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Highlights
» We focus on factorizations and inverse factorizations of special lower triangular matrices.
» We propose several new identities of the k —Fibonacci sequence.
» We give Cholesky factorization of generalized some special symmetric matrices.
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Matrix methods are a useful tool while dealing with many problems stemming from linear
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1. INTRODUCTION

The Fibonacci and Lucas numbers arise in several fields such as mathematics, physics, computer science,
and related fields. These numbers have attracted the attention of researchers for years. Until now, several
studies have been conducted on the applications and generalization of these sequences. An interesting
generalization of the Fibonacci sequence, k —Fibonacci sequence, {Fk,n}:;(,, was presented by Falcon and

Plaza [1]. For k € R* and n € Ny, the k —Fibonacci numbers are defined by
Feni2 = kFni1 + Fieny Fro =0, Fiq =1 1)

In particular, for k = 1 and k = 2, we obtain the Fibonacci and Pell numbers respectively. Moreover, the

V2
ratio of the quotient of two successive terms of k —Fibonacci numbers converges to r; (k) = %,

which is the positive root of the equation r2 — kr — 1 = 0. Moreover, the k —Fibonacci numbers are
generated by the powers of the following 2 x 2 companion matrix:

k 1 n [Fk n+1 Fkn
=" o 2
1 0] Fk,n Fk,n—l ( )

Now, we denote the set of all n x n matrices by M,,. For any lower triangular matrix, E € M, with positive
diagonal entries, we may write G = EE*, where G € M,,, G = §§*,and S € M. This factorization, which
is called as Cholesky factorization of G, is unique if S is nonsingular.
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A block diagonal matrix U € M, can be defined by

U1 O
v=|0 Uz o1 ©)

where Uj; € My, , j = 1,2,...,1, and Z§.=1 n; = n. Notationally, this matrix can be denoted as U = U;; &
U, @ ... Uy or, in a short form, @Z§'=1 Ujj. This sum is called as direct sum of the matrices
Ui1, Uz, on, Uy

Matrix factorization provides considerable convenience in engineering problems and large matrix
computations. In recent years, several authors have studied the applications and factorizations of special
matrices whose entries are well—known number sequences [2-9]. For example, Kili¢ and Tas¢1 discussed
the factorizations of the Pell and symmetric Pell matrices [2]. Lee et al. investigated the eigenvalues and
factorizations of the n x n Fibonacci matrix [3]. Later, Lee and Kim examined the factorization of the
generalized Fibonacci matrix and they found some bounds for the eigenvalues of the generalized symmetric
Fibonacci matrices [4]. Zhang and Zhang derived some identities including Lucas numbers using the Pascal
matrix and the Lucas matrix [5]. Stanica extended some results on the factorization of matrices associated
with Lucas, Pascal, Stirling sequences by the Fibonacci matrix [6]. Irmak and Kome investigated the
Cholesky factorization of the symmetric Lucas matrix and they obtain the upper and lower bounds for the
eigenvalues of the symmetric Lucas matrix by using some majorization techniques [9].

Motivated by the above cited works, in this paper, we define generalized n X n k —Fibonacci matrix of the
first kind and of the second Kind, #,[x, k] = [h;;] and R, [x, k] = [ryj], as

Fiicipixt™, i—j+12>0, Fiicizixt™72, i—j+12>0,
hij = = ., ) ij = = . . (4)
0, i—j+1<0 0, i—j+1<0
In particular, for n = 4, we get
1 0 0 0
kx 1 0 0
Hylx, k] =|(k* + Dx?*  kx 1 0
k(k? +2)x3 (k*+1Dx? kx 1
and
1 0 0 0
Kl = kx x? 0 0
Relokl =gz 4 a2 kea® x* 0
k(k? +2)x3 (k% + Dx* kx> x°
Moreover, we define the generalized symmetric k —Fibonacci matrix, 9y, [x, k] = [q;;], as
Y=t Femx®72, =],
4ij = 4ji = 2 . - 5)
qij—2x° + kqi,j_lx, i+1<
For example,
1 kx (k% + 1)x? k(k? +2)x3
kx (k? + 1)x? k(k? + 2)x3 (k* + 3k? + Dx*
Qulx, k] = (k% + D)x?  k(k?+2)x3 (k* 4+ 3k% + 2)x*  k(k?+2)%x5
k(k? +2)x3  (k* +3k? + Dx*  k(k? +2)%x° (k® + 5k* + 7k? + 2)x°
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This study is organized as follows. In Section 2, we derive some useful identities which are used in the
factorization process. In Section 3, we investigate factorizations and inverse factorizations of #,, [x, k] and
R, [x, k]. Moreover, we give the Cholesky factorization of 9,,[x, k] for any nonzero real number x.

