SOME CLASSES OF q-ANALYTIC FUNCTIONS AND THE q-GREEN'S FORMULA

İLKER GENÇTÜRK, ŞERMIN HÖKELEKLI, AND KERIM KOCA

Abstract

In this paper, we first give two new definitions for q-analytic functions. We also define a new line q-integral. Finally, using these q-integrals we obtain a version of complex q-Green's formula.

1. Introduction and Preliminaries

In complex analysis, q-analogues of classical analytic (holomorphic) functions are defined by several mathematicians in different ways $[1,2,3,4]$. Moreover, there are many articles where various q-integrals were defined for complex discrete functions on complex discrete sets, and q-Green integrals were obtained using these discrete integrals $[2,5,6]$.

In this paper we define a discrete q-line integral for q-analytic functions in the sense of Pashaev-Nalcı, and we present a q-analogue of the Green's formula on the complex plane using this type of an integral.

Now, we will recall some basic definitions in q - calculus:
Let $0<q<1$ and $a \in \mathbb{R}$. The q-analogue of a is defined as

$$
\begin{equation*}
[a]_{q}=\frac{1-q^{a}}{1-q} \tag{1.1}
\end{equation*}
$$

For $x \in \mathbb{R}$ and $n \in \mathbb{N}$, we use the shorthand notation

$$
\begin{align*}
(1+x)_{n} & =(1+x)(1+q x) \cdots\left(1+q^{n-1} x\right) ; \quad(1+x)_{0}=1 \tag{1.2}\\
(1+x)_{\infty} & =\lim _{n \rightarrow \infty}(1+x)_{n}
\end{align*}
$$

For $m, n \in \mathbb{N}$ and $n \geq m$, the q-factorial and the q-analogues of the binomial numbers are defined respectively as

$$
\begin{align*}
{[n]_{q}!} & =[1]_{q}[2]_{q} \ldots[n]_{q}=\frac{(1-q)_{n}}{(1-q)^{n}} \tag{1.3}\\
{\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q} } & =\frac{[n]_{q}!}{[m]_{q}![n-m]_{q}!}=\frac{(1-q)_{n}}{(1-q)_{m}(1-q)_{n-m}} \tag{1.4}
\end{align*}
$$

Other definitions and concepts will be introduced in the course of the text.

[^0]Let us now consider the discrete set

$$
\begin{equation*}
Q=\left\{\left(q^{m} x, q^{n} y\right)=q^{m} x+i q^{n} y: m, n \in \mathbb{Z} ; x>0, y>0\right\} \tag{1.5}
\end{equation*}
$$

Definition 1.1 ([2]). Given $z_{j}=x_{j}+i y_{j} \in Q$. If z_{j+1} is one of

$$
\left(q x_{j}, y_{j}\right),\left(q^{-1} x_{j}, y_{j}\right),\left(x_{j}, q y_{j}\right),\left(x_{j}, q^{-1} y_{j}\right)
$$

then z_{j} and z_{j+1} are called adjacent points.
Definition 1.2. For adjacent points $z_{j}, z_{j+1} \in Q$, the expression

$$
\begin{equation*}
\gamma:=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle \tag{1.6}
\end{equation*}
$$

defines a q-discrete curve in Q. If $z_{i} \neq z_{j}$ for $i \neq j$, the curve is called a simple discrete curve. If $z_{0}=z_{n}$, it is called a simple closed discrete curve.

Definition 1.3. Let us consider the curve γ as defined in (1.6). The curve

$$
\begin{equation*}
\gamma^{-1}:=\left\langle z_{n}, z_{n-1}, \ldots, z_{1}, z_{0}\right\rangle \tag{1.7}
\end{equation*}
$$

is called the opposite-oriented γ.
Definition 1.4. For $z=x+i y \in Q$, the discrete set

$$
\begin{equation*}
S(z)=\left\{z=x+i y, z_{1}=x+i q^{-1} y, z_{2}=q x+i y, z_{3}=q x+i q^{-1} y\right\} \tag{1.8}
\end{equation*}
$$

is called a fundamental set with respect to z.
Let us denote the elements of Q lying in the discrete closed curve $\gamma:=\left\langle z_{0}, z_{1}, \ldots, z_{n}=\right.$ $\left.z_{0}\right\rangle$ by C, and let $\bar{C}:=C \cup \gamma$. Then, every finite subset of Q can be written as the union of fundamental sets

$$
\begin{equation*}
\bar{C}=\bigcup_{i=1}^{N} S\left(z_{i}\right) \tag{1.9}
\end{equation*}
$$

Let us also consider the subset

$$
\begin{equation*}
T(z)=\left\{z=x+i y, z_{1}=x+i q^{-1} y, z_{2}=q x+i y\right\} \subset S(z) \tag{1.10}
\end{equation*}
$$

