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ABSTRACT: Mixed-integer linear and quadratic programming problems are considered to solve distribution 

problems in this paper. The first problem is the distribution of proctors with respect to the student placements 

to the class- rooms by mixed-integer linear programming whereas the second problem is the fair distribution of 

the workloads for teaching assistants in a department formulated by mixed-integer quadratic programming. 

Three approaches to find the solution for mixed-integer quadratic programming problem are proposed and a 

comparative example is given to measure the effects for the suggested criterion. 
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1. Introduction 

Workload distribution is considered as one of the major challenges for administrators at a 

workplace. In academia, teaching assistants (TAs) have a lot of departmental duties such as 

teaching in problem sessions, proctoring in exams, entering notes to system, arranging 

classrooms/proctors for midterms etc. While having these duties, they have a limited time 

while finishing their graduate studies, which may cause stress, anxiety and other mental 

problems. That is why, workload distribution becomes prominent in terms of equity. Such 

kind of academic workload distribution issues are analyzed in various studies in social 

sciences such as in (Bitzer, 2007), (Kenny, 2018), (Parsons and Slabbert, 2001) and the 

references therein. Even though there are studies for workload imbalance (Ku et al.,2018), as 

to the authors knowledge the methodology of comparative studies using workload imbalance 

criterion in literature is limited (Baykasoglu et al., 2009). Therefore, the aim of this study is 

to propose an idea for distributing workload among TAs in a department.  

 

Proctor distribution problem is also an another challenging problem in this context. The less 

proctor is used; the time is spared for graduate students having TA duties so that they can 

spend their time for their graduate studies. This paper deals with two distribution problems. 

The main objective of the first problem is to distribute the proctors with respect to the student 

placements to the classrooms. The problem is formulated in mixed-integer linear 

programming (MILP) form. The goal of the second problem is to distribute the workloads 

fairly for TAs in a department. This problem is formulated mixed-integer quadratic 

programming (MIQP) which is known as an NP-hard problem (Bliek et al., 2014) and (Park 

and Boyd, 2018). That is why, three approaches for approximate solutions are proposed. In 

the first approach, rounding is made after solving quadratic programming problem. In the 

second approach, MIQP is converted into MILP by approximating the quadratic term. Last 

and third approach is an algorithmic approach, based on the assignment of the workload by 

sorting the TAs by their previous workloads. Numerical examples are given to compare these 

approaches.  

http://dergipark.gov.tr/en/pub/jnrs
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2. Constrained Optimization Preliminaries  

A nonlinear optimization problem can be stated as follows.  

               min
𝑥
𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0, 𝑖 =  1, . . , 𝑚 

                     ℎ𝑗(𝑥) =  0,        𝑗 = 1, . . , 𝑛 
(2.1) 

Here 𝑓(⋅) is called the objective function, whereas 𝑔𝑖(⋅) and ℎ𝑗(), are inequality and equality 

constraints in residual form, respectively. The necessary and sufficient conditions for the 

nonlinear optimization problem are presented in (Karush, 1939) and (Kuhn and Tucker, 

1951), known as Karush-Kuhn-Tucker (KKT) conditions and represented below.  

2.1 KKT Conditions  

To state KKT conditions, a function called Lagrangian is constructed for the problem (2.1).  

ℒ(𝑥, 𝑣, 𝑢, 𝑠) = 𝑓(𝑥) + ∑(𝑢𝑖
𝑇 𝑔𝑖(𝑥)  + 𝑠𝑖

2)  +  ∑𝑣𝑗
𝑇 

ℓ

𝑗=1

𝑚

𝑖 = 1

ℎ𝑗(𝑥), (2.2) 

Here 𝑢𝑖 and 𝑣𝑗  are called the conjugate variables whereas 𝑠𝑖 are the slack variables. Thus, the 

necessary KKT conditions can be stated as follows.  

 

Theorem 1. Assume that the functions 𝑓 ∶  ℝ𝑛 → ℝ, 𝑔𝑖 ∶  ℝ
𝑛 → ℝ and ℎ𝑗 ∶  ℝ

𝑛 → ℝ are 

continuously differentiable at 𝑥∗ ∈ ℝ𝑛. If 𝑥∗ is the optimal solution of the problem (2.1) and 

satisfies the conditions below, then there exists 𝜇𝑖 (𝑖 = 1, … ,𝑚) and 𝜆𝑗  (𝑗 = 1,… , ℓ) 

satisfying the following conditions: 

1. Stationarity Condition:  

- To maximize 𝑓(𝑥):  

∇ 𝑓(𝑥∗) − ∑ 𝑢𝑖
𝑇  ∇

𝑚

𝑖 = 1

𝑔𝑖(𝑥
∗) − ∑𝑣𝑗

𝑇

ℓ

𝑗=1

∇ℎ𝑗(𝑥
∗) = 0, 

- To minimize 𝑓(𝑥) : 

