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ABSTRACT

The material of the fiber and matrix of polymer matrix composites directly influences the
mechanical performance of a composite. Fibers are generally expected to have high elastic
modulus and strengths. Due to the nature of polymer matrix composites, due to the
combination of different materials at the macroscopic level, they are highly affected by
thermal loads. Sometimes, perhaps the most important design criterion may be the resistance
of these materials to thermal loads. Also, these loads can be repeated due to the needs of
usage areas. Especially in the aviation industry, resistance to repetitive thermal loads is very
important in the design of aerospace vehicles. In this study, it is aimed to understand the
behavior of Glass/Epoxy polymer matrix composites under thermal fatigue loads. [(0/90).]s,
[(15/-75),]s, [(30/-60),]s, and [(45/-45),]s fiber orientations are used. Effects of two different
boundary conditions are also researched.
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1. INTRODUCTION

Today's engineering has evolved to design structures resistant to different types of loads and
to develop materials suitable for these designs. Polymer matrix composites have become the
most important choice for researchers with their many superior features. Especially, high
specific modulus and strength, and dimensional stability during large changes in temperature
in space make the polymer matrix composites the material of choice in space applications.
However, composite materials have some disadvantages besides their superior properties. The
strength of composite materials against repeated loads is important in this context and has
been investigated by many researchers. Thermal fatigue can be defined as the exposure of
structures or materials to repeated thermal loads. These thermal loads can be above zero
degrees, below zero degrees, or a temperature below zero to a temperature above zero. For
instance, satellite structures should be dimensionally stable in space during temperature
changes between —165 °C and 100 °C. Yeter [1,2] has worked on the effects of thermal



<EP UN;‘,
Y
)

Q}v ‘\u; The International Journal of Energy & Engineering Sciences, 2021, 6 (1) 1-12 ENERGY & 2
" ’ ) ISSN: 2602-294X - Gaziantep University ENGINEERING
\V/ SCIENCES

1973

fatigue on the 2014, 2024, 6061, and 7075 aluminum alloys, which are mostly used in the
aviation industry. An algorithm was developed on the ANSYS program so that it has the
opportunity to examine the behavior of materials subjected to repeated thermal loads. Yeter
and Ozer [3] studied on thermal fatigue characteristics of Plates with Cutouts. In this study,
using aluminum alloys square plate circular, triangular, elliptical, and square cutouts opened
on the square plate. Kobayashi et al. [4,5] conducted thermal fatigue experiments on carbon
fiber reinforced plastics cross-ply to obtain damages that influence the mechanical properties
of the composite. Zhou et al [6] investigated the resistance of the molybdenum plate
containing Al,Oj3 particles under the cyclic thermal loads. The thermal fatigue life of ZrB2-
SiC-graphite composite at ultrahigh temperatures was researched by Chen et al. [7]. The
thermal shock and thermal fatigue behaviors of monolithic Si3N4 nano-ceramic and Si3N4—
TiC nano-composites were investigated through the water-quench method by Tian et al [8].
Misak et al. [9] investigated Thermal fatigue resistance of carbon nanotube wires. Gkikas et
al. [10] studied the behaviors of CNTs under the hydrothermal and thermal shock loads. Goév
[11] performed a study to develop an algorithm to design the layer and fiber number of the
composite plate. stress values were used to determine fiber angle and maximum stress failure
theory was used to obtain layer numbers. Dogru [12] developed an algorithm to Design
Optimization of laminated structures using TsaiWu criteria.

In this study, the thermal fatigue behavior of Glass/epoxy composites has been investigated
numerically. [(0/90),]s, [(15/-75).]s, [(30/-60)2]s, and [(45/-45),]s fiber orientations are used.
Effects of two different boundary conditions are also researched. Also, the effects of the stress
concentration are investigated by opening circular cut-outs.

2. MATERIALS and METHODS

In this study, the thermal fatigue resistance of Glass/Epoxy laminated composites under the
thermal fatigue loading has been investigated. The algorithm previously created by Yeter
[1,2] has been adopted on composite materials. The used material properties are shown in
Table 1.

Table 1. Mechanic properties of Glass/Epoxy [13]

Property Units | Value
Fiber volume fraction 0.45
Longitudinal elastic modulus (E1) GPa |38.6
Transverse elastic modulus (E2) GPa |8.27
Major Poisson’s ratio (vi2) 0.26
Shear Modulus (G,) GPa [4.14
Ultimate longitudinal tensile strength MPa |1062
Ultimate longitudinal compressive strength MPa |610
Ultimate transverse tensile strength MPa |31
Ultimate transverse compressive strength MPa |118
Ultimate in-plane shear strength MPa |72

The flow chart used in this algorithm is given in Figure 3.1. This algorithm is based on the
principle of determining the factor of safety of the material subjected to the thermal fatigue
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load. The Soderberg failure theory was used in this study and factor of safety formulation is
given as;
1
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Figure 1. Flowchart for the design for fatigue strength

