
Designing a Pseudo-Random Bit Generator Using
Generalized Cascade Fractal Function
Shafali Agarwal ID ∗,1
∗Independent Researcher, 9600 Coit Road, Plano, TX 75025, USA.

ABSTRACT A cascade function is designed by combining two seed maps that resultantly has more parameters,
high complexity, randomness, and more unpredictable behavior. In the paper, a cascade fractal function,
i.e. cascade-PLMS is proposed by considering the phoenix and lambda fractal functions. The constructed
cascade-PLMS exhibits the required fractal features such as fractional dimension, self-similar structure, and
covering entire phase space by the data sequence in addition to the chaotic properties. Due to the chaotic
behavior, the proposed function is utilized to generate a pseudo-random number sequence in both integer and
binary format. This is the result of an extreme scalability feature of a fractal function that can be implemented
on a large scale. A sequence generator is designed by performing the linear function operation to the real
and imaginary part of a cascade-PLMS, cascade-PLJS separately, and the iteration number at which the
cascade-PLJS converges to the fixed point. The performance analysis results show that the given method has
a large key space, fast key generation speed, high key sensitivity, and strong randomness. Therefore, the
scheme can be efficiently used further to design a secure cryptosystem with the ability to withstand various
attacks.

KEYWORDS

Mandelbrot set
PRNG
Cascade phoenix
lambda fractal
Key security anal-
ysis
Dynamic behav-
ior

INTRODUCTION
An internet era extends the security requirement of the dig-
ital information transmitted over the unsecured network.
Cryptography is one of the most prominent ways to protect
the data from illegitimate users (SI 1998). Since the last few
years, a chaotic system has attracted researchers to utilize
it in the field of cryptography. The dynamical properties
of a non-linear chaotic system such as unpredictability, ran-
domness, sensitivity to the minute change in its initial value,
ergodicity, complex structure and deterministic dynamics
lead it to a secure cryptosystem design. The abovemen-
tioned properties encourage to construct of a chaotic system
having increased security and high complexity (Devaney
2018).

A fractal is a graphical representation of a chaotic func-
tion with complex structure and infinite scaling in each

Manuscript received: 3 December 2020,
Revised: 1 February 2021,
Accepted: 3 February 2021.

1 shafali.agarwal@gmail.com

direction. In addition to chaotic behavior, a fractal function
possesses more features such as construction in a complex
domain, fractional dimension, self-similarity, etc. (Devaney
et al. 1989; Mandelbrot and Mandelbrot 1982). A hybrid
fractal function exhibits the characteristics of seed functions
with more controlling parameters. Recently, a composite
fractal function has been proposed by the author and dis-
cussed the suitability of the function in an image cryptosys-
tem design (Agarwal 2020). Even many hybrid chaotic maps
and their applicability in a pseudo-random generator, cryp-
tography, s-box design have been studied by the researchers
(Artuğer and Özkaynak 2020; Bai et al. 2020; Hua et al. 2018;
Lynnyk et al. 2015; Moysis et al. 2020a). Additionally, fractal
geometry is widely utilizing in user authentication (Motỳl
and Jašek 2011), medical image analysis (Dey et al. 2018), and
image hashing (Khelaifi and He 2020). Unpredictable be-
havior and extreme sensitivity towards the change in initial
values prefer a fractal function to design a pseudo-random
number sequence (PRNG).

CHAOS Theory and Applications 11

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.3 / No.1 / 2021 / pp.11-19

https:/ /doi .org/10.51537/chaos.835222

https://orcid.org/0000-0002-2542-8578


A pseudo word indicates a random sequence calculated
using a deterministic system. According to mathematical
theory, a deterministic system is predictable. A complex
sequence generator including the process to select a seed
value can help to enhance the security and reduce the cor-
relation in the generated sequence. A PRNG has a wide
range of applicability in various fields such as in the game
industry, artificial intelligence, cryptography, statistical sim-
ulation, and many more. On the other hand, a true random
number sequence is produced by the author by visualiz-
ing spontaneous chaotic oscillation of the current through
semiconductor superlattices (Bonilla et al. 2016).

