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ABSTRACT 

In this computational study the buckling analysis of symmetrically laminated elliptical and 
super-elliptical thin plates was carried out. The plates were considered as clamped or simply 
supported at the boundary. The minimum buckling load was determined using the Rayleigh-
Ritz method and the Galerkin Method based on the Classical Laminated Plate Theory 
(CLPT). The influence of the solution methods, shape functions, boundary conditions, super-
elliptical power, lamination type, aspect ratio, and thickness on the critical buckling load 
were investigated using a parametric study. The verification of the isotropic case was 
performed comparing some results in the open literature, and good agreement was obtained. 
Convergence studies of the composite case with increasing terms (up to 10 terms) were 
achieved and sufficient accuracy was provided. During the preliminary design stage of 
composite structures, many design parameters such as panel sizes, panel thickness, stacking 
sequences, boundary conditions and loading conditions are taken into consideration. It is 
possible to evaluate these parameters quickly by using appropriate shape functions with the 
Rayleigh-Ritz method. 

Keywords: Super-elliptical composite thin plates, buckling, Classic Laminated Plate Theory 
(CLPT), Rayleigh-Ritz method, The Galerkin Method, shape function. 

 

1. INTRODUCTION 

Composite panels have high specific strength and high specific rigidity, which are the most 
important advantages especially when compared to steel structures. Hence, they are used in 
engineering applications such as civil, aerospace and marine engineering as building 
materials [1-3]. With developing technology, analysis of super-elliptical plates under wind 
loads has been studied recently [4]. For the accurate designing of structures, it is important 
to analyze their critical buckling loads. Numerous studies on the buckling of composite 
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rectangular, elliptical or circular plates analyzed by the Rayleigh–Ritz method have been 
demonstrated in the review paper [5]. 

The buckling of rectangular isotropic plates was studied by Timoshenko and Gere [6] and 
Szilard [7]. Dawe and Craig [8] analyzed the buckling and vibration of rectangular laminated 
plates subject to in-plane stress systems using the Rayleigh-Ritz Method and the finite strip 
method based on shear deformation plate theory. Leissa [9] presented a review of laminated 
composite plate buckling from the extensive available literature. Aiello and Ombres [10] 
examined the buckling and vibration of unsymmetrical rectangular laminates resting on 
elastic foundations under in-plane and shear forces.  

The authors have used the Rayleigh-Ritz Method based on the-first order shear deformation 
theory. Darvizeh et al. [11], studied the buckling analysis of generally laminated composite 
rectangular plates by generalized differential quadrature rules and the Rayleigh–Ritz Method. 
The authors compared the results with some available experimental and analytical results. 
Reddy [12] presented the buckling analysis of orthotropic and anisotropic rectangular plates 
by using analytical and numerical methods. Shufrin et al. [13] dealt with the buckling of 
laminated composite plates for general boundary conditions using the semi-analytical 
Kantorovich method. Seifi et al. [14] presented the critical buckling loads and related 
buckling modes of cross-ply laminated annular plates using the Rayleigh-Ritz Method and 
finite element analysis based on Classical Laminate Plate Theory (CLPT).  

Altunsaray and Bayer [15] presented the buckling of symmetrically laminated quasi-isotropic 
rectangular plates by using the Finite Difference Method, the Galerkin Method and the Finite 
Element Method (ANSYS software). Afsharmanesh et al. [16] examined the buckling and 
vibration of laminated composite angle-ply and cross-ply circular plates on a Winkler-type 
foundation by the Ritz Method and the Finite Element Method (ABAQUS software). Ghaheri 
et al. [17] studied the buckling and vibration of symmetrically laminated angle-ply and cross-
ply composite elliptical plates on an elastic foundation using the Ritz Method.  

Rectangular plates having rounded corners are named as super-elliptical plates having the 
advantage of diffusing the stress at the corner of rectangular plates [18]. The buckling of 
isotropic, thin, super-elliptical plates was studied at first by Wang et al. [19]. Solutions were 
obtained by using the Rayleigh-Ritz Method based on the Kirchhoff–Love theory in this 
study [19]. Altekin [20] studied the free linear vibration and buckling of isotropic super-
elliptical plates resting on symmetrically distributed point-supports on the diagonals by using 
the Rayleigh-Ritz Method and Lagrange multipliers. Hasheminejad et al. [21] investigated 
the dynamic stability of isotropic super-elliptical plates resting on elastic foundations under 
periodic in-plane loads. The Galerkin procedure is used based on the thin plate small 
deflection theory. Jazi and Farhatnia [22] examined the buckling analysis of a functionally 
graded super elliptical plate. They obtained their results by using the Rayleigh-Ritz Method 
based on classical plate theory for clamped and simply supported boundary conditions. 
Sayyad and Ghugal [23] investigated the buckling analysis of isotropic and laminated cross-
ply composite rectangular plates, subjected to in-plane uniaxial and biaxial compressions, 
based on a new trigonometric shear and normal deformation theory. 