2. k —FIBONACCI IDENTITIES

In this section, we give some useful identities of the k —Fibonacci numbers.
Lemma 2. 1. Let F, , be the k —Fibonacci number. Then, we have
Fk,2n+1 = Flg,n + Flg,n+1- (6)

Proof. We will use induction method for proving the theorem. It’s clear that Equation (6) holds for n = 1.
We assume that Equation (6) holds for n. We will show that Equation (6) holds for n + 1. Thus, we get

Fron+s = kFi2ni2 + Fionia

= k(kFizn+1 + Fian) + Fionet

= (k? + D)Fy2n4+1 + kFi2n

= (k* + 2)Fi 2n+1 — Fi2n-1- (7
By induction hypothesis, we obtain
Fion+s = (k% + 2)Fy ons1 — Fion-1

= (k* + 2)(F,€n + Fk2,n+1) - (sz,n - sz,n—l)

= (k* + DFZn + (k% + 2)F i1 — Finy. (8)
In addition, we have
Finez + Finoa = (kFiner + Fk,n)z + (Frne1 — ka,n)z

= (k% + D)Ff 41 + (K% + DFE,. 9)

By virtue of (8) and (9), we obtain
Fion+s = Fiensr + Finaa. (10)
Lemma 2. 2. Let F, ,, be the k —Fibonacci number. Then we have
kFinFin-1 + Fino1 — Fin = (D™ (11)
Lemma 2. 3. Let Fy, ,, be the k —Fibonacci number. Then we have
kFynFin-1 = Fins1 = Fen-1 = KFinFins1- (12)

Proof. Lemma 2.2 and Lemma 2.3 can be proven similar to the proof of Lemma 2.1. So, we omit the proofs.

Lemma 2. 4. [10] Let Fy ,, be the n —th term of the sequence {Fj, ,}pen. Then we have

n 2 Fk,an,n+1
i=o Mg =—— (13)

Lemma 2. 5. Let F, ,, be the k —Fibonacci number. Then we have

Fk,2n+1 - ka,an.,n+1 -1
Fya1Fro + FroFgs + -+ Fepn_1Fen = ok -




1588 Cahit KOME / GU J Sci, 35(4): 1585-1595 (2022)

Proof. By virtue of Lemma 2.3, we have
ka,le,Z = FI?,3 - Fi?,1 - ka,sz,s
kFi2Frs = F¢q — Féz — kFi3Fy s

ka,3Fk,4 = FI?,S - FI?,3 - ka,4Fk,5

ka,n—ZFk,n—l = Flg,n - sz,n—z - ka,n—le,n

ka,n—le,n = Fk?,,n+1 - sz,n—l - ka,an,n+1-

By considering F, ; = 1 and Fy, , = k and arranging the above equations, we have

2k(FiqFip + Fr2Fis + =+ Fin1Fin) = Fin + Fint1 — kFinFionsr — Fé1 — F2 + kFy 1 Fi
and

Fk,z +1_ka, Fk, +1—1
Fi1Fiz + FyaFrs + -+ Fyn1Fion = —— an E :

Therefore the proof is complete.

For more identities of the Fibonacci and Lucas numbers, we refer to the book [11].