−∇ 𝑓(𝑥∗) − ∑ 𝑢𝑖
𝑇 ∇

𝑚

𝑖 = 1

𝑔𝑖(𝑥
∗) − ∑𝑣𝑗

𝑇

ℓ

𝑗=1

∇ℎ𝑗(𝑥
∗) = 0, 

2. Primal Feasibility Condition:  

𝑔𝑖(𝑥
∗)  ≤ 0, 𝑖 = 1, . . , 𝑚 

ℎ𝑗(𝑥
∗)  ≤ 0, 𝑗 = 1, . . , ℓ  

3. Dual Feasibility Condition:  

𝑢𝑖 ≥  0, 𝑖 = 1, . . . 𝑚 
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4. Complementary Slackness Condition: 

𝑢𝑖
𝑇𝑔𝑖(𝑥

∗)  =  0, 𝑖 = 1, . . , 𝑚 

Besides the introduced necessary conditions above, if 𝑓(·) is a convex, 𝑔𝑖(⋅) are convex and 

ℎ𝑗(⋅) are affine functions, then these conditions are also sufficient conditions. 

 

2.2 Mixed-Integer Linear Programming 

 

In the case, where the objective function, equality and inequality constraints are linear in 

terms of independent variables, this problem is described as constrained linear optimization 

problem and is defined as  

             min
𝑥
𝑓𝑇 𝑥  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑒𝑞𝑥 = 𝑏𝑒𝑞 

                     𝐴𝑖𝑛𝑒𝑞𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞 

(2.3) 

Here 𝑓 is a vector, 𝐴𝑒𝑞, 𝐴𝑖𝑛𝑒𝑞, 𝑏𝑒𝑞 and 𝑏𝑖𝑛𝑒𝑞 are matrices for equality and inequality 

constraints with appropriate dimensions.  

 

If all or some of the variables of an optimization problem are limited to take integer values, 

the problem is considered as an MILP problem. This problem is defined as follows.  

              min
𝑥
𝑓𝑇 𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑒𝑞𝑥 =  𝑏𝑒𝑞                           

                     𝐴𝑖𝑛𝑒𝑞𝑥 ≤  𝑏𝑖𝑛𝑒𝑞 

                     𝑥𝑖  ∈  𝐷 ⊂  Z 
 

(2.4) 

To apply KKT conditions to (3), we first should define the equality and inequality 

constraints in residual form.  

            𝑚𝑖𝑛 𝑓(𝑥)  =  𝑓𝑇𝑥  
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥) = 𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞 = 0  

                     𝑔(𝑥)  =  𝐴𝑖𝑛𝑒𝑞𝑥 − 𝑏𝑖𝑛𝑒𝑞  ≤  0 

(2.5) 

The Lagrangian of the problem (3) will be  

ℒ(x, v, u, s) = 𝑓𝑇𝑥 + 𝑣𝑇(𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞)  +  𝑢
𝑇(𝐴𝑖𝑛𝑒𝑞𝑥 − 𝑏𝑖𝑛𝑒𝑞  +  𝑠

2 )   (2.6) 

So the KKT conditions of the problem (2.3) are stated as follows.  

1. Stationarity Condition: In order to obtain the stationarity condition, the gradients are 

calculated as 

∇ (𝑓𝑇𝑥)  =  ∇ (𝑥𝑇𝑓)  =  𝑓 
∇ (𝑣𝑇𝐴𝑒𝑞𝑥)  =  ∇ (𝑥

𝑇 𝐴𝑒𝑞
𝑇 𝑣)  =  𝐴𝑒𝑞

𝑇 𝑣  

∇ (𝑢𝑇𝐴𝑖𝑛𝑒𝑞𝑥)  =  ∇ (𝑥
𝑇 𝐴𝑖𝑛𝑒𝑞

𝑇 𝑣)  =  𝐴𝑖𝑛𝑒𝑞
𝑇 𝑢  
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According to the gradients, the stationarity conditions are obtained as  

 

∇ 𝐿 =  f + 𝐴𝑒𝑞
𝑇 𝑣 + 𝐴𝑖𝑛𝑒𝑞

𝑇 𝑢 =  0 

𝜕𝐿

𝜕𝑣
 =  0 ⇒  ℎ(𝑥)  =  𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞  =  0 

𝜕𝐿

𝜕𝑢
 =  0 ⇒  𝑔(𝑥)  =  𝐴𝑖𝑛𝑒𝑞𝑥 − 𝑏𝑖𝑛𝑒𝑞 + 𝑠

2  =  0 

2. Primal Feasibility Condition: From primal feasibility condition,  

 

𝑠2 ≥ 0, 
 

is obtained. 