For \bar{C} as in (1.9), let us define the subset

$$
\begin{equation*}
\bar{C}_{q}:=\left\{z_{i}: z_{i} \in S\left(z_{i}\right) ; i=1,2, \ldots, N\right\} \subset Q \tag{1.11}
\end{equation*}
$$

2. Classes of q-Analytic functions

Let $f(z)$ be a discrete function defined on the discrete set Q. We define the discrete partial differential operators

$$
\begin{equation*}
D_{q, x} f(z)=\frac{f(z)-f(q x, y)}{(1-q) x} ; \quad D_{q, y} f(z)=\frac{f(z)-f(x, q y)}{(1-q) y} \tag{2.1}
\end{equation*}
$$

We note that in [4], complex q-differential operators $D_{q, z}$ and $D_{q, \bar{z}}$ are defined as

$$
\begin{equation*}
D_{q, z}:=\frac{1}{2}\left[D_{q, x}-i M_{\frac{1}{q}}^{y} D_{q, y}\right] ; \quad D_{q, \bar{z}}:=\frac{1}{2}\left[D_{q, x}+i M_{\frac{1}{q}}^{y} D_{q, y}\right] \tag{2.2}
\end{equation*}
$$

where $M_{q}^{y} f(x, y)=f(x, q y)$ is the dilatation operator.

Definition 2.1 ([4]). If a complex valued discrete function $f(x, y)$ satisfies

$$
\begin{equation*}
D_{q, \bar{z}} f(x, y)=\frac{1}{2}\left[D_{q, x} f(x, y)+i M_{\frac{1}{q}}^{y} D_{q, y} f(x, y)\right]=0 \tag{2.3}
\end{equation*}
$$

for $z \in T(z)$, then $f(x, y)$ is called a q-analytic function at point z in the sense of Pashaev-Nalcı.

Example 2.2. For $n \in \mathbb{N}$, the complex q-binomial expansions

$$
\Phi_{q}^{(n)}(x, y)=(x+i y)(x+i q y) \cdots\left(x+i q^{n-1} y\right) \equiv \sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.4}\\
k
\end{array}\right]_{q} q^{\frac{k(k-1)}{2}} x^{n-k}(i y)^{k}
$$

are q-analytic in the sense of Pashaev-Nalcı. Moreover, they satisfy

$$
D_{q, z} \Phi_{q}^{(n)}(x, y)=[n]_{q} \Phi_{q}^{(n-1)}(x, y)
$$

Remark 2.3. In [2], the q-analyticity of $f(z)$ is characterized by the equation

$$
\begin{equation*}
D_{q, x} f(x, y)=-i D_{q, y} f(x, y) \tag{2.5}
\end{equation*}
$$

That is, $f(z)$ is called q-analytic in the sense of Harman when the equation

$$
\begin{equation*}
\frac{f(z)-f(q x, y)}{(1-q) x}=\frac{f(z)-f(x, q y)}{(1-q) i y} \tag{2.6}
\end{equation*}
$$

holds.
Example 2.4. Let $n \in \mathbb{N}$. The class of function given by

$$
\Psi_{q}^{(n)}(x, y)=\sum_{j=0}^{n} \frac{(i y)^{j}}{[j]_{q}!} D_{q, x}\left(x^{j}\right)=\sum_{j=0}^{n}\left[\begin{array}{l}
n \tag{2.7}\\
j
\end{array}\right]_{q} x^{j}(i y)^{n-j}
$$

is q-analytic in the sense of Harman, but not in the sense of Pashaev-Nalcı. The functions $\Phi_{q}^{(n)}(x, y)(n=2,3, \ldots)$ defined in (2.4) are not q-analytic in the sense of Harman.

A necessary and sufficient condition for a discrete function $f(z)$ to be q-analytic in the sense of Pashaev-Nalcı is that

$$
\begin{equation*}
L_{1} f(x, y):=(q x+i y) f(x, y)-i y f(q x, y)-q x f\left(x, q^{-1} y\right)=0 \tag{2.8}
\end{equation*}
$$

This identity can easily be derived from (2.3).
Similarly, a necessary and sufficient condition for a discrete function $f(z)$ to be q-analytic in the sense of Harman is that

$$
\begin{equation*}
L_{2} f(x, y):=\bar{z} f(z)-x f(x, q y)+i y f(q x, y)=0 \tag{2.9}
\end{equation*}
$$

which be derived from (2.6).
Let $p=q^{-1}$. Consider the differential operator

$$
\begin{equation*}
D_{p, x} f(z)=\frac{f(z)-f(p x, y)}{(1-p) x} ; \quad D_{p, y} f(z)=\frac{f(z)-f(x, p y)}{(1-p) y} \tag{2.10}
\end{equation*}
$$

for a discrete function $f(z)$.
Definition 2.5. If a complex-valued discrete function $g(x, y)$ satisfies

$$
\begin{equation*}
D_{p, x} g(x, y)=-i M_{\frac{1}{p}}^{y} D_{p, y} g(x, y) \tag{2.11}
\end{equation*}
$$

it is called p-analytic in the sense of Pashaev-Nalcı.