3. FACTORIZATIONS

In this section, for any nonzero real number x, we investigate the factorizations of #,, [x, k] [x, k] and

] Rn ]
Q.[x, k]. Let 7, be an n x n identity matrix. Moreover, we define the matrices £, [x, k], H,[x, k] and
A;[x, k] by

1 0 0 1 0 0
kx 1 0 0 1 0
Lilokl=|5 o | Lalkk=|, . 1 (14)

and L;[x, k] = Ly[x, k] D T;, i =,1,2,..., Hulx, k] =[1] B Hp_1lx k], Aqlx, k] =T, Ay[x k] =
Jn_3 @ L_4[x, k], and, for i > 3, A;[x, k] = T,,_; D L;_3[x, k].

Now, by definition of the matrix product and using k —Fibonacci sequence, we consider a factorization of
the generalized k —Fibonacci matrix of the first kind.

Lemma3. 1. Fori > 3,

[, k. Li_a[x, k] = H;[x, k. (15)

From the definition of A;[x, k], we know that A,[x, k] = L,_3[x, k], A;[x, k] =T, and A,[x, k] =
T3 @ L_1[x, k]. So, the following theorem are the consequence of Lemma 3.1.

Theorem 3. 2. The generalized k —Fibonacci matrix of the first kind, #,,[x, k], can be factorized by
A;[x, k]’s as follows:

H,lx k] = Aqx, k]A;[x, k] ... Ax[x, k] (16)
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For example,

Hslx, k] = Aq[x, k]Az[x, k]Asz[x, k]A4[x, k]As[x, k

=TJ5(T, D L_1[x,k]) (T, D Lo[x, kD([1] © Lq[x, kDL [x, k]
1 0 0 O 0311 O O O 03r1 0 O 0 O
o 1 0 0 oO0opjy0 1 0 O 0110 1 O 0 O

_ o 0 1 0 opHyo o 1 o0 010 0 1 0 O
o 0 o0 1 oyjyo 0o o0 1 Ojjl0 0 kx 1 O
0 0 0 0 110 O O kx 10 0 x%2 0 1
1 0 0 0 07l 0 0 O O
0 1 0 0O Oflkx 1 0 0 O
0 kx 1 0 Ol{x2 o 1 0 O
0 x2 0 1 oflo o o 1 o
0 O 0 0 1 Jl0 0O 0 O 1J
1 0 0 0 0
kx 1 0 0 0

(k2 + Dx? kx 1 0 0

T k(K% + 2)x3 (k% + Dx?  kx 1 0]
(k* +3k%+ Dx* k(k?+2)x3 (k> +Dx? kx 1 |

We consider another factorization of };,,[x, k]. Then, n X n matrix 7, [x, k] = [t;;] is defined as:

. F 0 - 0

a i - [ k1 ]

B, =1, Feox 1 = 0
tij = L =7 e, T,[xk]l=|: SR |
0, otherwise, Fenx™1 0 1

Theorem 3.3. Forn > 2,

Hlx, k] = Tolx, k](T; @ Thoq[x, kD T, @ Tz [x, kD) ... (Fn—z @ T[x, kD).
We know that

17)

(18)

(19)

1 0 0 1 0 0
|-k 10 4 _lo 1 o _ _
Lo[x, k] = _x’z‘ 0 Lk =0 | and Lkl = Lolx kT @9, (20)

Now, we define the matrix J;[x, k] = A;[x, k]~1. Thus , we obtain

1 0
Jilx, k] = Aq[x, k17" = T, Jp[x, k] = A [x, k]t =Ty 3 @ Loy [x, k] =T7,, D [—kx 1 ]

and

Jilx, k] = A;lx, k]
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Moreover, we know that

—Fieq 0 - 0
—Fje X 1 0

T [x, k™t = : oo and (3, ® Toi[x, kD1 =7, D T, _i[x, k] L. (21)
_Fk'nxn—l o - 1

Therefore, the following corollary holds.