3. Dual Feasibility Condition: From dual feasibility condition,  

𝑢2 ≥  0, 

4. Complementary Slackness Condition: From complementary slackness condition 

 
𝜕𝐿

𝜕𝑠
 =  2𝑠𝑇𝑢 =  0,  

 

is obtained. 

 

Remark 1 The case that primary feasibility condition is active (i.e. 𝑠2 =  0), means that the 

inequality constraint is active. That is why, this condition cannot be active in both proctor 

distribution problem as well as workload assignment problem. So, the general expression of 

the KKT conditions under that consideration will be  

[

0 𝐴𝑒𝑞
𝑇 0

𝐴𝑒𝑞 0 0

𝐴𝑖𝑛𝑒𝑞 0 𝐼

]

⏟          
𝐴

[
𝑥
𝑣
𝑠2
]

𝑇

= [

−𝑓
𝑏𝑒𝑞
𝑏𝑖𝑛𝑒𝑞

]

⏟    
𝑏

. 
(2.7) 

This equation can be solved as 

𝑥 =  𝐴−1𝑏 (2.8) 

for any invertible 𝐴. 

 

Early results to find the integer solutions of linear programming problems was proposed by 

Ralph E. Gomory in (Gomory, 1960). The proposed method of Gomory is called integer 

programming or cutting-plane method. In this method, it is aimed to obtain an integer solution 

by adding valid inequalities consecutively to the relaxed linear programming problem of 

integer decision variables. 

 

2.3 Mixed-Integer Quadratic Programming  

 

The problem, in which the objective function is second-order and the constraints are linear, 

is named as Constrained Quadratic Programming problems. If some variables are restricted 
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to take integer values, it is called Mixed-Integer Quadratic Programming (MIQP) problem 

and this problem is defined as follows.  

             min
𝑥
𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑒𝑞𝑥 =  𝑏𝑒𝑞 

                      𝐴𝑖𝑛𝑒𝑞𝑥 ≤  𝑏𝑖𝑛𝑒𝑞 

                   𝑥𝑖  ∈  𝐷 ⊂  𝑍 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ {1,… , 𝑛} 
 

(2.9) 

Here 𝐻 is a symmetric matrix, 𝑓 is a vector, 𝐴𝑒𝑞, 𝐴𝑖𝑛𝑒𝑞 , 𝑏𝑒𝑞 and 𝑏𝑖𝑛𝑒𝑞  are matrices and vectors 

for equality and inequality constraints in appropriate dimensions. 

This problem is classified as an NP-Hard problem (Bliek et al., 2014) and (Park and Boyd, 

2018). As to the authors knowledge, numerical computing programs such as MATLAB does 

not have MIQP library. Therefore, the problem can be solved by quadratic programming and 

the solution can be rounded or integer programming can be applied by using linear 

approximations. 

             min
𝑥,𝑧

𝑧 + 𝑓𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑒𝑞𝑥 =  𝑏𝑒𝑞  

                     𝑥𝑇𝐻𝑥 −  𝑧 ≤  0 

                     𝑥𝑖  ∈  𝐷 ⊂  𝑍 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖 ∈ {1,… , 𝑛} 
                     𝑧 ≥  0 (−𝑧 ≤  0) 
 

(2.10) 

If the quadratic term in the inequality constraint is approximated around the point 𝑥 =  𝑥0, 

we have 

𝑥𝑇𝐻𝑥 −  𝑧 =  − 𝑥0
𝑇 𝐻𝑥0  +  2𝑥0

𝑇  𝐻𝑥 −  𝑧 +  𝒪(∥ 𝑥 − 𝑥0 ∥2). (2.11) 

Here || ⋅ ||2 is the 𝐿2 norm of a vector. So, the problem is converted into a mixed-integer 

linear problem.  

             min
𝑥,𝑧

[
𝑓
1
]
𝑇

[
𝑥
𝑧
] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 [
𝐴𝑒𝑞
𝑇

0𝑇
]
𝑇

[
𝑥
𝑧
] =  beq 

                      [
2𝐻𝑥0
−1

]
𝑇

[
𝑥
𝑧
] ≤ 𝑥0

𝑇𝐻𝑥0 

                      𝑥𝑖  ∈  𝐷 ⊂  Z 

                      𝑧 ≥  0 (−𝑧 ≤  0) 
 

(2.12) 

See (Kelley, 1960) for more details. 

 

The distribution problem examined in this study is in the form of: 

             min
𝑥
𝑓(𝑥) =  𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(𝑥)  =  𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞  =  0 

                     𝑔1(𝑥) = 𝑥 − 2 ≤ 0 

                     𝑔2(𝑥) = −𝑥 ≤ 0 
 

 

(2.13) 
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 The Lagrangian will be 

ℒ(𝑥, 𝑣, 𝑢1, 𝑢2, 𝑠1, 𝑠2)
= 𝑓(𝑥) + 𝑣𝑇ℎ(𝑥) + 𝑢1

𝑇(𝑔1(𝑥) + 𝑠1
2) + 𝑢2

𝑇(𝑔2(𝑥) + 𝑠2
2) 

(2.14) 

To obtain the KKT conditions for this problem, the gradients have to be calculated. 

