}_{n}^{\operatorname{top}}(L^{\operatorname{pur}})/V(L/K) \xrightarrow{\operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}{*}} \operatorname{K}_{n}^{\operatorname{top}}(K^{\operatorname{pur}}) \to 0, \qquad (7.1)$$

ton

where the arrow

$$c: \operatorname{Gal}(L^{\operatorname{pur}}/K^{\operatorname{pur}}) \to \operatorname{K}^{\operatorname{top}}_n(L^{\operatorname{pur}})/V(L/K)$$

is defined by

$$c(\sigma) = \sigma(\Pi_{\mathbf{K}_n^{\mathrm{top}}(L^{\mathrm{pur}})}) - \Pi_{\mathbf{K}_n^{\mathrm{top}}(L^{\mathrm{pur}})} \pmod{V(L/K)},$$

for every $\sigma \in \operatorname{Gal}(L^{\operatorname{pur}}/K^{\operatorname{pur}})$, which is independent of the choice of $\Pi_{K_n^{\operatorname{top}}(L^{\operatorname{pur}})}$. Now, for $\varepsilon \in \operatorname{Ker}(\nu_{K_n^{\operatorname{top}}(K)})$ there exists $\eta_{\varepsilon} \in \operatorname{K}_n^{\operatorname{top}}(L^{\operatorname{pur}})$ such that $\varepsilon = \operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}^{\operatorname{top}}(\eta_{\varepsilon})$. Let $\varphi : L^{\operatorname{pur}} \to L^{\operatorname{pur}}$ denote a lifting of the Frobenius automorphism $\varphi_K : K^{\operatorname{pur}} \to K^{\operatorname{pur}}$ of K^{pur} to L^{pur} . Then, $\varphi(\eta_{\varepsilon}) - \eta_{\varepsilon} \pmod{V(L/K)} \in \operatorname{Ker}(\operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}^{\operatorname{top}})$ and as the sequence (7.1) is exact, there exists $\tilde{\sigma}_{\varepsilon} \in \operatorname{Gal}(L^{\operatorname{pur}}/K^{\operatorname{pur}})$ so that

$$c(\widetilde{\sigma}_{\varepsilon}) = \widetilde{\sigma}_{\varepsilon}(\Pi_{\mathbf{K}_{n}^{\mathrm{top}}(L^{\mathrm{pur}})}) - \Pi_{\mathbf{K}_{n}^{\mathrm{top}}(L^{\mathrm{pur}})} \pmod{V(L/K)} = \varphi(\eta_{\varepsilon}) - \eta_{\varepsilon} \pmod{V(L/K)}.$$

Then, there exists a unique and well-defined continuous homomorphism

$$\mathscr{H}_{L/K}: \mathrm{K}_{n}^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_{n}^{\mathrm{top}}(L)) \to \mathrm{Gal}(L/K)^{\mathrm{al}}$$

satisfying

$$\mathscr{H}_{L/K}: \varepsilon \pmod{\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(L))} \mapsto \widetilde{\sigma}_{\varepsilon}^{-1} \mid_{L \cap K^{\mathrm{ab}}}$$

for all $\varepsilon \in \operatorname{Ker}(\nu_{K_n^{\operatorname{top}}(K)})$, called the *n*-dimensional Hazewinkel map of L/K, where L/K is a finite Galois extension linearly disjoint with K^{pur}/K .

Let L/K denote a finite Galois extension which is linearly disjoint with K^{pur}/K , where char(K) > 0. It turns out that, the *n*-dimensional Neukirch-Iwasawa map of L/K and the *n*-dimensional Hazewinkel map of L/K are inverses of each other; that is,

$$\mathscr{H}_{L/K} \circ \mathscr{N}_{L/K}^{\mathrm{ab}} = \mathrm{Id}_{\mathrm{Gal}(L/K)^{\mathrm{ab}}} \text{ and } \mathscr{N}_{L/K}^{\mathrm{ab}} \circ \mathscr{H}_{L/K} = \mathrm{Id}_{\mathrm{K}_{n}^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(L))}.$$