Ghaheri et al. [24] demonstrated the analyses of composite plates (cross-ply and angle-ply) 
resting on Winkler-type foundations subject to in-plane harmonic loads, under different edge 
conditions (clamped, simply supported and free). The authors found that the static and 
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parametric characteristics were influenced by fiber orientation, stacking sequences, super-
elliptical power, aspect ratio, foundation stiffness parameter and in-plane loads. Zhang [25] 
studied the nonlinear bending and thermal post-buckling analysis of functionally graded 
super elliptical thin plates by using the Rayleigh-Ritz method based on the Classical 
Laminated Plate Theory (CLPT). Bending and free transverse vibration of shear deformable 
super-elliptical plates were analyzed based on the Mindlin plate theory using the finite 
element method by Altekin [4, 26]. Mirzaei [27] investigated the thermal buckling response 
of functionally graded super elliptical plates reinforced with carbon nano tubes. The author 
performed the parametric analyses based on the first-order shear deformation plate theory 
with the aid of the Ritz method. 

The reason for the preference of the symmetrically laminated plates in production was 
explained in the study of Altunsaray and Bayer [28]. The vibration analysis of symmetrically 
laminated quasi-isotropic super-elliptical thin plates has been presented by the author [29]. 
The buckling analysis of symmetrically laminated rectangular thin plates under biaxial 
compression was studied by Altunsaray and Bayer [30] recently.  

This paper is a development of previous work [30] studied by the authors. In their previous 
studies, the authors examined the biaxial buckling analyzes of simply supported laminated 
quasi-isotropic, cross-ply and angle-ply rectangular plates according to the Classical 
Laminated Plate Theory (CLPT). In this study, unlike previous studies and other studies in 
the open literature; laminated quasi-isotropic, cross-ply and angle-ply elliptical and super-
elliptical plates were investigated with Rayleigh-Ritz Method and Galerkin Method, which 
is known to be a powerful method among the weighted residual methods. Three different 
shape functions were considered at the beginning of this analysis, one of which was chosen 
for the parametric investigation, because it was more favorable than the other two in terms 
of accuracy and computing time. It has been shown that the Rayleigh-Ritz Method is more 
suitable than Galerkin Method for this particular problem, which is the buckling analysis of 
both elliptical and super-elliptic plates in simple support and clamped boundary conditions. 

In this parametric study, the effects of the super-elliptical power (n), lamination type, 
boundary conditions (simply supported and clamped) and the aspect ratio (a/b and b/a) on 
the critical buckling load of symmetrically laminated quasi-isotropic, cross-ply and angle-
ply super-elliptical thin plates were investigated. 

The verification of the isotropic case was investigated by comparing the results of buckling 
of isotropic plates only available in the literature. The convergence study for the buckling of 
LT1 ([-452/02/452/902]s) plate was performed up to 10 terms, hence sufficient accuracy was 
obtained. The critical buckling loads of symmetrically laminated plates with different super-
elliptical powers, lamination types, boundary conditions and aspect ratios have also been 
presented with tables and graphics. 

 

2. EQUATIONS AND FORMULATION 

The periphery of a super-elliptical plate between an ellipse and a rectangle is shown in (Fig. 
1). 
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Figure 1 - Geometry of super-elliptical plate in the Cartesian co-ordinates 

 

The equation of the super-ellipse is given in Eq. (1), where n is the power of the super ellipse 
(n=1 is an ellipse and n= is a rectangle); a and b are the half lengths of the plate. 

+ = 1,   n=1, 2…                   (1) 

The plates in this study are considered to be within the scope of the Classical Laminated Plate 
Theory (CLPT), because the ratio of thickness to the short side of plates is small enough. The 
Rayleigh-Ritz Method and The Galerkin Method were used for the analyses. 