∇(𝑥𝑇𝐻𝑥) = (∇𝑥𝑇)𝐻𝑥 + (∇𝑥𝑇)𝐻𝑇𝑥 = (𝐻 + 𝐻𝑇)𝑥 = 2𝐻𝑥 

∇(𝑓𝑇𝑥) =  ∇(𝑥𝑇𝑓) =  𝑓 

∇(𝑣𝑇𝐴𝑒𝑞
𝑥 ) =  ∇(𝑥𝑇𝐴𝑒𝑞

𝑇 𝑣) =  𝐴𝑒𝑞
𝑇 𝑣  

∇(𝑢1
𝑇𝑥) =  𝑢1 

∇(𝑢2
𝑇(−𝑥)) =  −𝑢2.  

 

(2.15) 

According to the calculated gradients the stationary condition will be  

∇𝐿 = 2𝐻𝑥 + 𝑓 + 𝐴𝑒𝑞
𝑇 𝑣 + 𝑢1−𝑢2 = 0  

𝜕𝐿

𝜕𝑣
 =  0 ⇒  ℎ(𝑥)  =  𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞  =  0 

𝜕𝐿

𝜕𝑢1
 =  0 ⇒  𝑥 − 2 + 𝑠1

2 = 0 

𝜕𝐿

𝜕𝑢2
 =  0 ⇒  −𝑥 + 𝑠2

2 = 0 

 

(2.16) 

From primal feasibility condition, we have 

𝑠1
2 ≥ 0, 𝑠2

2 ≥  0 (2.17) 

whereas the dual feasibility condition will be 

𝑢1
2 ≥ 0, 𝑢2

2 ≥  0 (2.18) 

The complementary slackness condition is obtained as 

𝜕𝐿

𝜕𝑠1
= 2𝑠1

𝑇𝑢1 = 0,       
𝜕𝐿

𝜕𝑠2
=  2𝑠2

𝑇𝑢2 = 0. (2.19) 

If we assume that primal feasibility condition is active, i.e. 𝑠1
2 = 0 or 𝑠2

2 =  0, the results will 

not be applicable, so these conditions are taken as inactive. So, the general solution under this 

assumption is as follows.  

[

2𝐻 𝐴𝑒𝑞
𝑇 0 0

𝐴𝑒𝑞 0 0 0

𝐼 0 𝐼 0
−𝐼 0 0 𝐼

]

⏟            
𝐴

[

𝑥
𝑣
𝑠1
2

𝑠2
2

] =  [

−𝑓
𝑏𝑒𝑞
2
0

]

⏟  
𝑏

 

 

(2.20) 

If the matrix A is invertible, then the solution will be  

𝑥 = 𝐴−1𝑏, (2.21) 



Göksu et al. /JNRS, 2020, 9(3), 38-50 44 
 

Proposition 1: The following statements hold. 

1. 𝑓(𝑥) =  𝑥𝑇𝐻𝑥 + 𝑓𝑇𝑥  is convex if and only if H is positive semi-definite.  

2. ℎ(𝑥) =  𝐴𝑒𝑞𝑥 − 𝑏𝑒𝑞  is affine. 

3. 𝑔1(𝑥) = 𝑥 − 2 𝑎𝑛𝑑 𝑔2(𝑥) =  −𝑥 are convex.  

Proof: 1. Let 𝐻 be a positive semi-definite matrix. For all 𝑥1, 𝑥2 ∈ ℝ
𝑛 and 𝛼 ∈ [0, 1], we 

have  

𝛼(1 − 𝛼)(𝑥1 − 𝑥2)
𝑇𝐻(𝑥1 − 𝑥2) ≥ 0 

and  

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) = (𝛼𝑥1 + (1 − 𝛼)𝑥2)
𝑇𝐻(𝛼𝑥1 + (1 − 𝛼)𝑥2) + 𝑓

𝑇(𝛼𝑥1 + (1 − 𝛼)𝑥2) 
                                       ≤ (𝛼𝑥1 + (1 − 𝛼)𝑥2)

𝑇𝐻(𝛼𝑥1 + (1 − 𝛼)𝑥2) + 𝑓
𝑇(𝛼𝑥1 + (1 − 𝛼)𝑥2) 

                                       +𝛼(1 − 𝛼)(𝑥1 − 𝑥2)
𝑇𝐻(𝑥1 − 𝑥2) 