The SHELL181 element type is used that is used for layered applications to model laminated
composites. The accuracy of the composite model is governed by the first-order shear
deformation theory. The element kinematics allow for finite membrane strains (stretching).
However, the curvature changes within a time increment are assumed to be small. The used
plate dimensions are taken as constant and these dimensions are 100 mm length, 50 mm
width. Each layer thickness is taken as 0.25 mm. +100°C uniform temperature load was
applied and then the plate subjected to -130°C thermal load. The reference temperature was
taken as 25 C° in fatigue cycles. The boundary conditions given in Figure 1 are used. As seen
in this figure, all edges of the plate are fixed (fix-all) and left and right edge fixed (fix-fix)
boundary conditions are considered.
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Figure 2. Boundary condition, (a) fix-all and (b) fix-fix

3. RESULTS AND DISCUSSIONS

Safety factor distributions of Glass/Epoxy fiber reinforced composites under the thermal
fatigue loads are given in this section. Results of thermal fatigue load for different fiber
orientations [(0/90),]s, [(15/-75)2]s, [(30/-60)]s, and [(45/-45),]s are given. The factor of safety
distribution for fix-all boundary conditions under pure thermal fatigue load for [(0/90),]s are
compared for Glass/Epoxy.

Factor of safety distribution for fix-all and fix-fix boundary conditions under pure thermal
fatigue load for [(0/90),]s ply sequences are given in Figure 3. The figure shows that the plate
has the same factor of safety for all points for all-fix boundary conditions. But for the fix-fix
condition, the safety factor values vary from point to point and the minimum safety value for
fix-fix is less than the fix-all boundary conditions. Also, Figures 4 and 5 presents the variation
of the lowest factor of safety with respect to different fiber orientations and ply sequences. As
seen in these figures, for fix-fix boundary conditions fiber orientations have direct effects
safety factor value of laminates. [(0/90),]s ply sequence has the highest safety factor and
[(45/-45),]s has the lowest safety factor value. The safety factor values of [(15/-75),]s and
[(30/-60),]s are between [(0/90),]s and [(45/-45),]s ply sequences.
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Figure 3. The factor of safety for fix-all boundary condition under pure thermal fatigue for
[(0/90),]s orientation for different boundary conditions (a) Fix-all, (b) Fix-fix
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Figure 4. Safety factor distribution of Glass/Epoxy for fix-fix boundary condition at different
fiber orientations (a) [(0/90)]s, (b) [(15/-75)]s, (c) [(30/-60),]s, (d ) [(45/-45).]s
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Figure 5. Variation of the safety factor of Glass/Epoxy with Fiber orientation angle for
different boundary conditions (a) Fix-Fix, (b) Fix-all

The behavior of polymer matrix composites under the thermal fatigue loads that contain
different cut-outs is presented. The cut-outs are opened to see the effects of stress
concentration on the thermal fatigue resistance of the fiber reinforced composites.

Figures 6 and 7 shows safety factor values for Glass/Epoxy [(0/90),]s fiber orientation with
circular cutout for fix-fix boundary condition under pure thermal fatigue with different cutout
sizes. As seen in the figure the minimum safety factor value for the circular cutout is
increased by nearly 13.4 % when the cutout size (A) is increased 30 mm from 10 mm.
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Figure 6. Safety factor distribution of Glass/Epoxy [(0/90),]s fiber orientation with a circular
cutout for fix-fix boundary condition under pure thermal fatigue with different
cutout sizes (a)10, (b)15, ()20, (d)25, (e) 30
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Figure 7. Variation of Glass/Epoxy [(0/90),]s fiber orientation with a circular cutout for fix-
fix boundary condition

Safety factor distribution of Glass/Epoxy with [(0/90),]s fiber orientation for circular 20 mm
cut-out and with different cutout positions are given in Figures 8 and 9. As seen in the figures,
the factor of safety has the highest value when cut-out is at the center. When the cutout is
positioned on the left and right sides of the center, the safety factor value is minimum.
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Figure 8. Safety factor distribution of Glass/Epoxy with [(0/90).]s fiber orientation with fix-
fix boundary conditions for circular 20 mm cut-out and with different cut-out
positions (a )-25, (b) -20, (c) -15, (d)-10, (e) -5, (f) 0, (9) 5, ()10, (i)15, (j) 20,

(k) 25
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Figure 9. Variation of the safety factor of Glass/Epoxy with [(0/90),]s fiber orientation with
fix-fix boundary conditions for circular 20 mm cut-out and with different cutout
positions

CONCLUSIONS

The thermal fatigue behavior of Glass/Epoxy composites has been investigated numerically.
[(0/90),]s, [(15/-75).]s, [(30/-60)]s, and [(45/-45),]s fiber orientations are used. Effects of two
different boundary conditions are also researched. It is s seen that fiber orientation and
boundary conditions directly affect the thermal fatigue resistance. [(0/90).]s, ply sequence has
the highest safety factor, and [(45/-45),]s has the lowest safety factor value. The safety factor
values of [(15/-75),]s, and [(30/-60),]s are between [(0/90).]s and [(45/-45),]s ply sequences.
Also, the circular cut-outs are opened to see the effects of stress concentration on the thermal
fatigue resistance of the fiber-reinforced composites.

The minimum safety factor value for the circular cutout is increased by nearly 13.4 % when
the cutout size (A) is increased 30 mm from 10 mm. The factor of safety has the highest value
when cut-out is at the center. When the cutout is positioned on the left and right sides of the
center, the safety factor value is minimum.
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