Recently, Barnsley’s chaos game rules were utilized to
generate a pseudo-random sequence (Ayubi et al. 2020). A
complex Newton fractal function was used to generate a
secure PRNG due to the strong statistical characteristics and
a random phase space (Barani et al. 2020). An additional ad-
vantage of the map is to have a PRNG in an integer as well
as a complex form. A modified logistic map was utilized
to generate PRNG in two phases, including initial pseudo-
random sequence and normal pseudo-random sequence
using the value obtained in the previous phase (Wang and
Cheng 2019). Another modified logistic map was success-
fully applied to generate random bit sequences by perform-
ing a comparison between maps, XOR, and bit reversal (Mo-
ysis et al. 2020b). An original logistic map was coupled with
a piecewise map to implement a chaotic pseudo-random
number generator (Sahari and Boukemara 2018). To over-
come the chaotic degradation that arises due to the com-
putational accuracy, a self-perturbed hyperchaotic system
based PRN generator is proposed. The used hyperchaotic
map is derived using the classical Lorenz three-dimensional
chaotic system (Zhao et al. 2019). A similar Lorenz-like
Chen chaotic system (Chen and Ueta 1999) was utilized by
the author to generate a complex pseudo-random number
generator (Hamza 2017). Earlier a PRN generator was pro-
posed using the time series obtained from the generalized
Lorenz chaotic map (Lynnyk et al. 2015). The author pro-
posed a method in (Moysis et al. 2020a) to generate a PRNG
by extracting around 8 bits per iteration from the decimal
part of the chaotic map. The method was tested on various
one-dimensional maps including the logistic map, sine map,
Renyi map, Chebyshev map, cubic map, cubic logistic map.

In this paper, the cascading of two fractal functions is
proposed with the applicability of the function in the design
of a pseudo-random number generator. The emergence of
the chaotic characteristics of two maps provides a more com-
plex environment to produce a PRNG. The change in any
single parameter realizes to a completely new data sequence,
which is the foremost requirement of a secure PRNG. The
main contribution in the paper can be summarized as fol-
lows:

1. A cascade structure of the fractal function is imple-
mented using Phoenix and lambda fractal functions.

2. The dynamical behavior of the proposed cascade-PLMS
is thoroughly investigated by analyzing its dimension,

self-similar structure, trajectory, and cobweb diagram.

3. A method to generate a pseudo-random number se-
quence is proposed by using a combination of a cascade-
PLMS, cascade-PLJS fractal function, and a fixed-point
value resultant the execution of a particular cascade-
PLJS.

4. The randomness and security of the generated PRNG
are verified with various tests such as key space, key
sensitivity, correlation value, autocorrelation analysis,
information entropy, etc.

The rest of the paper is organized as follows. The struc-
ture of the proposed cascade-PLMS, and cascade PLJS and
their dynamical properties are studied in section 2. In sec-
tion 3, the generated fractal functions are applied to produce
a pseudo-random bit sequence. In section 4, the random-
ness and security performance of the generated PRNG are
analyzed. Finally, the paper is concluded with a discussion
of future work direction in section 5.

A CASCADE FRACTAL FUNCTION AND IT’S DY-
NAMICAL BEHAVIOR ANALYSIS
A cascade fractal function (Cascade-FF) is designed by con-
sidering two seed functions (for example F1(x) and F2(x))
connected in the series. For each iteration, the output of
F1(x) is fed into the F2(x) as input, and the output of F2(x)
is fed as an input to the F1(x). A repetitive output value
feeding to each other until the number of iteration limit gets
over (Zhou et al. 2014). Mathematically, for functions F1(x)
and F2(x), a cascade-FF is defined as follows:

xn+1 = F1(F2(xn)) (1)

where F1(x) and F2(x) two seed functions which can be
the same or different. A function is known as a cascade
with itself if the same functions are using in the cascade-FF
design. In that case, the function definition will be:

xn+1 = F1(F1(xn)) (2)

A cascade-FF has the ability to exhibit different struc-
tures while changing the order of contributed seed functions.
Such as:

xn+1 = F1(F2(xn)) (3)

and

xn+1 = F2(F1(xn)) (4)

The paper focuses on the single aspect of designing a
cascade-FF using phoenix and lambda fractal function. Let’s
recall the mathematical definition of the phoenix fractal and
lambda fractal functions respectively (Peitgen et al. 2006):

z(n+1) = za
n + zb

nc + pz(n−1)

z(n+1) = czn(1− zn)(w−1)
(5)

12 | Shafali Agarwal CHAOS Theory and Applications



where c ∈ C, and −1 < p < 1 with z0 6= 0. The fractal
images generated by executing both functions are shown in
Figure 1.