In case char(K) = 0, unfortunately the construction sketched for the positive characteristic case does not work for *p*-extensions L over K in general. However, there is a method to overcome this difficulty. In fact, there is a special class of *p*-extensions L over K, called strong Artin-Schreier trees [10,11,13], where the construction outlined for char. > 0 works perfectly well. In fact, we have the short exact sequence (7.1) for strong Artin-Schreier trees. That is, if L/K is a strong Artin-Schreier tree, then the following sequence

$$1 \to \operatorname{Gal}(L/K) \xrightarrow{c} V_{K_n} \operatorname{K}_n^{\operatorname{top}}(L^{\operatorname{pur}})/V(L/K) \xrightarrow{\operatorname{N}_{L^{\operatorname{pur}}/K^{\operatorname{pur}}}^{\operatorname{top}}} V_{K_n} \operatorname{K}_n^{\operatorname{top}}(K^{\operatorname{pur}}) \to 0, \quad (7.2)$$

is exact. Therefore, for a finite strong Artin-Schreier tree L/K linearly disjoint with K^{pur}/K ; that is the extension L/K is totally ramified by (2.1), there exists a unique and well-defined continuous homomorphism

$$\mathscr{H}_{L/K}: V_{K_n} \mathcal{K}_n^{\mathrm{top}}(K) / \mathcal{N}_{L/K}^{\mathrm{top}}(V_{K_n} \mathcal{K}_n^{\mathrm{top}}(L)) \to \mathrm{Gal}(L/K)^{\mathrm{ab}}$$

the *n*-dimensional Hazewinkel map of L/K, constructed as in the char. > 0 case, which further satisfies

$$\mathscr{H}_{L/K} \circ \mathscr{N}_{L/K}^{\mathrm{ab}} = \mathrm{Id}_{\mathrm{Gal}(L/K)^{\mathrm{ab}}}.$$
(7.3)

Therefore, if L/K is a finite strong Artin-Schreier tree linearly disjoint with K^{pur}/K , then the continuous homomorphism

$$\mathscr{H}_{L/K}: V_{K_n} \mathbf{K}_n^{\mathrm{top}}(K) / \mathbf{N}_{L/K}^{\mathrm{top}}(V_{K_n} \mathbf{K}_n^{\mathrm{top}}(L)) \to \mathrm{Gal}(L/K)^{\mathrm{ab}}$$

is a surjection, and the continuous homomorphism

$$\mathscr{N}_{L/K}^{\mathrm{ab}}:\mathrm{Gal}(L/K)^{\mathrm{ab}}\to\mathrm{K}_n^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(L))$$

is an injection. Now, the class of all strong Artin-Schreier trees over K is "dense" in the class of all *p*-extensions of K in the sense that, for any totally ramified finite Galois *p*-extension L/K, there exists a totally ramified finite *p*-extension Q_L/K such that LQ_L/Q_L is a strong Artin-Schreier tree and $L^{\text{pur}} \cap Q_L^{\text{pur}} = K^{\text{pur}}$. So let L/K be a totally ramified finite Galois *p*-extension. Then, $L^{\text{pur}} \cap Q_L^{\text{pur}} = K^{\text{pur}}$ implies that $L \cap Q_L = K$, so the Galois extension L/K and the *p*-extension Q_L/K are linearly disjoint. Therefore, the restriction

map $\operatorname{Res}_{L}^{LQ_{L}}$: $\operatorname{Gal}(LQ_{L}/Q_{K}) \xrightarrow{\sim} \operatorname{Gal}(L/K)$ is an isomorphism of profinite groups, and the following square

$$\begin{array}{c} \operatorname{Gal}(LQ_L/Q_L)^{\operatorname{ab}} \xrightarrow{\mathscr{N}_{LQ_L/Q_L}^{\operatorname{ab}}} \operatorname{K}_n^{\operatorname{top}}(Q_L)/\operatorname{N}_{LQ_L/Q_L}^{\operatorname{top}}(\operatorname{K}_n^{\operatorname{top}}(LQ_L)) \\ \\ & & & & \\ \operatorname{Res}_L^{LQ_L} \end{array} \xrightarrow{\wr} \operatorname{K}_n^{\operatorname{top}}(K)/\operatorname{N}_{Q_L/K}^{\operatorname{top}}(K) \\ \\ & & & \\ \operatorname{Gal}(L/K)^{\operatorname{ab}} \xrightarrow{\mathscr{N}_{L/K}^{\operatorname{ab}}} \operatorname{K}_n^{\operatorname{top}}(K)/\operatorname{N}_{L/K}^{\operatorname{top}}(\operatorname{K}_n^{\operatorname{top}}(L)) \end{array}$$