Corollary 3. 4. Forn = 2,
Hp[2, k17 = Ap[x, kK] An_q [x, k] 7h o A [, k] A [x, k]
= Jn [x' k]Jn—l [X, k] <72 [X, k]Jl [X, k]

= (Tn—2 @ H[x, kD™ ... (I @ Toeq [0, k] 71T [, k] (22)
From Corollary 3.4, we have
r1 0 0 0 0
—kx 1 0 0 0
—x? —kx 1 0 0
Hplx, k71 =10 —x% —kx 1 0 (23)
0 0 —x? —kx 1

For a factorization of generalized k —Fibonacci matrix of the second kind, R,,[x, k], we define the matrices

M, [x, k], Ru[x, k] and NV, [x, k] by

1 0 0 1 0 0
kx x* 0 0 1 0
Mol k] =17 o 2| Malekl=|g L. (24)

and M;[x, k] = My[x, k] D xzﬂi, i=,1,2,.., ﬁn[x, k] =[1] @ Rp_1lx, k], Mi[x, k] = T, Ny[x, k] =
T3 @ M_q[x, k], and, for i >3, N;[x, k] = T,,_; ® M;_3[x,k]. Thus, we can give the following
Lemma.

Lemma3.5. Fori = 3,

Ri[x, k] = R;[x, k]M;_3[x, k]. (25)
Proof. For i = 3, we have Rs[x, k] = Rs[x, k]M,[x, k].

The next theorem describes the factorization of R, [x, k] for i > 3.

Theorem 3. 6. The generalized k —Fibonacci matrix of the second kind, R, [x, k] can be factorized by
Ni[x, k]’s as follows:

Rulx, k] = N [x, kKIN [x, k] ... Ny, [, k]. (26)

Now, we consider another factorization of R, [x, k]. Let I, [x, k] be n X n matrix as:
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F,oximl =1 Fie 0 - 0
( ’;"' 4 ] .' Fk,Zx xz es 0

kij =X L=7 ) i.e., Kn[x,k] = . H (27)
0, otherwise, Fk’nxn—l 0 - 2

By the definition of the matrix ¢, [x, k], we can give the factorization of R, [x, k] in the following theorem.
Theorem 3. 7. Forn = 2,

Rnlx, k] = o [x, k] (91 @ Hn—1[x, k] (T2 @ Koz [x, k] ... (Tn—2 D F[x, kD). (28)
We know that

1 0 O
v 1 1 0 0
1 ~r 2 0 1 0 1 0
Mol k] = % b Mokt =l k1 (29)
= 0 = | < 7

and M;[x, k] ™t = Mo[x, k] ™1 @ — 7. Define Us[x, k] = N;[x, k] 1. Then,

1 0
Uy [, k] = T, U [, k] = N[, k]™L = Tpg @ M1 [, k]2 = Ty D [—kx 1 ]

and
Ui[x, k] = N[, k]~ = Ty @ Mi_3[x, k]

Furthermore, we know that

—Fje1 0 - 0
— F2 0
x x?2
Hnlx, k]t = i 1| and (5@ K[ kDT =T @ K[, K] (30)
_Fk,nxn_3 O eee %

Now, we can give the following corollary.

Corollary 3.8. Forn = 2,
Rl k™1 = Ny [, k] 71Ny [, k] o NV [, k] 20N [ox, k]2
= Uy [x, k] Upq [, K] ... Uy [x, K] Uy [, k]
= (T2 @ I [x, kD)7 o (91 @ Kooq [, KD 15, [x, k] 71 (31)

From Corollary 3.8, we have
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1 0 0 0 0
_k iz 0 0 0
X X
1 k 1
Z oo 0 0
-1 _ 1 ko1
Rnlx, k] 0 = "5 0 (32
) 1 . k ' 1
0 0 - x2n—4 - x2n-3  yx2n-2

Now we define a generalized k —Fibonacci symmetric matrix 9, [x, k] = [q;;] as, fori,j = 1,2,...,n,