(a) (b)

Figure 1 a) Phoenix fractal b) Lambda fractal.

Cascade-PLMS and Cascade-PLJS

A cascade-PLMS function is proposed to have a more com-
plicated chaotic structure that is controlled by many pa-
rameters as compared to an individual. Too many parame-
ters give the flexibility to have a more random and unpre-
dictable output sequence by varying its value. By consider-
ing the phoenix fractal as F1(x) and lambda fractal as F2(x)),
a cascade-PLMS is defined as follows:

tempz = za
n + zb

nc + pz(n−1)

z(n+1) = c ∗ tempz(1− tempz)(w−1)
(6)

All variables have their usual meaning except tempz. It
represents an intermediate value of the phoenix function
which has fed to the lambda function as input. The cascade-
PLMS function is a set of c values for which the orbit of
starting value i.e. zn remains bounded under the function
iteration. The proposed cascade-PLMS function is utilized
to generate a pseudo-random number sequence with the
parameter values z0 = 0.09, p = −0.03, a = 2, b = 1, and
w = 3.

A cascade phoenix lambda Julia set (cascade-PLJS) is
nothing but a fractal image of the same function for a fixed c
value starting with a nonzero z value. The paper has shown
a cascade-PLJS image for c = (0.7444196429, 0.6863839286).
Both fractal images are plotted for the above-given param-
eter values using the UltraFractalTM and shown in Figure
2. A repetitive execution of the function with a fixed c
value makes it converge to a fixed-point attractor, depend-
ing on whether the c value lies inside the cascade-PLMS
image or outside of it. The convergence rate of the func-
tion varies for different c values. The iteration number at
which the cascade-PLJS converges will be utilized in the
pseudo-random number generation method.

(a) (b)

Figure 2 a) Cascade-PLMS b) Cascade-PLJS.

Dynamical Properties Analysis of Cascade-PLMS
Self-Similar Structure A fractal image is well-known to
have a self-similar structure at a wide range of different
scales. The beauty of a Mandelbrot set is to have infinite in-
formation on a small area of interest. As you zoom into the
set, you will get newer fascinating images. A new cascade-
PLMS is supposed to create an artistically appealing fractal
image that also exhibits new patterns upon further explo-
ration. Figure 3 shows randomly selected fractal images
obtained by zooming the cascade-PLMS function.

(a) (b)

Figure 3 (a)-(b) Zoomed version of cascade-PLMS

Fractal dimension According to Felix Hausdorff (Czyz
1994), rough and broken fractal images should have an “in-
between” dimension. This is a common way to measure the
complexity of a fractal image boundary. A non-regular two-
dimensional fractal image is supposed to have a dimension
value between one and two. Recently, the author developed
a user interface to calculate the fractal dimension using the
box-counting method (Çimen et al. 2020). If a fractal image
is superimposed by a grid of N squares to occupy the E
number of edges, the fractal dimension can be calculated as:

dim =
log N
log E

(7)

The fractal dimension for several cascade-PLMS was cal-
culated to verify the fractional structure of the proposed
system. The obtained results were able to satisfy the re-
quirement of a fractal function. The fractal dimension of the

CHAOS Theory and Applications 13



proposed cascade-PLMS function for the above-discussed
parameters is 1.1535.

Trajectory and Cobweb diagram A cobweb and trajectory
diagrams are used to display the successive iterations of
a function. The only difference is that a cobweb diagram
presents the function behavior of a one-dimensional map
whereas a trajectory diagram is used to show the path of
the generated number sequence of the multi-dimensional
map. The chaotic behavior of a function can be justified by
distributing the generated sequence over time in the entire
phase space. A cascade-PLMS fractal image is generated
based on the number of iterations required to bound the ini-
tial value within the image. At the same time, a sequence of
a complex number is also generated on the execution of the
function for each initial value. Therefore, the below Figure
4 shows a cobweb diagram to show the occupancy of the
space by the iteration values and also a trajectory diagram
to present the relationship between real and imaginary val-
ues. It can be stated that the produced data covers the entire
phase space in both diagrams.