A necessary and sufficient condition for $g(x, y)$ to be p-analytic on a suitable discrete set Q is that

$$
\begin{equation*}
B[g(x, y)]:=(p x+i y) f(x, y)-i y f(p x, y)-p x f\left(x, p^{-1} y\right)=0 \tag{2.12}
\end{equation*}
$$

which can be obtained from (2.11).
Example 2.6. $g(x, y)=x^{2}+\left(1+q^{-1}\right) i x y-q^{-1} y^{2}$ is p-analytic, but not q-analytic.
In this paper, we present another two classes of q-analytic functions.
Let $D_{q, x}$ and $D_{q, y}$ be the partial q-differential operators as given in (2.1). Using these operators we can define complex differential operators

$$
\begin{align*}
D_{q, z}^{*} & \equiv \frac{1}{2}\left(M_{\frac{1}{q}}^{x} D_{q, x}-i D_{q, y}\right) \tag{2.13}\\
D_{q, \bar{z}}^{*} & \equiv \frac{1}{2}\left(M_{\frac{1}{q}}^{x} D_{q, x}+i D_{q, y}\right)
\end{align*}
$$

Definition 2.7. If a discrete function $h(x, y)$ defined on a suitable discrete set Q satisfies

$$
\begin{equation*}
D_{q, \bar{z}}^{*} h(x, y)=0 \tag{2.14}
\end{equation*}
$$

it is said to be q-analytic with respect to the operator D_{q}^{*}.
This definition of q-analyticity is different from previous definitions.
Example 2.8. The functions defined by

$$
\begin{equation*}
P_{q}^{(n)}(x, y)=(x+i y)(q x+i y) \cdots\left(q^{n-1} x+i y\right) ; \quad n=1,2, \ldots \tag{2.15}
\end{equation*}
$$

are all q-analytic with respect to the operator $D_{q, \bar{z}}^{*}$. In other words, we have

$$
D_{q, \bar{z}}^{*} P_{q}^{(n)}(x, y) \equiv 0
$$

Moreover, the equality

$$
D_{q, z}^{*} P_{q}^{(n)}(x, y)=[n]_{q} P_{q}^{(n-1)}(x, y)
$$

holds.
Remark 2.9. A necessary and sufficient condition for $h(x, y)$ to be q-analytic with respect to D_{q}^{*} is that

$$
\begin{equation*}
E[h(x, y)]=(x+i q y) h(x, y)-x h(x, q y)-i q y h\left(q^{-1} x, y\right) \tag{2.16}
\end{equation*}
$$

which follows from (2.13) and (2.14).
Using equation (2.1) again, we can define complex differential operators

$$
\begin{aligned}
D_{q, \bar{z}}^{* *} & :=\frac{1}{2}\left(M_{\frac{1}{q}}^{x} D_{q, x}+i M_{\frac{1}{q}}^{y} D_{q, y}\right), \\
D_{q, z}^{* *} & :=\frac{1}{2}\left(M_{\frac{1}{q}}^{x} D_{q, x}-i M_{\frac{1}{q}}^{y} D_{q, y}\right) .
\end{aligned}
$$

Definition 2.10. If a discrete function $k(x, y)$ defined on a suitable discrete set Q satisfies

$$
D_{q, \bar{z}}^{* *} k(x, y)=0
$$

it is called q-analytic with respect to the operator $D_{q}^{* *}$.

Example 2.11. All functions defined as

$$
R_{q}^{(n)}(x, y)=\sum_{j=0}^{n} q^{-j(n-j)}\left[\begin{array}{l}
n \tag{2.18}\\
j
\end{array}\right]_{q}(i y)^{j} x^{n-j} ; \quad n=1,2, \ldots
$$

are q-analytic with respect to $D_{q}^{* *}$.
In other words, we have

$$
D_{q, \bar{z}}^{* *} R_{q}^{(n)}(x, y) \equiv \frac{1}{2}\left[M_{\frac{1}{q}}^{x} D_{q, x} R_{q}^{(n)}(x, y)+i M_{\frac{1}{q}}^{y} D_{q, y} R_{q}^{(n)}(x, y)\right] \equiv 0
$$

Moreover, the equality

$$
\begin{equation*}
D_{q, z}^{* *} R_{q}^{(n)}(x, y)=[n]_{q} R_{q}^{(n-1)}(x, y) \tag{2.19}
\end{equation*}
$$

holds.