is commutative. Therefore,

$$\mathscr{N}_{L/K}^{\mathrm{ab}}:\mathrm{Gal}(L/K)^{\mathrm{ab}}\to\mathrm{K}_n^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(L))$$

is an injective homomorphism of topological groups, since the Neukirch-Iwasawa map

$$\mathscr{N}_{LQ_L/Q_L}^{\mathrm{ab}}:\mathrm{Gal}(LQ_L/Q_L)^{\mathrm{ab}}\to\mathrm{K}_n^{\mathrm{top}}(Q_L)/\mathrm{N}_{LQ_L/Q_L}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(LQ_L))$$

of LQ_L/Q_L is an injective arrow by equality (7.3) as LQ_L/Q_L is a finite strong Artin-Schreier tree linearly disjoint with $Q_L^{\text{pur}}/Q_L^{\dagger\dagger}$. The surjectivity of the *n*-dimensional Neukirch-Iwasawa map

$$\mathscr{N}^{\mathrm{ab}}_{L/K}:\mathrm{Gal}(L/K)^{\mathrm{ab}}\to\mathrm{K}^{\mathrm{top}}_n(K)/\mathrm{N}^{\mathrm{top}}_{L/K}(\mathrm{K}^{\mathrm{top}}_n(L))$$

of L/K follows via induction on the degree [L:K].

Now, for a finite Galois *p*-extension L/K which is linearly disjoint with K^{pur}/K , where char(K) = 0, the *n*-dimensional Hazewinkel map

$$\mathscr{H}_{L/K} : \mathrm{K}_{n}^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_{n}^{\mathrm{top}}(L)) \to \mathrm{Gal}(L/K)^{\mathrm{ab}},$$

of L/K is then defined as the inverse of the *n*-dimensional Neukirch-Iwasawa map

$$\mathscr{N}_{L/K}^{\mathrm{ab}} : \mathrm{Gal}(L/K)^{\mathrm{ab}} \to \mathrm{K}_n^{\mathrm{top}}(K)/\mathrm{N}_{L/K}^{\mathrm{top}}(\mathrm{K}_n^{\mathrm{top}}(L))$$

of L/K.

This completes the review of Fesenko's constructive local abelian higher-dimensional class field theory following [10, 11, 13].

$$a = \lambda_0 + \lambda_1 q + \dots + \lambda_{s-1} q^{s-1} = \kappa_0 + \kappa_1 q + \dots + \kappa_{s-1} q^{s-1}.$$

Therefore,

$$(\lambda_0 - \kappa_0) + (\lambda_1 - \kappa_1)q + \dots + (\lambda_{s-1} - \kappa_{s-1})q^{s-1} = 0$$

Now, as Q_L/K and K^{pur}/K are linearly disjoint, it follows that $L^{\text{pur}} \cap Q_L^{\text{pur}} = K^{\text{pur}} \Rightarrow L^{\text{pur}} \cap Q_L = K$. Thus, L^{pur}/K and Q_L/K are linearly disjoint, which implies that the K-basis B of Q_L is also an L^{pur} -basis of $(LQ_L)^{\text{pur}} = K^{\text{pur}}LQ_L$. Therefore,

 $\lambda_0 - \kappa_0 = \dots = \lambda_{s-1} - \kappa_{s-1} = 0 \Rightarrow \lambda_0 = \kappa_0; \dots; \lambda_{s-1} = \kappa_{s-1}.$

The extension L/K is totally ramified. Therefore, $\lambda_0, \dots, \lambda_{s-1} \in K$ and $a = \lambda_0 + \lambda_1 q + \dots + \lambda_{s-1} q^{s-1} \in Q_L$, which completes the proof.