(a)

(b)

Figure 4 a) Trajectory diagram b) Cobweb diagram.

APPLICATION TO PSEUDO-RANDOM BIT GEN-
ERATION
The pseudo-random number generator is implemented by
considering the above proposed cascade-PLMS and its cor-
responding cascade-PLJS functions. All randomness tests
verify the suitability of the proposed cascade functions to
generate an unpredictable number sequence. A pictorial rep-
resentation of the proposed method can be seen in Figure
5.

The process starts by executing both the functions using
the initial values set within the respective value range. Here,
the cascade-PLMS function generates a sequence by con-
sidering initial values (z0,a, b, c, p, w) as (0.09, 2, 1, 0,−0.03, 3)
while the c value is considered (0.7444196429, 0.6863839286)
in cascade-PLJS assuming other values same as in cascade-
PLMS. The detailed method of the proposed technique is
described as follows:

Step 1: Calculate zdataMS and zdataJS as a set of a com-
plex number after executing the cascade-PLMS and cascade-PLJS
using the above-mentioned initial values set respectively.

Step 2: Calculate the fixed point of the cascade-PLJS function
for a given c value and record the maximum iteration number
(Itr) at which the fixed point is obtained.

Step 3: Separate real and imaginary parts of the zdataMS
into zdataMSreal and zdataMSimg and convert it into a one-
dimensional array.

Step 4: Repeat step 3 using zdataJS and obtained
zdataJSreal and zdataJSimg in a one-dimensional vector.

Step 5: Perform the linear function operation on the real num-
ber sequence of both the functions and Itr as follows:

updatedRealSeq = zdataMSreal ∗ Itr + zdataJSreal (8)

Step 6: Perform the same linear function operation on the
imaginary number sequence of both the functions and Itr as fol-
lows:

updatedImgSeq = zdataMSimg ∗ Itr + zdataJSimg (9)

Step 7: Convert float numbers to an integer by executing
the given function separately for real sequence and imaginary
sequence as follows:

IntRealSeq = round((updatedrealSeq ∗ 214)mod256)

IntImgSeq = round((updatedImgSeq ∗ 214)mod256)
(10)

Step 8: At last, a pseudo-random sequence is computed by con-
catenating both the sequences obtained prior using the following
function:

PRNG(2j) = IntRealSeq(i)

PRNG(2j + 1) = IntImgSeq(i)
(11)

14 | Shafali Agarwal CHAOS Theory and Applications



Figure 5 Block diagram of proposed PRNG method

where i = 1, 2, . . . , 500000 and initialize j=0. As a re-
sult, an integer sequence of length 106 is obtained. After
converting it into binary form, an 8-bit binary sequence of
length 8 ∗ 106 is produced. Hence, eight different binary
random number sequences can be generated by combining
the digits column-wise. To have a more random outcome,
intermediate 500000 values of each real and imaginary data
are considered while concatenating the sequence to get a
pseudo-random number sequence.

RANDOMNESS AND SECURITY ANALYSIS

Visual Representation of PRN Sequence
A trajectory diagram is used to display the path followed
by the sequence generated upon the execution of the func-
tion for a particular set of initial values. A non-linear pixel
path distributed over the entire phase space represents the
chaotic behavior of the map. By selecting an appropriate set
of initial values set can lead to producing a random number
sequence that does not show the periodic or closed curve be-
havior. Figure 6 displays a trajectory diagram of randomly
selected 500 pixels.

Key Space
Key space is an important index to indicate a secure cryp-
tosystem. The generator uses a cascade fractal function hav-
ing a set of initial values and control parameters to generate

Figure 6 Visual path of generated number sequence

a pseudo-random sequence. As per the function require-
ment, a set of values includes (z0, a, b, c, p, w) and a previous
z value. According to the IEEE floating-point standard, a
computational precision of a double datatype number is
about 1015. Therefore, the possible key space is calculated

as
(

1015
)7

= 10105 ≈ 2320. Thus, the available key space

is large enough than the prescribed range of 2100 that is re-
quired to resist the brute-force attack (Alvarez and Li 2006).