                                   =  𝛼2𝑥1
𝑇𝐻𝑥1 +  𝛼(1 − 𝛼)𝑥2𝐻𝑥1 + 𝛼(1 − 𝛼)𝑥1𝐻𝑥2 

                                       +(1 − 2𝛼 +  𝛼2)𝑥2
𝑇𝐻𝑥2 (𝛼 −  𝛼

2)𝑥1
𝑇𝐻𝑥1 

                                       −𝛼(1 − 𝛼)𝑥2𝐻𝑥1 − 𝛼(1 − 𝛼)𝑥1𝐻𝑥2 

                                       + (𝛼 −  𝛼2)𝑥2
𝑇𝐻𝑥2 +  𝑓

𝑇(𝛼𝑥1 + (1 − 𝛼)𝑥2) 
                                   = 𝛼(𝑥1

𝑇H𝑥1𝑓
𝑇𝑥1) + (1 − 𝛼)(𝑥2

𝑇H𝑥2𝑓
𝑇𝑥2) 

which implies 

𝑓(𝛼𝑥1 + (1 − 𝛼)𝑥2) ≤ 𝛼𝑓(𝑥1) + (1 − 𝛼)𝑓(𝑥2). 

Therefore, 𝑓 is a convex function. Necessity part can also be shown in similar fashion. 

2. For all 𝑥1, 𝑥2 ∈ ℝ
𝑛 and 𝛼 ∈ ℝ, we have  

ℎ(𝛼𝑥1 + (1 − 𝛼)𝑥2) =  𝐴𝑒𝑞(𝛼𝑥1 + (1 − 𝛼)𝑥2) − 𝑏𝑒𝑞 

= 𝐴𝑒𝑞(𝛼𝑥1 + (1 − 𝛼)𝑥2) − (𝛼 + 1 − 𝛼)𝑏𝑒𝑞 

= 𝛼(𝐴𝑒𝑞𝑥1 + 𝑏𝑒𝑞) + (1 −  𝛼)(𝐴𝑒𝑞𝑥2 + 𝑏𝑒𝑞) 

= 𝛼ℎ(𝑥1) + (1 − 𝛼)ℎ(𝑥2) 

so that ℎ is an affine function. 

3. The proof is similar to the one above and thus it is omitted.  

 

Note that, the KKT conditions (2.20) are necessity and sufficient conditions for optimal 

solution. 

3. Distribution Problems 

In this section, problem statements of proctor distribution problem and workload assignment 

problem are introduced. Then, we will also refer to the solution methodologies to these 

problems namely solve-and-round, MIQP approximation and sort-and-distribute approaches. 

3.1 Proctor Distribution Problem  

The proctor distribution problem can be formulated as a minimization problem which has a 

linear objective function with linear constraints which is essentially MILP problem. 
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This problem can be stated as  

             min
𝑥,𝑦

𝑓(𝑥, 𝑦) =  ∑𝑦𝑖

𝑁

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑥1
30
≤ 𝑦1  ,

𝑥2
30
≤ 𝑦2… ,

𝑥𝑁
30
≤ 𝑦𝑁   

                    𝑥1 + 𝑥2 +⋯+ 𝑥𝑁 = 𝑀 

                      𝑥𝑖 ∈ 𝑍 ∩ [0, 𝑐𝑖 ] 
                      𝑦𝑖 ∈ 𝑍

+  ∪   {0} 
 

(3.1) 

Here 𝑥 = [𝑥1 𝑥2 … 𝑥𝑁]𝑇 denotes the students, 𝑐 =  [𝑐1 𝑐2 … 𝑐𝑁 ]𝑇 denotes the 

classroom capacities and 𝑦 =  [𝑦1 𝑦2 … 𝑦𝑁 ]𝑇 are the proctors to be distributed. 

 

One proctor is assigned for 30 students. So the objective function will be  

𝑓(𝑥, 𝑦) =  ∑𝑦𝑖

𝑁

𝑖=1

= [
0
1
]
2𝑁𝑥1

𝑇

[
𝑥
𝑦]
2𝑁𝑥1

 

 

(3.2) 

where the equality and inequality constraints will be  

[(1 30)𝐼𝑁 ,⁄  𝐼−𝑁]𝑁𝑥2𝑁 [
𝑥
𝑦]
2𝑁𝑥1

 ≤  [
0
0
]
2𝑁𝑋1

 

[
1
0
]
2𝑁𝑥1

𝑇

[
𝑥
𝑦]
2𝑁𝑥1

= 𝑀1𝑋1 

 

(3.3) 

3.2 Workload Assignment Problem  

The workload assignment problem can be defined as a minimization problem which has a 

quadratic objective function with linear constraints as  

             min
𝑥
𝑓(𝑥1, 𝑥2, 𝑥3) =  ∑(2𝑥1,𝑖 +  2𝑥2,𝑖 +  2𝑥3,𝑖 + 𝑒𝑖) 

2  

14

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1,1 + 𝑥1,2 +⋯+ 𝑥1,14 = 4 

                     𝑥2,1 + 𝑥2,2 +⋯+ 𝑥2,14 = 8 

                     𝑥3,1 + 𝑥3,2 +⋯+ 𝑥3,14 = 8 

                  0 ≤ 𝑥𝑗,𝑖 ≤ 2 , 𝑖 ∈  ℐ = {1, 2, … , 14} 𝑎𝑛𝑑 𝑗 ∈  𝒥 = {1, 2, 3}. 
 