3. Complex Line q-Integrals

Let $z_{j}=x_{j}+i y_{j}, z_{j+1}=x_{j+1}+i y_{j+1} \in Q$ be two adjacent points. We define the integral of a discrete function $f(z)$ from z_{j} to z_{j+1} by

$$
\int_{z_{j}}^{z_{j+1}} f(z) d_{q} z= \begin{cases}\left(z_{j+1}-z_{j}\right) f\left(z_{j}\right) & \text { if } z_{j+1}=q x_{j}+i y_{j} \text { or } z_{j+1}=x_{j}+i q^{-1} y_{j} \tag{3.1}\\ \left(z_{j+1}-z_{j}\right) f\left(z_{j+1}\right) & \text { if } z_{j+1}=x_{j}+i q y_{j} \text { or } z_{j+1}=q^{-1} x_{j}+i y_{j}\end{cases}
$$

In this case, on a simple discrete curve

$$
\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle
$$

lying in the discrete set Q the q-integral of $f(z)$ on γ can be defined as

$$
\begin{equation*}
\int_{\gamma} f(z) d_{q} z=\int_{z_{0}}^{z_{n}} f(z) d_{q} z=\sum_{j=0}^{n-1} \int_{z_{j}}^{z_{j+1}} f(z) d_{q} z \tag{3.2}
\end{equation*}
$$

This integral in (3.2) satisfies the classical properties of line integrals such as additivity, linearity, and orientation-dependence.

Remark 3.1. In [2], the discrete line q-integral is defined (under the same hypotheses) as

$$
\int_{z_{j}}^{z_{j+1}} f(z) d_{q} z= \begin{cases}\left(z_{j+1}-z_{j}\right) f\left(z_{j}\right) & \text { if } z_{j+1}=q x_{j}+i y_{j} \text { or } z_{j+1}=x_{j}+i q y_{j} \tag{3.3}\\ \left(z_{j+1}-z_{j}\right) f\left(z_{j+1}\right) & \text { if } z_{j+1}=q^{-1} x_{j}+i y_{j} \text { or } z_{j+1}=x_{j}+i q^{-1} y_{j}\end{cases}
$$

and

$$
\int_{\gamma} f(z) d_{q} z=\int_{z_{0}}^{z_{n}} f(z) d_{q} z=\sum_{j=0}^{n-1} \int_{z_{j}}^{z_{j+1}} f(z) d_{q} z
$$

The integrals in (3.2) and (3.3) are similar but not identical.

Definition 3.2. Let $z_{0} \in \bar{C}_{q}$ be a fixed point, and let $z \in \bar{C}_{q}$ represent a variable point. The expression

$$
\begin{equation*}
F(z):=\int_{z_{0}}^{z} f(\zeta) d_{q} \zeta \tag{3.4}
\end{equation*}
$$

is called the indefinite q-integral of $f(z)$.
Theorem 3.3. If a discrete function $f(z)$ is q-analytic on \bar{C}_{q} in the sense of Pashaev-Nalci, then the integral in (3.4) is path-independent.

Proof. This can be easily seen from the definition (3.1) and the equality (2.8).
For example, let

$$
\begin{aligned}
& \gamma_{1}=\left\langle z_{1}=x+i y, z_{2}=x+i q^{-1} y, z_{3}=q x+i q^{-1} y\right\rangle \\
& \gamma_{2}=\left\langle z_{1}=x+i y, z_{4}=q x+i y, z_{5}=z_{3}=q x+i q^{-1} y\right\rangle
\end{aligned}
$$

In this case, we have

$$
\begin{align*}
& A=\int_{\gamma_{1}} f(z) d_{q} z=\left(q^{-1}-1\right) i y f(x, y)+(q-1) x f\left(x, q^{-1} y\right), \tag{3.5}\\
& B=\int_{\gamma_{2}} f(z) d_{q} z=\left(q^{-1}-1\right) i y f(q x, y)+(q-1) x f(x, y), \tag{3.6}
\end{align*}
$$

and hence, by using (2.8),

$$
\begin{equation*}
q x f\left(x, q^{-1} y\right)=(q x+i y) f(x, y)-i y f(q x, y) \tag{3.7}
\end{equation*}
$$