^{††}It suffices to prove that $LQ_L \cap Q_L^{\text{pur}} = LQ_L \cap K^{\text{pur}}Q_L = Q_L$. Let $q \in Q_L$ be a primitive element over K; namely, let $Q_L = K(q)$. Let $B = \{1, q, \dots, q^{s-1}\}$ be a basis of the K-vector space Q_L . As $L \cap Q_L = K$, the extensions Q_L/K and L/K are linearly disjoint. Therefore, B is a basis of the L-vector space LQ_L . Likewise, B is a basis of the K^{pur} -vector space $K^{\text{pur}}Q_L = Q_L^{\text{pur}}$ since the extension Q_L/K is totally ramified. Now, let $a \in LQ_L \cap K^{\text{pur}}Q_L$. Then there exists unique $\lambda_0, \dots, \lambda_{s-1} \in L$ and there exists unique $\kappa_0, \dots, \kappa_{s-1} \in K^{\text{pur}}$ such that

References

- A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Amer. J. Math. 124 (5), 879–920, 2002.
- [2] E. Artin and J. Tate, *Class Field Theory*, AMS Chelsea Publishing, Vol.366, American Mathematical Society, Providence, Rhode Island, 2008.
- [3] C. Barwick and P. Heine, *Pyknotic objects I. Basic notions*, arXiv:1904.09966 [math.AG], 2019. Retrieved November 30, 2020, from the arXiv database.
- [4] S. Bloch, Algebraic K-theory and class field theory for arithmetic surfaces, Ann. Math. 114, 229–266, 1981.
- [5] O. Braunling, M. Groechenig and J. Wolfson, Geometric and analytic structures on higher adèles, Res. Math. Sci. 3, Paper No. 22, 56 pages, 2016.
- [6] A. Cámara, Topology on rational points over n-local fields, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2), 417-432, 2016.
- [7] I.B. Fesenko, Class field theory of multi-dimensional local fields of characteristic zero, with residue field of positive characteristic, Algebra i Analiz 3 (3), 165-196, 1991.
- [8] _____, On class field theory of multi-dimensional local fields of positive characteristic, Algebraic K-theory, Adv. Soviet Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1991, 103-127.
- [9] _____, Multi-dimensional local class field theory, Dokl. Akad. Nauk SSSR 318 (1), 47-50, 1991.
- [10] _____, Abelian local p-class field theory, Math. Anal. **301**, 561-586, 1995.
- [11] _____, Abelian extensions of complete discrete valuation fields, Number Theory: Séminaire de Théorie des Nombres de Paris 1993-94 (Sinnou David ed.), Cambridge Univ. Press, Cambridge, 47-74, 1996.
- [12] _____, Topological Milnor K-groups of higher local fields, Invitation to Higher Local Fields (Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick, 61-74, 2000.
- [13] _____, Explicit higher local class field theory, Invitation to Higher Local Fields (Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick, 95-101, 2000.
- [14] _____, Sequential topologies and quotients of the Milnor K-groups of higher local fields, Algebra i Analiz 13 (3), 198–221, 2001.
- [15] I.B. Fesenko and S.V. Vostokov, Local Fields and Their Extensions (2nd ed.), AMS Translations of Mathematical Monographs 121, AMS, Providence, Rhode Island, 2002.
- [16] H. Hasse, Die Normenresttheorie relative-Abelscher Zahlkörper als Klassenkörper im Kleinen, J. Reine Angew. Math. (Crelle) 162, 145-154, 1930.
- [17] M. Hazewinkel, Local class field theory is easy, Advances in Math. 18 (2), 148-181, 1975.
- [18] A. Huber, On the Parshin-Beilinson adèles for schemes, Abh. Math. Sem. Univ. Hamburg 61, 249–273, 1991.
- [19] O. Hyodo, Wild ramification in the imperfect residue field case, Galois Groups and Their Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland, Amsterdam, 287–314, 1983.
- [20] K.I. Ikeda and E. Serbest, *Local non-abelian Kato-Parshin reciprocity law*, in preparation.
- [21] K. Iwasawa, Local Class Field Theory, Oxford Mathematical Monographs, Oxford Univ. Press., Clarendon, 1986.
- [22] K. Kato, A generalization of local class field theory by using K-groups I, II, III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26, 303-376, 1979; 27, 603-683, 1980; 29, 31-43, 1982.