(3.4) 

where 𝑥 = [𝑥1
𝑇 𝑥2

𝑇 𝑥3
𝑇]𝑇, 𝑥1 = [𝑥1,1 𝑥1,2 … 𝑥1,14]𝑇 , 𝑥2 = [𝑥2,1 𝑥2,2 … 𝑥2,14]𝑇 

and 𝑥3 = [𝑥3,1 𝑥3,2 … 𝑥3,14]𝑇 are the vectors for different tasks whereas 𝑥𝑗,𝑖  denotes for 

the 𝑖𝑡ℎ task of the 𝑗𝑡ℎ TA where 𝑗 =  1, 2, 3 and 𝑖 =  1, . . . ,14.  𝑒𝑖  =  𝑐𝑖  −  𝜇 is defined as a 

residual term where 𝑐𝑖 is the missing workload or the overload of the 𝑖𝑡ℎ TA coming from 

the past and 𝜇 is the average workload to be done for one TA. So the objective function will 

be  

𝑓(𝑥1, 𝑥2, 𝑥3) =  ∑4(𝑥1,𝑖 + 𝑥2,𝑖 + 𝑥3,𝑖) 
2 + 4(

14

𝑖=1

𝑥1,𝑖 + 𝑥2,𝑖 + 𝑥3,𝑖)𝑒𝑖 + 𝑒1
2, (3.5) 
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which can also be written in a compact form as 

𝑓(𝑥1, 𝑥2, 𝑥3) 

= ∑4(

14

𝑖=1

𝑥1,𝑖
2 + 𝑥2,𝑖

2 + 𝑥3,𝑖
2 +   2𝑥1,𝑖 𝑥2,𝑖 + 2𝑥1,𝑖𝑥3,𝑖 +  2𝑥2,𝑖𝑥3,𝑖) 

                               +4(𝑥1,𝑖 + 𝑥2,𝑖 + 𝑥3,𝑖)𝑒𝑖 + 𝑒𝑖
2 

=∑[

𝑥1,𝑖
𝑥2,𝑖
𝑥3,𝑖
]

14

𝑖=1

𝑇

[
4 4
4 4
4 4

] [

𝑥1,𝑖
𝑥2,𝑖
𝑥3,𝑖
] + [

𝑒𝑖
𝑒𝑖
𝑒𝑖
] [

𝑥1,𝑖
𝑥2,𝑖
𝑥3,𝑖
]

𝑇

+ 𝑒𝑖
2. 

 

=

[
 
 
 
 
 
 
 
 
 [

𝑥1,1
𝑥2,1
𝑥3,1

]

[

𝑥1,2
𝑥2,2
𝑥3,2

]

⋮

[

𝑥1,14
𝑥2,14
𝑥3,14

]
]
 
 
 
 
 
 
 
 
 
𝑇

[
 
 
 
 
 
 
 
 [
4 4 4
4 4 4
4 4 4

]    

 [
4 4 4
4 4 4
4 4 4

]   

  ⋱  

   [
4 4 4
4 4 4
4 4 4

]
]
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 [

𝑥1,1
𝑥2,1
𝑥3,1

]

[

𝑥1,2
𝑥2,2
𝑥3,2

]

⋮

[

𝑥1,14
𝑥2,14
𝑥3,14

]
]
 
 
 
 
 
 
 
 
 

 

     +

[
 
 
 
 
 
 
 
 
 [
4𝑒1
4𝑒1
4𝑒1

]

[
4𝑒2
4𝑒2
4𝑒2

]

⋮

[
4𝑒14
4𝑒14
4𝑒14

]
]
 
 
 
 
 
 
 
 
 
𝑇

[
 
 
 
 
 
 
 
 
 [

𝑥1,1
𝑥2,1
𝑥3,1

]

[

𝑥1,2
𝑥2,2
𝑥3,2

]

⋮

[

𝑥1,14
𝑥2,14
𝑥3,14

]
]
 
 
 
 
 
 
 
 
 

+ 

[
 
 
 
 
 
𝑒1
 
𝑒2
⋮ 
 
𝑒14]
 
 
 
 
 
𝑇

[
 
 
 
 
 
𝑒1
 
𝑒2
⋮ 
 
𝑒14]
 
 
 
 
 

, 

 

(3.6) 

where the equality constraints will be  

[𝐼3, 𝐼3, … , 𝐼3]⏟        
14 𝑡𝑖𝑚𝑒𝑠

 

[
 
 
 
 
 
 
 
 
 [

𝑥1,1
𝑥2,1
𝑥3,1

]

[

𝑥1,2
𝑥2,2
𝑥3,2

]

⋮

[

𝑥1,14
𝑥2,14
𝑥3,14

]
]
 
 
 
 
 
 
 
 
 

=  [

𝑥1,1 + 𝑥1,2 +⋯+ 𝑥1,4
𝑥2,1 + 𝑥2,2 +⋯+ 𝑥2,14
𝑥3,1 + 𝑥3,2 +⋯+ 𝑥3,14

] =  [
4
8
8
]. (3.7) 

We use three approaches to solve this problem.  