If we substitute this in (3.5), we see that $A=B$.
Theorem 3.4. If $f(z)$ is q-analytic on \bar{C}_{q} in the sense of Pashaev-Nalcı, and if $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle$ is a simple discrete curve in \bar{C}_{q}, then

$$
\begin{equation*}
\int_{\gamma} f(z) d_{q} z=F\left(z_{n}\right)-F\left(z_{0}\right) \tag{3.8}
\end{equation*}
$$

where $F(z)$ is as given in (3.4).
Proof. This is true since $F\left(z_{0}\right)=0$ and $F\left(z_{n}\right)=\int_{z_{0}}^{z_{n}} f(\zeta) d_{q} \zeta$.
Theorem 3.5. If $f(z)$ is q-analytic on \bar{C}_{q} in the sense of Pashaev-Nalcr, and if $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle$ is a simple discrete curve in \bar{C}_{q}, then

$$
\begin{equation*}
\int_{\gamma} D_{q, z} f(z) d_{q} z=f\left(z_{n}\right)-f\left(z_{0}\right) \tag{3.9}
\end{equation*}
$$

Proof. Let us prove the statement for $n=1$. For $z_{0}=x+i y$ and $z_{1}=x+i q^{-1} y$ we have

$$
\begin{aligned}
D_{q, z} f(x, y) & =\frac{1}{2(1-q)}\left\{\frac{1}{x}[f(x, y)-f(q x, y)]-\frac{i q}{y}\left[f\left(x, q^{-1} y\right)-f(x, y)\right]\right\} \\
& =: \varphi(x, y)
\end{aligned}
$$

from (2.1) and (2.2).

Thus, using (3.2) we see that

$$
\begin{align*}
& \int_{z_{0}}^{z_{1}} D_{q, z} f(z) d_{q} z=\left(z_{1}-z_{0}\right) \varphi\left(z_{0}\right)=\frac{1-q}{q} i y \varphi(x, y) \\
& =\frac{1}{2 q} i y\left\{\frac{1}{x}[f(x, y)-f(q x, y)]-\frac{i q}{y}\left[f\left(x, q^{-1} y\right)-f(x, y)\right]\right\} \\
& =\frac{1}{2}\left[\frac{1}{x} q^{-1} i y f(x, y)-\frac{1}{x} q^{-1} i y f(q x, y)+f\left(x, q^{-1} y\right)-f(x, y)\right] \tag{3.10}
\end{align*}
$$

where $z_{0}=x+i y$.
From (2.8) we have

$$
\begin{equation*}
q^{-1} y f(q x, y)=x f(x, y)+i q^{-1} y f(x, y)-x f\left(x, q^{-1} y\right) \tag{3.11}
\end{equation*}
$$

Using (3.11) in (3.10) we obtain

$$
\begin{equation*}
\int_{z_{0}}^{z_{1}} D_{q, z} f(z) d_{q} z=f\left(x, q^{-1} y\right)-f(x, y)=f\left(z_{1}\right)-f\left(z_{0}\right) \tag{3.12}
\end{equation*}
$$

Considering the property in (3.12) with (3.2), we see that the statement holds true for all $n \in \mathbb{N}$.

Remark 3.6. We observe that

$$
\begin{equation*}
\int_{\gamma} f(z) d_{q} z=-\int_{\gamma^{-1}} f(z) d_{q} z \tag{3.13}
\end{equation*}
$$

from (1.7) and (3.2).
Theorem 3.7. For $F(z)$ as in (3.4) we have

$$
D_{q, z} F(z)=f(z)
$$

Proof. Let z_{0} be a fixed point. Since

$$
F(z)=F(x, y)=\int_{z_{0}}^{z} f(\zeta) d_{q} \zeta
$$

we have

$$
\begin{align*}
D_{q, z} F(z)= & \frac{1}{2(1-q)}\left\{\frac{1}{x}[F(x, y)-F(q x, y)]-\frac{i q}{y}\left[F\left(x, q^{-1} y\right)-F(x, y)\right]\right\} \\
= & \frac{1}{2(1-q)}\left\{\frac{1}{x}\left[\int_{z_{0}}^{(x, y)} f(\zeta) d_{q} \zeta-\int_{z_{0}}^{(q x, y)} f(\zeta) d_{q} \zeta\right]\right. \\
4) & \left.-\frac{i q}{y}\left[\int_{z_{0}}^{\left(x, q^{-1} y\right)} f(\zeta) d_{q} \zeta-\int_{z_{0}}^{(x, y)} f(\zeta) d_{q} \zeta\right]\right\} \tag{3.14}
\end{align*}
$$

using (2.2).