Zi _ Flg x2i—2’ i =j;
qij:qji:{ m12,m . . (33)
Qi j—2x" +kqj_1x, I+1=<],
where g, o = 0. Then we know that for j > 1, q;; = qj; = Fyjx’ > and qz; = qj5 = Fi j+1%7.
For example,
1 kx (k? + 1)x? k(k? + 2)x3
kx (k? + 1)x? k(k? +2)x3 (k* + 3k? + 1)x*
Qulx, k]l = (k% + 1)x?  k(k? + 2)x3 (k* 4 3k% + 2)x*  k(k?+2)%x5
k(k? +2)x3  (k* +3k? + Dx*  k(k? +2)%x> (k® + 5k* + 7k? + 2)x°
From the definition of 9,,[x, k], we can give the following lemmas.
Lemma 3. 9. For j 2 3, qsj = Fiq (Fiojg + 222252) 1+,
Proof. From Lemma 2.4, we know that qss = Y ; FZix* = (FZ, + F, + Fég)x* = @x‘*.

Therefore, for F, 0 = 0, q33 = F 4 (Fk,O + —F"'lkpks) x4,

By induction, for j > 3, we find that g5 ; = Fy, 4 (Fk,j_3 + @) xJ+L,

We knOW that q1,3 = q3‘1 = Fk'3x2 and q2'3 = q3'2 = Fk'4x3. AISO, we knOW that q1’4 = q4_’1 = Fk’4x3,

_ _ 4 _ _ Fr2Fi3\ .5
G2,4 = Qa2 = Frsx®and qz4 = Qa3 = Fya (Fk'l L )x '

Lemma 3. 10. For j > 4, q4; = Fy4 (Fk,j_4, + Fyj—aFr3 + @) xJ*2,

Using Lemmas 3.9 and 3.10, we can obtain gs 1, gs 2, g5 3 and gs 4. SO, we can give the next lemma.

Lemma 3. 11 For j > 5, qs; = (FiejsFioa(1 + Figg + Figs) + ot kethe) yj43,

Proof. As g5 5 = %x‘*, we have the desired lemma by induction.

Lemma 3. 12. Forj =i = 6, we have

F P F F . . ;P
qij = (Fk,j—iFk,4(1 + Fz + Fis) + Fij-iFisFe + -+ Fij-iFii-1Fii + W) xtI72.(34)
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Now, we can give the following theorem as a consequence of Lemmas 3.9 — 3.12.

Theorem 3. 13. For n > 1 a positive integer, we have
U2, kK Up—q[x, k] .. Uy [x, k]Op [, k] = Hp[x, K] (35)
as well as the Cholesky factorization of Q,, [x, k] can be given by

Qnlx, k] = Rn[x, k]Hn[x, k. (36)

Proof. From Corollary 3.8, we have R, [x, k] 10, [x, k] = H,[x, k]T. Then the theorem holds.

Let V[x, k] = [v;;] = Rylx, k]71Q,[x, k]. From the definition of @, [, k] and (32), v;j=0fori+1<j.
Now, we take into account the case j = i. From Lemmas 3.9 — 3.12 and (32), we know that v;; = h;; for
i <5.Weconsiderj =i > 6.

Then, using (32), we get

Vij = = oima Yi-2) T i3 i1 T 2z i

xiti—2 Fioj—i1FiiFieiry
= xZT(Fk,j—iFkA(l + Fys + Fys) + Fij-iFigsFie +  + FijoiFigi-1 Fioi + k )
kx i3
— 5 Frjoiv1Fra(1 + Fis + Fis) + Fiojoiv1FiosFios
Fk, - Fk,'— Fk,'
+ e + Fk,j—i+1Fkli_2Fk’i_1 + %)
xiti—a

= (Fij—iv2Fra(1 + Fiz + Fis) + Fijiv2FrsFie

Fk,j—i+3Fk,i—2Fk,i—1)

oot FjmivaFi-3Fii-2 + ’