Key Generation Speed

The proposed PRNG method is implemented on MAT-
LABTM with a MacBook Pro having system configuration
2.6 GHz 6-Core Intel Core i7, and 16 GB memory. The ap-
proximate time to produce a random key sequence of size
1000 ∗ 1000 is 0.2084 sec.

CHAOS Theory and Applications 15



Key Sensitivity using NBCR Analysis
A key sensitivity test analysis is done to evaluate the impact
of the slight change in the input value to its corresponding
output value. The sensitiveness of the proposed pseudo-
random number generator is tested by executing two tests:
1) visual criterion, 2) the number of bit change rate (NBCR).

To evaluate the visual impact of two sequences, a control
parameter value of the function is increased by 10−14 and
others remain constant. Figure 7 shows the reaction of both
the sequences generated through initial values and the small
perturbed data set. It can be concluded from the figure that
the generated number sequence is completely different even
by making a small change in the control parameter value.
The other test calculates the number of changed bits between
two sequences. It is calculated as follows:

NBCR =
Ham_dis(x, y)

bit_len
(12)

Figure 7 Graphical representation of key sensitivity analy-
sis of generated sequence produced using original values
and altered values

The number of the bit change rate of two different num-
ber sequences is expected to be close to 50%. NBCR result in
Table 1 indicates that the initially generated pseudo-random
sequence is different from the sequence generated after in-
creasing a control parameter value slightly. Therefore, the
generated sequences prove the key sensitiveness of the pro-
posed pseudo-random number generator.

Entropy Analysis
An information entropy concept was introduced by Shan-
non to describes the randomness and uncertainty in the
information system (Shannon 1949). It can be computed
using the given function:

H(s) = −
(2n−1)

∑
i=0

p(xi)log2[p(xi)] (13)

n Table 1 NBCR value of generated sequence produced
using original values and altered values

Changed Parameter NBCR Value

Change in initial value z (Seq1) 49.90

Change in distortion (Seq2) 49.95

Change in power ’a’ (Seq3) 50.01

Change in power ’w’ (Seq4) 50.04

where p(xi) denotes the probability of occurrence of a
symbol xi in the pseudo-random sequence. If n number
of bits are required to represent a symbol, the entropy of
the information system is supposed to be close to n. A
binary sequence requires only one bit to show the symbol,
i.e. either zero or one. Therefore, an entropy value of a
binary sequence equals to one is considered as ideal value
to exhibit the randomness of the sequence.

Correlation Analysis
A correlation coefficient is calculated to analyze the relation-
ship between the two pseudo-random number sequences.
A value close to zero depicts no relationship between the
two sequences whereas strongly related sequences have a
correlation coefficient value near to one. Due to the cas-
cading of the two functions, many parameters are involved
in the pseudo-random number generator. Therefore, the
correlation analysis is done by varying a key at a time and
keeping constant the other parameters. For two sequences
x and y, the correlation coefficient is calculated using the
given equation:

CC (x, y) =
N

N
∑

i=1
(xiyi)−

N
∑

i=1
(xi)

N
∑

i=1
(yi)√

N
N
∑

i=1
(xi)

2 −
(

n
∑

i=1
(xi)

2
)
(N

N
∑

i=1
(yi)

2 −
(

n
∑

i=1
(yi)

2
)
)

(14)
Table 2 displayed the effect of changing parameters in

terms of correlation coefficient value. Each time a new se-
quence, i.e. y is generated by adding ε = 10−14 to the pre-
vious parameter value and also keeping others as same
as before. The process is executed for every parameter in
the same way and calculated the corresponding correlation
value. The obtained values indicate the high sensitivity of
the sequence towards the minute change in the parameter
value.

16 | Shafali Agarwal CHAOS Theory and Applications



n Table 2 Correlation coefficient value of generated se-
quence produced using original values and altered val-
ues

Changed Parameter Correlation coefficient

Change in initial value z (Seq1) 0.0034

Change in distortion (Seq2) 0.0024

Change in power ’a’ (Seq3) -0.0003

Change in power ’w’ (Seq4) 0.0005

Autocorrelation Analysis
Autocorrelation analysis is carried out to measure the simi-
larity between a sequence OS and its corresponding shifted
sequence OSS. The formula to calculate autocorrelation of a
sequence with size N is given as:

AC =
M1−M2

N
(15)

where M1 and M2 refer to the number of matches and
mismatches between the OS and OSS respectively. A value
that falls in a range [−1, 1] depicts a highly random number
sequence with a small correlation with itself. A graphical
view of pixel autocorrelation can be seen in Figure 8.