On the other hand, if we let $z_{0}=x_{0}+i y_{0}$ and $z=x+i y$, we get from (3.1) that

$$
\begin{aligned}
I_{1} & =\int_{z_{0}}^{z} f(\zeta) d_{q} \zeta-\int_{z_{0}}^{(q x, y)} f(\zeta) d_{q} \zeta=\int_{z_{0}}^{z} f(\zeta) d_{q} \zeta-\int_{z_{0}}^{z} f(\zeta) d_{q} \zeta-\int_{z}^{(q x, y)} f(\zeta) d_{q} \zeta \\
& =-\int_{z}^{(q x, y)} f(\zeta) d_{q} \zeta=-(q x+i y-x-i y) f(z)=(1-q) x f(z)
\end{aligned}
$$

Similarly, we have

$$
I_{2}=\int_{z_{0}}^{\left(x, q^{-1} y\right)} f(\zeta) d_{q} \zeta=\frac{1-q}{q} i y f(z)
$$

If we substitute I_{1} and I_{2} in (3.14), we obtain

$$
D_{q, z} F(z)=\frac{1}{2(1-q)}[(1-q) f(z)+(1-q) f(z)]=f(z)
$$

Remark 3.8. For $z=x+i y, z_{1}=q x+i y$, and $z_{2}=x+i q^{-1} y$, it is easy to see that

$$
\int_{z}^{z_{1}} f(\zeta) d_{q} \zeta=\int_{z}^{z_{2}} f(\zeta) d_{q} \zeta+\int_{z_{2}}^{z_{1}} f(\zeta) d_{q} \zeta
$$

from (3.1).
Theorem 3.9. Given a simple closed discrete curve $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n-1}, z_{n}=\right.$ $\left.z_{0}\right\rangle \subset Q$ and a q-analytic function $f(z)$ in the sense of Pashaev-Nalcı. Then

$$
\begin{equation*}
\int_{\gamma} f(\zeta) d_{q} \zeta=0 \tag{3.15}
\end{equation*}
$$

Proof. This follows easily from Theorem 3.4.
Example 3.10. On the discrete set Q, let us consider the discrete curve

$$
\begin{equation*}
\gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \gamma_{4} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma_{1} & =\left\langle z_{0}=x+i y, z_{1}=x+i q^{-1} y, z_{2}=x+i q^{-2} y, z_{3}=x+i q^{-3} y\right\rangle \\
\gamma_{2} & =\left\langle z_{3}=x+i q^{-3} y, z_{4}=q x+i q^{-3} y, z_{5}=q^{2} x+i q^{-3} y, z_{6}=q^{3} x+i q^{-3} y\right\rangle \\
\gamma_{3} & =\left\langle z_{6}=q^{3} x+i q^{-3} y, z_{7}=q^{3} x+i q^{-2} y, z_{8}=q^{3} x+i q^{-1} y, z_{9}=q^{3} x+i y\right\rangle \\
\gamma_{4} & =\left\langle z_{9}=q^{3} x+i y, z_{10}=q^{2} x+i y, z_{11}=q x+i y, z_{12}=x+i y=z_{0}\right\rangle
\end{aligned}
$$

The set that is contained by the simple closed curve γ is
$C_{q}=\left\{z_{13}=q x+i q^{-1} y, z_{14}=q x+i q^{-2} y, z_{15}=q^{2} x+i q^{-2} y, z_{16}=q^{2} x+i q^{-1} y\right\}$.
From (1.11) we have

$$
\bar{C}_{q}=C_{q} \cup\left\{z, z_{1}, z_{2}, z_{10}, z_{11}\right\}
$$

Using (3.1) and (3.2) we see that for any discrete function $f(z)$ we have

$$
\begin{aligned}
\int_{\gamma} f(z) d_{q} z= & \sum_{j=0}^{11} \int_{z_{j}}^{z_{j+1}} f(z) d_{q} z \\
= & \frac{1-q}{q}\left[L_{1} f(z)+L_{1} f\left(z_{1}\right)+L_{1} f\left(z_{2}\right)+L_{1} f\left(z_{10}\right)+L_{1} f\left(z_{11}\right)\right. \\
& \left.+L_{1} f\left(z_{13}\right)+L_{1} f\left(z_{14}\right)+L_{1} f\left(z_{15}\right)+L_{1} f\left(z_{16}\right)\right]
\end{aligned}
$$

If $f(z)$ is q-analytic in the sense of Pashaev-Nalcı, we have $L_{1} f\left(z_{k}\right)=0, k=$ $0,1, \ldots, z_{k} \in \bar{C}_{q}$, and therefore,

$$
\int_{\gamma} f(z) d_{q} z=0
$$

Remark 3.11. Theorem 3.9 can be thought of as the q-analog of Cauchy's Theorem for analytic functions in classical complex analysis.
Definition 3.12. Given discrete functions $f(x, y), g(x, y)$ and a discrete curve $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}\right\rangle$ on the discrete set Q. Let us consider the integral