= 1/ ((Fujoi = kFij-is1 = Fiojoivz) Fra(1 + Fiz + Fis)
+(Fijoi — kFyj—iv1 — Frj—iv2)FisFre + - + (Fxj—i — kFij—i+1 — Fiojoi+2)Fri-3Fi-2
Fk' i s
+ (Fk,j—i —kFyj_iv1— JTLH) Fri2Fiio1 + (Fijoi — Fjoiv2)Frio1Fii +
Fi iFp i
Fk,j—i+1 k,i kk'Hl)-
. Fij-i (2k%+1)Fy j—
Since  (Fij—i = kFjoiv1 = Fijoiv2) = —2kFijiv1, Fjoi = kFyjoipn — =22 = — PR
and Fy j—; = Fyj—i+2 = —kFy j—i+1, We get

Vij = Fy j—i+1(—2kFy 4 — 2k(Fio3Fy 4 + FieaFis + -+ Fri—3Fii—2 + Fii—2Fri-1)
1 FriFr,i i_7
— 2 Frim2Fii-1 = kFii—1 Fioy + =550 7 (37)
Since Fy 4 = k(k?* + 2) and using Lemma 2.5, we have

Fraa-1)+1 — kKFki-1Fri — 1
2k

1
Vij = Fijivr (—2k*(k* + 2) — 2k< —k(k* + 2)) - EFk,i—sz,i—l



1594 Cahit KOME / GU J Sci, 35(4): 1585-1595 (2022)

FriFriviy_j—i
—kFii—1Fii +—==>)x’

_ Fri—2Fki-1 | FriFki+1 i—i
= Fy j-i+1 (1 = Frpion —————+—="—)x)7".

By virtue of Lemma 2.1 and after some basic calculations, we get
Vi = Frjoiot(1— Féy = FRimq + Fg + FR_q)x) ™!

= Fk,j_Hlxj‘i. (38)
Hence V, [x, k] = H,[x, k]T for1 < i,j < n.

Thus, R, [x, k]171Q,[x, k] = 3, [x, k], that is, the Cholesky factorization of Q,[x,k] is given by
Onlx, k] = Ry [x, K]Hn [x, k]

For example,
1 kx (k? + 1)x? k(k? + 2)x3
kx (k% + Dx? k(k? + 2)x3 (k* + 3k? + Dx*
Qulx, k] =[(k? + D)x?  k(k?+2)x3 (k* 4 3k% + 2)x*  k(k?+2)%x5
k(k? +2)x3 (k* +3k? + Dx*  k(k? + 2)%x° (k® + 5k* + 7k? + 2)x°
1 0 0 0971 kx (k?+1)x? k(k?+2)x3
kx x? 0 O0llo 1 kx (k? + 1)x?
=[k?+ Dx?  kx3 x* 0 0o 0 1 kx
k(k? +2)x% (k% + D)x* kx5 «x° lo 0 0 1 |
= R4[.x, k]}[4[x, k]T (39)

Since Q,[x, k]™t = (H,[x, k]T) 1R, [x, k]~1, we have

k2+2 0 -= 0 0 0 0
2
1 k2+2 1
I 0 i 0
x2 x* x©
1 k%42 1
0 0 xzi_g 0 ;:21:-—26 0 x2111—4
1 kZ+1 k
0 0 ~ e 0 Z2n—4 T y2n-3
1 k 1
_0 vor cee e 0 x2n—4 x2n-3 x2n-2

By virtue of Theorem 3.13, we give the following identity.

Corollary 3. 14. Let F, ,, be the k —Fibonacci number. Then

if nis odd

FrnFrn-m-1)=$(MFrm\ _2n—m—2
k x !
(Fk,an,n—(m—l)_f(m'*'l)Fk,m) y2n—m-2
k

(Fk,an,n—m +-t Fk,m+1Fk,l)xzn_m_2 = (41)

, ifniseven,
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where §(m) = m — 2 EJ is a parity function, i.e., é(m) = 0 if misevenand é(m) = 1if misodd. In

particular, if we multiply the i-th row of H,,[x, k] and the i —th column of #£,,[x, k]7, we obtain Lemma
2.4. Moreover, Lemma 2.4 is the special case of Corollary 3.14 for m = 0.
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