- [23] _____, Vanishing cycles, ramification of valuations, and class field theory, Duke Math. J. 55 (3), 629-659, 1987.
- [24] _____, Swan conductors for characters of degree one in the imperfect residue field case, Algebraic K-theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math. 83, Amer. Math. Soc., Providence, RI, 101-131, 1989.
- [25] _____, Existence theorem for higher local fields, Invitation to Higher Local Fields (Ed. I. B. Fesenko, M. Kurihara), Geometry & Topology Monographs 3, Warwick, 165-195, 2000.
- [26] K. Kato and S. Saito, Two-dimensional class field theory, Galois Groups and Their Representations (Nagoya, 1981), Adv. Stud. Pure Math. 2, North-Holland, Amsterdam, 103–152, 1983.
- [27] _____, Global class field theory of arithmetic schemes, Applications of Algebraic K-theory to Algebraic Geometry and Number Theory, Part I, II (Boulder, Colorado, 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 255–331, 1986.
- [28] K. Kato and T. Saito Coincidence of two Swan conductors of abelian characters, Épijournal Géom. Algébrique 3, Art. 15, 16 pp, 2019.
- [29] Y. Kawada and I. Satake, Class formations II, J. Fac. Sci. Univ. Tokyo 7, 453-490, 1955.
- [30] Y. Koya, A generalization of class formation by using hypercohomology, Invent. Math. 101, 705-715, 1990.
- [31] _____, A generalization of Tate-Nakayama theorem by using hypercohomology, Proc. Japan Acad., Ser. A 69 (3), 53-57, 1993.
- [32] _____, Class field theory without theorem 90, Algebra Colloq. 1 (4), 347-358, 1994.
- [33] K. Kurano and K. Shimomoto, An elementary proof of the Cohen-Gabber theorem in the equal characteristic p > 0 case, Tohoku Math. J. **70**, 377-389, 2018.
- [34] S. Lichtenbaum, The construction of weight-two arithmetic cohomology, Invent. Math. 88, 183-215, 1987.
- [35] V.G. Lomadze, On the ramification theory of two-dimensional local fields, Math. USSR Sbornik 37, 349–365, 1980.
- [36] A.I. Madunts and I.B. Zhukov, Multi-dimensional complete fields : Topology and other basic constructions, Trudy S.-Peterb. Mat. Obshch. 1995, English translation in Amer. Math. Soc. Transl. (Ser. 2)165, 1-34, 1995.
- [37] M. Morrow, An introduction to higher dimensional local fields and adèles, arXiv:1204.0586v2 [math.AG], 2012. Retrieved October 25, 2020, from the arXiv database.
- [38] _____, Continuity of the norm map on Milnor K-theory, J. K-Theory **9** (3), 565– 577, 2012.
- [39] J. Neukirch, Neubegründung der Klassenkörpertheorie, Math. Z. 186, 557–574, 1984.
- [40] _____, Class Field Theory, Springer-Verlag, Berlin, 1986.
- [41] D.V. Osipov, n-dimensional local fields and adèles on n-dimensional schemes, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 131–164, 2008.
- [42] A.N. Parshin, Class fields and algebraic K-theory, Uspekhi Mat. Nauk 30 (1), 253– 254, 1975.
- [43] _____, On the arithmetic of two-dimensional schemes. I. Distributions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (4), 736–773, 1976.
- [44] _____, Abelian coverings of arithmetic schemes, Sov. Math., Dokl. 19, 1438-1442, 1978.
- [45] _____, Local class field theory, Trudy Mat. Inst. Steklov 165, 143-170, 1985.
- [46] P. Scholze, Lectures on Condensed Mathematics-Joint work with D. Clausen, Bonn Lectures, 2019.

- [47] M. Spiess, Class formations and higher dimensional local class field theory, Journal of Number Theory 62, 273–283, 1997.
- [48] J. Tate, The higher dimensional cohomology groups of class field theory, Ann. of Math. (2nd Series) 56, 294-297, 1952.
- [49] L. Xiao and I. B. Zhukov, Ramification of higher local fields, approaches and questions, Algebra i Analiz 26 (5), 1-63, 2014.
- [50] I.B. Zhukov, *Higher dimensional local fields*, Invitation to Higher Local Fields (Münster, 1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr. 3, Geom. Topol. Publ., Coventry, 5-18, 2000.
- [51] _____, An approach to higher ramification theory, Invitation to Higher Local Fields (Münster, 1999) (Ed. I. B. Fesenko, M. Kurihara), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 143-150, 2000.