– Solve-and-Round Approach: In order to solve the quadratic programming problem, 

Optimization Toolbox of MATLAB is used. The function quadprog used for this approach 

uses KKT conditions to solve the problem which is explained in Section 2.  
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– MIQP Approximation Approach: The linearization method to solve the MIQP is given 

in Section 2. The obtained MILP is solved via intlinprog function of MATLAB Optimization 

Toolbox.  

– Sort-and-Distribute Approach (Adaköy et al., 2017): In this approach, the people are 

sorted by swapping and comparing them one by one according to workload. Then, as long as 

the load to be distributed is positive, the workload is distributed. The distribution is started 

from the minimum while two units of workload is distributed per cycle. After performing the 

task distribution in each cycle, the comparison, swap and sort processes are made according 

to workload. Finally, the workload to be distributed is reduced by 2 units and the next cycle 

is passed. Obtained results are given in the following section.  

 

4 Results and Discussion 
 

4.1 Example for Proctor Distribution Problem  

 

In the numerical example, we distribute 612 students to the 10 classes having total capacity 

of 710. The results are given in Table 1.  

 

Table 1. The Distribution of Students and Proctors 
 Capacity Students Proctors 

Class 1 76 60 2 

Class 2 32 30 1 

Class 3 89 89 3 
Class 4 95 90 3 

Class 5 78 60 2 

Class 6 83 76 3 
Class 7 82 60 2 

Class 8 57 57 2 
Class 9 76 60 2 

Class 10 42 30 1 

 

In Table 1, 21 proctors are used in total which is the minimum number of total proctors to be 

used.  

 

4.2 Example for Workload Assignment Problem  

 

The remaining workloads or overloads from the last term and the error terms are presented in 

Table 2.  

 

Table 2. The Remaining Workloads or Overloads from the Last Term and the Error Terms 
 𝒄𝒊 𝒆𝒊 

TA 1 28 -11.4 

TA 2 33 -6.4 
TA 3 38 -1.4 

TA 4 40 0.6 

TA 5 33 -6.4 
TA 6 46 6.6 

TA 7 35 -4.4 

TA 8 32 -7.4 
TA 9 55 15.6 

TA 10 38 -1.4 

TA 11 34 -5.4 
TA 12 42 2.6 

TA 13 32 -7.4 

TA 14 25 -14.4 

 

The results obtained according to quadratic programming, solve-and-round, MIQP 

approximation and sort-and-distribute approaches are given in Tables 4, 5, 6 and 7 in 
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Appendix, respectively. A criterion for workload imbalance is given as the sum of squared 

errors (SSE): 

𝑆𝑆𝐸 =  ∑𝑒𝑖
′2

14

𝑖=1

= ∑(2𝑥1,𝑖 +  2𝑥2,𝑖 +  2𝑥3,𝑖 + 𝑒𝑖)
2 

14

𝑖=1

 

         = ∑(2𝑥1,𝑖 +  2𝑥2,𝑖 +  2𝑥3,𝑖 + 𝑐𝑖 − 𝜇)
2

14

𝑖=1

 

(4.1) 

According to solve-and-round, MIQP approximation and sort-and-distribute approaches, SSE 

values are given in Table 3. From the three approaches considered, the least SSE value is 

obtained in the quadratic optimization approach is rounded, SSE value become higher than 

the SSE values of the other approaches. Therefore, the most equitable integer distribution will 

be made when the sort-and-distribute approach is used.  

 

Table 3. SSE Values According to Quadratic Programming, Solve-and-Round, MIQP 

Approximation and Sort-and-Distribute Approaches. 
Approach SSE 

Quadratic Optimization 365.24 
Solve-and-Round 377.24  

MIQP Approximation 435.24 

Sort-and-Distribute 367.24 
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Appendix A. Workloads and Error Terms for Various Approaches 

Table 4. Workloads and Error Terms According to Quadratic Optimization Approach 
 𝒙𝟏,𝒊 𝒙𝟐,𝒊 𝒙𝟑,𝒊 𝒄𝒊 𝟐𝒙𝟏,𝒊 + 𝟐𝒙𝟐,𝒊 + 𝟐𝒙𝟑,𝒊 + 𝒄𝒊 𝒆𝒊