Figure 8 Autocorrelation analysis of number sequence

Performance Comparison with Existing Encryption Algo-
rithms
A comparative analysis of the proposed scheme with the
other existing PRNG methods is discussed in the section.
The comparison is mainly focused on the evaluation param-
eters such as key space, entropy, number of bit change rate,
and adjacent pixels correlation. Table 3 listed the data of
various considered PRNG methods along with the proposed
scheme to show a relative view of obtained results. The per-
formance parameters considered in the table proved good
agreement of the proposed PRNG algorithm from a highly
efficient and security view.

CONCLUSION
A cascade fractal function can be designed by combining
any two existing fractals. The paper analyzed the dynamical
behavior of cascade-PLMS function by considering phoenix
and lambda fractals. The benefit of combining two non-
linear functions is to have a more complex structure that
is further utilized to propose a pseudo-random number
generator. A linear function operation was applied to the
cascade-PLMS, cascade-PLJS, and the number of iterations
got as a result of obtaining a fixed point of the cascade-PLJS.
It is of interest to generate a PRNG which is an integer and
is convertible to the 8-bit binary sequence. By considering
the arrangement of the column-wise bit of the data, eight
simultaneous binary number sequences can be utilized in
further application. Aiming at the security of the generated
PRNG, a slight change in any system parameter leads to a
completely new pseudo-random number sequence.

The proposed concept of a new cascade fractal function
opens the door for the researchers to analyze the feasibil-
ity of the model using the other existing fractal functions.
The choice of fractal surely affects the complexity outcome
based on the corresponding function combination. Further,
the obtained PRNG can be applied to the cryptographic
application including creating watermarks, casinos, encod-
ing digital contents, and many more. It’s also aiming to
study how fast a bitstream can be generated so that it can
be utilized in the hardware implementation.

CHAOS Theory and Applications 17



n Table 3 Performance comparison of the proposed PRNG method with the existing methods

Encryption Algorithm Key Space Entropy NBCR Correlation Coefficient

Proposed 2320 7.9864 49.97 0.0016

Ref. (Zhao et al. 2019) 270 7.9896 49.74 -

Ref. (Barani et al. 2020) 2588 7.9937 50.13 0.0003

Ref. (Ayubi et al. 2020) 2232 - - 0.0586

Ref. (Wang and Cheng 2019) variable 7.9692 51.92 -

Ref. (Agarwal 2018) 2145 - - 0.0041

CONFLICTS OF INTEREST

The author declares that there is no conflict of interest re-
garding the publication of this paper.

LITERATURE CITED

Agarwal, S., 2018 Cryptographic key generation using burn-
ing ship fractal. In Proceedings of the 2nd International Con-
ference on Vision, Image and Signal Processing, pp. 1–6.

Agarwal, S., 2020 A new composite fractal function and its
application in image encryption. Journal of Imaging 6: 70.

Alvarez, G. and S. Li, 2006 Some basic cryptographic re-
quirements for chaos-based cryptosystems. International
journal of bifurcation and chaos 16: 2129–2151.

Artuğer, F. and F. Özkaynak, 2020 A novel method for per-
formance improvement of chaos-based substitution boxes.
Symmetry 12: 571.

Ayubi, P., S. Setayeshi, and A. M. Rahmani, 2020 Determin-
istic chaos game: A new fractal based pseudo-random
number generator and its cryptographic application. Jour-
nal of Information Security and Applications 52: 102472.

Bai, S., L. Zhou, M. Yan, X. Ji, and X. Tao, 2020 Image cryp-
tosystem for visually meaningful encryption based on
fractal graph generating. IETE Technical Review pp. 1–12.

Barani, M. J., P. Ayubi, M. Y. Valandar, and B. Y. Irani, 2020
A new pseudo random number generator based on gen-
eralized newton complex map with dynamic key. Journal
of Information Security and Applications 53: 102509.