The integral given by

$$
\begin{equation*}
\int_{\gamma}[f(z) * g(z)] d_{q} z=\sum_{j=0}^{n-1} \int_{z_{j}}^{z_{j+1}}[f(z) * g(z)] d_{q} z \tag{3.18}
\end{equation*}
$$

is called the conjoint integral of $f(z)$ and $g(z)$ over γ.
Our definition of the conjoint integral is different from the one given in [2].
Theorem 3.13. On $\bar{C}_{q} \subset Q$, let $f(x, y)$ be q-analytic in the sense of PashaevNalcr, and $g(x, y)$ in the sense of D_{q}^{*}. Then, for any closed discrete simple curve $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}=z_{0}\right\rangle \subset \bar{C}_{q}$ we have

$$
\begin{equation*}
\int_{\gamma}[f(z) * g(z)] d_{q} z=0 \tag{3.19}
\end{equation*}
$$

Proof. Let us prove the statement for the closed simple discrete curve

$$
\gamma=\left\langle z_{0}=x+i y, z_{1}=x+i q^{-1} y, z_{2}=q x+i q^{-1} y, z_{3}=q x+i y\right\rangle
$$

The proof can be repeated similarly for other closed discrete curves.
Since $f(z)$ is q-analytic in the sense of Pashaev-Nalcı, the equality in (2.8) is satisfied. Thus,

$$
\begin{equation*}
(q x+i y) f(x, y)-i y f(q x, y)-q x f\left(x, q^{-1} y\right)=0 \tag{3.20}
\end{equation*}
$$

Since $g(x, y)$ is q-analytic in the sense of D_{q}^{*}, we have

$$
\begin{equation*}
E g(x, y)=(x+i q y) g(x, y)-i q y g\left(q^{-1} x, y\right)-x g(x, q y)=0 \tag{3.21}
\end{equation*}
$$

by (2.16).
Moreover, from (3.21) we can write

$$
\begin{equation*}
E g\left(q x, q^{-1} y\right)=(q x+i y) g\left(q x, q^{-1} y\right)-q x g(q x, y)-i y g\left(x, q^{-1} y\right)=0 \tag{3.22}
\end{equation*}
$$

Using the definition of the integral in (3.17) we have

$$
\begin{align*}
& \int_{\gamma}[f(z) * g(z)] d_{q} z=\sum_{j=0}^{3} \int_{z_{j}}^{z_{j+1}}[f(z) * g(z)] d_{q} z \\
& =\frac{1-q}{q}\left\{f(x, y)\left[q x g(q x, y)+i y g\left(x, q^{-1} y\right)\right]\right. \\
& \left.-g\left(q x, q^{-1} y\right)\left[q x f\left(x, q^{-1} y\right)+i y f(q x, y)\right]\right\} . \tag{3.23}
\end{align*}
$$

By using (3.20) and (3.22) in (3.23) we obtain

$$
\begin{align*}
\int_{\gamma}[f(z) * g(z)] d_{q} z=\frac{1-q}{q}\{ & f(x, y)\left[q x g\left(q x, q^{-1} y\right)+i y g\left(q x, q^{-1} y\right)\right. \\
& \left.-i y g\left(x, q^{-1} y\right)+i y g\left(x, q^{-1} y\right)\right] \\
& \left.-g\left(q x, q^{-1} y\right)[(q x+i y) f(x, y)]\right\}=0 \tag{3.24}
\end{align*}
$$

Theorem 3.14. Let C be and \bar{C}_{q} be discrete sets as defined in (1.9) and (1.11), respectively. Let $f(z)$ and $g(z)$ be two discrete functions on \bar{C}. For any closed discrete curve $\gamma=\left\langle z_{0}, z_{1}, \ldots, z_{n}=z_{0}\right\rangle$ on $\bar{C}=\bar{C}_{q} \cup \gamma$ we have

$$
\begin{equation*}
\int_{\gamma}[f(z) * g(z)] d_{q} z=\frac{1-q}{q} \sum_{z \in \bar{C}_{q}}\left[g\left(q x, q^{-1} y\right) L_{1} f(z)-f(z) E g\left(q x, q^{-1} y\right)\right] \tag{3.25}
\end{equation*}
$$

where the operators L_{1} and E are defined in (2.8) and (2.16).
Proof. Let us prove the statement for the closed simple discrete curve

$$
\begin{aligned}
\gamma=\left\langle z_{0}\right. & =x+i y, z_{1}=x+i q^{-1} y, z_{2}=x+i q^{-2} y \\
z_{3} & =q x+i q^{-2} y, z_{4}=q^{2} x+i q^{-2} y, z_{5}=q^{2} x+i q^{-1} y \\
z_{6} & \left.=q^{2} x+i y, z_{7}=q x+i y, z_{8}=x+i y=z_{0}\right\rangle
\end{aligned}
$$

The proof can be completed by repeating the same argument for other closed discrete curves. From (1.11) we have

$$
\begin{aligned}
\bar{C}_{q}=\left\langle z_{0}=x+i y, z_{1}\right. & =x+i q^{-1} y, z_{3}=q x+i q^{-2} y, z_{4}=q^{2} x+i q^{-2} y \\
z_{5} & \left.=q^{2} x+i q^{-1} y, z_{7}=q x+i y, z_{9}=q x+i q^{-1} y\right\rangle
\end{aligned}
$$