′ 

TA 1 0.87 1.69 1.69 28 36.50 -2.90 

TA 2 0.21 0.77 0.77 33 36.50 -2.90 
TA 3 0.00 0.00 0.00 38 38.00 -1.40 

TA 4 0.00 0.00 0.00 40 40.00 0.60 
TA 5 0.21 0.77 0.77 33 36.50 -2.90 

TA 6 0.00 0.00 0.00 46 46.00 6.60 

TA 7 0.14 0.30 0.30 35 36.50 -2.90 
TA 8 0.24 1.00 1.00 32 36.50 -2.90 

TA 9 0.00 0.00 0.00 55 55.00 15.60 

TA 10 0.00 0.00 0.00 38 38.00 -1.40 
TA 11 0.18 0.53 0.53 34 36.50 -2.90 

TA 12 0.00 0.00 0.00 42 42.00 -2.60 

TA 13 0.24 1.00 1.00 32 36.50 -2.90 
TA 14 1.91 1.92 1.92 25 36.50 -2.90 

Sum 4 8 8 511 551 -0.6 

 

 

 

 

 

Table 5. Workloads and Error Terms According to Solve-and-Round Approach  
 𝒙𝟏,𝒊 𝒙𝟐,𝒊 𝒙𝟑,𝒊 𝒄𝒊 𝟐𝒙𝟏,𝒊 + 𝟐𝒙𝟐,𝒊 + 𝟐𝒙𝟑,𝒊 + 𝒄𝒊 𝒆𝒊

′ 

TA 1 1 2 2 28 36.50 -1.4 
TA 2 0 1 1 33 36.50 -2.4 

TA 3 0 0 0 38 38.00 -1.4 

TA 4 0 0 0 40 40.00 0.6 
TA 5 0 1 1 33 36.50 -2.4 

TA 6 0 0 0 46 46.00 6.6 

TA 7 0 0 0 35 36.50 -4.4 
TA 8 0.5 1 1 32 36.50 -2.4 

TA 9 0 0 0 55 55.00 15.6 

TA 10 0 0 0 38 38.00 -1.4 
TA 11 0 0 0 34 36.50 -5.4 

TA 12 0 0 0 42 42.00 2.6 

TA 13 0.5 1 1 32 36.50 -2.4 
TA 14 2 2 2 25 36.50 -2.4 

Sum 4 8 8 511 551 -0.6 

 

 

 

 

 

Table 6. Workloads and Error Terms According to MIQP Approach  
 𝒙𝟏,𝒊 𝒙𝟐,𝒊 𝒙𝟑,𝒊 𝒄𝒊 𝟐𝒙𝟏,𝒊 + 𝟐𝒙𝟐,𝒊 + 𝟐𝒙𝟑,𝒊 + 𝒄𝒊 𝒆𝒊

′ 

TA 1 2 2 2 28 40 0.6 
TA 2 0 0 0 33 33 -6.4 

TA 3 0 0 0 38 38 -1.4 

TA 4 0 0 0 40 40 0.6 
TA 5 0 0 0 33 33 -6.4 

TA 6 0 0 0 46 46 6.6 

TA 7 0 0 0 35 35 -4.4 
TA 8 0 2 2 32 40 0.6 

TA 9 0 0 0 55 55 15.6 

TA 10 0 0 0 38 38 -1.4 
TA 11 0 0 0 34 34 -5.4 

TA 12 0 0 0 42 42 2.6 

TA 13 0 2 2 32 40 0.6 
TA 14 2 2 2 25 37 -2.4 

Sum 4 8 8 511 551 -0.6 
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Table 7. Workloads and Error Terms According to Sort-and-Distribute Approach  
 𝒙𝟏,𝒊 𝒙𝟐,𝒊 𝒙𝟑,𝒊 𝒄𝒊 𝟐𝒙𝟏,𝒊 + 𝟐𝒙𝟐,𝒊 + 𝟐𝒙𝟑,𝒊 + 𝒄𝒊 𝒆𝒊

′ 

TA 1 0 2 2 28 36 -3.4 
TA 2 1 0 1 33 37 -2.4 

TA 3 0 0 0 38 38 -1.4 

TA 4 0 0 0 40 40 0.6 
TA 5 1 0 1 33 37 -2.4 

TA 6 0 0 0 46 46 6.6 

TA 7 0 1 0 35 37 -2.4 
TA 8 0 1 1 32 36 -3.4 

TA 9 0 0 0 55 55 15.6 

TA 10 0 0 0 38 38 -1.4 
TA 11 0 1 0 34 36 -3.4 

TA 12 0 0 0 42 42 2.6 

TA 13 2 1 1 32 36 -3.4 
TA 14 2 2 2 25 37 -2.4 

Sum 4 8 8 511 551 -0.6 

 