Bonilla, L. L., M. Alvaro, and M. Carretero, 2016 Chaos-
based true random number generators. Journal of Mathe-
matics in Industry 7: 1–17.

Chen, G. and T. Ueta, 1999 Yet another chaotic attractor.
International Journal of Bifurcation and chaos 9: 1465–
1466.

Çimen, M. E., Z. GARİP, Ö. F. Boyraz, I. Pehlivan, M. Z.
YILDIZ, et al., 2020 An interface design for calculation of
fractal dimension. Chaos Theory and Applications 2: 3–9.

Czyz, J., 1994 Paradoxes of measures and dimensions originating
in Felix Hausdorff’s ideas. World Scientific.

Devaney, R., 2018 An introduction to chaotic dynamical systems.
CRC Press.

Devaney, R. L., J. A. Yorke, L. Keen, K. T. Alligood, M. F.
Barnsley, et al., 1989 Chaos and Fractals: The Mathematics
Behind the Computer Graphics: The Mathematics Behind the
Computer Graphics, volume 1. American Mathematical Soc.

Dey, N., A. S. Ashour, H. Kalia, R. Goswami, and H. Das,
2018 Histopathological image analysis in medical decision mak-
ing. IGI Global.

Hamza, R., 2017 A novel pseudo random sequence gen-
erator for image-cryptographic applications. Journal of
Information Security and Applications 35: 119–127.

Hua, Z., F. Jin, B. Xu, and H. Huang, 2018 2d logistic-sine-
coupling map for image encryption. Signal Processing
149: 148–161.

Khelaifi, F. and H. He, 2020 Perceptual image hashing based
on structural fractal features of image coding and ring
partition. Multimedia Tools and Applications pp. 1–20.

Lynnyk, V., N. Sakamoto, and S. Čelikovskỳ, 2015 Pseudo
random number generator based on the generalized
lorenz chaotic system. IFAC-PapersOnLine 48: 257–261.

Mandelbrot, B. B. and B. B. Mandelbrot, 1982 The fractal
geometry of nature, volume 1. WH freeman New York.

Motỳl, I. and R. Jašek, 2011 Advanced user authentication
process based on the principles of fractal geometry. In
Proceedings of the 11th WSEAS International Conference on
Signal Processing, Computational Geometry and Artificial Vi-
sion (ISCGAV’11), pp. 109–112.

Moysis, L., A. Tutueva, K. Christos, and D. Butusov, 2020a A
chaos based pseudo-random bit generator using multiple
digits comparison. Chaos Theory and Applications 2: 58–
68.

Moysis, L., A. Tutueva, C. Volos, D. Butusov, J. M. Munoz-
Pacheco, et al., 2020b A two-parameter modified logistic
map and its application to random bit generation. Sym-
metry 12: 829.

Peitgen, H.-O., H. Jürgens, and D. Saupe, 2006 Chaos and
fractals: new frontiers of science. Springer Science & Business
Media.

Sahari, M. L. and I. Boukemara, 2018 A pseudo-random

18 | Shafali Agarwal CHAOS Theory and Applications



numbers generator based on a novel 3d chaotic map with
an application to color image encryption. Nonlinear Dy-
namics 94: 723–744.

Shannon, C. E., 1949 Communication theory of secrecy sys-
tems. The Bell system technical journal 28: 656–715.

SI, W. S., 1998 Cryptography and network security: Princi-
ples and practice.

Wang, L. and H. Cheng, 2019 Pseudo-random number gen-
erator based on logistic chaotic system. Entropy 21: 960.

Zhao, Y., C. Gao, J. Liu, and S. Dong, 2019 A self-perturbed
pseudo-random sequence generator based on hyperchaos.
Chaos, Solitons & Fractals: X 4: 100023.

Zhou, Y., Z. Hua, C.-M. Pun, and C. P. Chen, 2014 Cascade
chaotic system with applications. IEEE transactions on
cybernetics 45: 2001–2012.

How to cite this article: Agarwal, S. Designing a Pseudo-
Random Bit Generator Using Generalized Cascade Fractal Func-
tion. Chaos Theory and Applications, 3(1), 11-19, 2021.

CHAOS Theory and Applications 19