From (3.17) and (3.18) we obtain

$$
\left.\left.\left.\begin{array}{rl}
\int_{\gamma}[f(z) * g(z)] d_{q} z= & \sum_{j=0}^{7} \int_{z_{j}}^{z_{j+1}}
\end{array}\right] f f(z) * g(z)\right] d_{q} z\right]=\frac{1-q}{q}\left\{\left[q x g\left(z_{7}\right)+i y g\left(z_{1}\right)\right] f(z)+i q^{-1} y f\left(z_{1}\right) g\left(z_{2}\right)\right\}
$$

On the other hand, using (2.16) and the L_{1} operator we can compute that

$$
\begin{align*}
& {\left[g\left(z_{9}\right) L_{1} f(z)-f(z) E g\left(z_{9}\right)\right]+\left[g\left(z_{4}\right) L_{1} f\left(z_{9}\right)-f\left(z_{9}\right) E g\left(z_{4}\right)\right] } \\
& \quad+\left[g\left(z_{5}\right) L_{1} f\left(z_{7}\right)-f\left(z_{7}\right) E g\left(z_{5}\right)\right]+\left[g\left(z_{3}\right) L_{1} f\left(z_{1}\right)-f\left(z_{1}\right) E g\left(z_{3}\right)\right] \\
= & f(z)\left[q x g\left(z_{7}\right)+i y g\left(z_{1}\right)\right]+i q^{-1} y f\left(z_{1}\right) g\left(z_{2}\right)-q x f\left(z_{2}\right) g\left(z_{3}\right)-q^{2} x f\left(z_{3}\right) g\left(z_{4}\right) \\
& -i q^{-1} y f\left(z_{5}\right) g\left(z_{4}\right)-i y f\left(z_{6}\right) g\left(z_{5}\right)+q^{2} x f\left(z_{7}\right) g\left(z_{6}\right) \\
= & \frac{q}{1-q} \int_{\gamma}[f(z) * g(z)] d_{q} z . \tag{3.27}
\end{align*}
$$

Comparing (3.26) with (3.27) we see that (3.24) holds true.
Corollary 3.15. The formula (3.24) is the q-analogue of the classical Green's formula with respect to the integrals (3.17) and (3.18).

4. Conclusion

Various different definitions were given for q-integrals in the literature. The q Green formula (3.24) takes different forms as the definition of the q-integral changes. For example, in [6], a Green's formula similar to (3.24) was obtained using the wellknown Jackson Integral in q-analysis.

In this paper, we define a discrete q-line integral for q-analytic functions in the sense of Pashaev-Nalcı. Then using this type of an integral, we present a q-analogue of Green's formula on the complex plane.
Corollary 4.1. If $f(z)$ is q-analytic on a discrete set Q in the sense of Pashaev-Nalcı, then for any discrete function $g(z)$ we have

$$
\int_{\gamma}[f(z) * g(z)] d_{q} z=\frac{q}{1-q} \sum_{z \in \bar{C}_{q}} f(z) E g\left(q x . q^{-1} y\right)
$$

References

[1] T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel, (2012).
[2] C. J. Harman, Discrete geometric function theory I, Applicable analysis, 7(4)(1978), 315-336.
[3] C. J. Harman, Discrete geometric function theory II, Applicable analysis, 9(3)(1979), 191-203.
[4] O. K. Pashaev and S. Nalci, q-analytic functions, fractals and generalized analytic functions, Journal of Physics A: Mathematical and Theoretical, 47(4)(2014), 045204.
[5] K. Koca K., İ. Gençtürk and M. Aydin, Complex Line q-Integrals and q-Green's Formula on the Plane, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), LXIV f. 1 (2018), 27-45.
[6] K. Koca K., İ. Gençtürk and M. Aydin, q-Green's formula on the complex plane in the sense of Harman, Creat. Math. Inform., 26(3)(2017), 309-320.
(Ilker Gençtürk(Corresponding Author)) Kirikkale University,, Department of Mathematics,, 71450 Kirikkale,, Turkey

Email address: ilkergencturk@gmail.com
(Şermin Hökelekli) Kirikkale University,, Department of Mathematics,, 71450 Kirikkale,, Turkey

Email address: serminhokelekli@gmail.com
(Kerim Koca) Kirikkale University,, Department of Mathematics,, 71450 Kirikkale,, Turkey

Email address: kerimkoca@gmail.com

[^0]: Date: December, 2020.
 2000 Mathematics Subject Classification. 05A30; 30G25.
 Key words and phrases. q-differential, q-integral, q-analytic function.