 

2.1. The Rayleigh-Ritz Method 

The strain energy (U) of the symmetrically laminated plate is given by the following 
expression [12]: 

𝑈 = ∫ ∫
𝐷 + 2𝐷 + 𝐷

+4𝐷 + 4𝐷 +4𝐷

𝑑𝑥𝑑𝑦    (2) 

where w indicates the transverse deflection, and D11, D12, D22, D16, D26, D66 denote the 
elements of the bending stiffness matrix Dij which are found by the following [12]: 

𝐷 = ∑ 𝑄 (𝑧 − 𝑧 ) (3) 
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where ( ) indicates the transformed reduced stiffness matrix, while n is the total number 
of plies. zk and zk-1 are the distance from the reference plane [12]: Calculation of members 
of transformed reduced stiffness matrix ( )) for each lamina is 

𝑄 = 𝑄 𝑐 + 2(𝑄 + 2𝑄 )𝑠 𝑐 + 𝑄 𝑠  

𝑄 = (𝑄 + 𝑄 − 4𝑄 )𝑠 𝑐 + 𝑄 (𝑠 + 𝑐 ) 

𝑄 = 𝑄 𝑠 + 2(𝑄 + 2𝑄 )𝑠 𝑐 + 𝑄 𝑐  (4) 

𝑄 = (𝑄 − 𝑄 − 2𝑄 )𝑠𝑐 + (𝑄 − 𝑄 + 2𝑄 )𝑠 𝑐 

𝑄 = (𝑄 − 𝑄 − 2𝑄 )𝑠 𝑐 + (𝑄 − 𝑄 + 2𝑄 )𝑠𝑐  

𝑄 = (𝑄 + 𝑄 − 2𝑄 − 2𝑄 )𝑠 𝑐 + 𝑄 (𝑠 + 𝑐 ) 

where c=cos(θ), s=sin(θ) and θ is angle of the lamina, respectively. The reduced stiffness 
matrix elements  are given below 

𝑄 = , 

𝑄 = , (5) 

𝑄 = , 

𝑄 = 𝐺  

The potential energy of the uniform in-plane load (N) acting on the periphery of the 
symmetrically laminated plate, in other words the work done by this external load, is given 
below [12]: 

𝑉 = − ∫ ∫ 𝑁 + 𝑑𝑥𝑑𝑦 (6) 

Then the total potential energy functional may be given as follows: 

𝐹 = 𝑈 − 𝑉 (7) 

Substituting Eq. (2) and Eq. (6) into Eq. (7), the total potential energy is 
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𝐹 = ∫ ∫

⎣
⎢
⎢
⎢
⎢
⎡ 𝐷 + 2𝐷 + 𝐷

+4𝐷 + 4𝐷 +4𝐷

−𝑁 +
⎦
⎥
⎥
⎥
⎥
⎤

𝑑𝑥𝑑𝑦  (8) 

The boundary conditions at the plate edges are given below: 

0w      and    M=0    (for simply supported plates)  (9) 

0w      and      = 0     (for clamped plates) (10) 

where M indicates the bending moment,  is the outward normal of the periphery. The 
trial function is 

𝜑 =
𝑐 + 𝑐 𝑦 + 𝑐 𝑥 + 𝑐 𝑥 𝑦 + 𝑐 𝑥 𝑦 + 𝑐 𝑦

+𝑐 𝑥 + 𝑐 𝑥 𝑦 + 𝑐 𝑦 + 𝑐 𝑥
  (11) 

ijc  denotes the unknown coefficients and order of polynomial (r) is 6. The deflection 

function which satisfies the boundary conditions is given below 

𝑤(𝑥, 𝑦) = + − 1 𝜑  (12) 

p denotes the boundary condition (p=1 for simply supported condition, p=2 for clamped 
condition). 

In order to find the lowest critical buckling loads, Eq. (8) is minimized with respect to the 
coefficients cij 

= 0 (13) 

Then, the following equation is obtained for a non-trivial solution: 

|𝐾 − 𝜆 𝑀 | = 0 (14) 

where λb is the buckling load parameter including material properties, characteristic 
dimensions and in-plane uniform load of the plate. K is the stiffness matrix related to the 
strain energy and Mb is the mass matrix related to potential energy. This is a generalized 
eigenvalue problem.  

The solution of Eq. (14) leads to a characteristic equation involving a polynomial of tenth 
degree in λb, from which the lowest critical buckling loads (Ncr) may be found. 
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2.2. The Galerkin Method 

The Galerkin Method is known as one of the powerful weighted residual methods. The 
governing differential equation of symmetrically laminated composite plates under in-plane 
load is given below: 

𝐷 + 4𝐷 + 2(𝐷 +2𝐷 ) + 4𝐷 + 𝐷 +

𝑁 + = 0                      (15) 

Where w indicates the deflection function, and D11, D12, D22, D16, D26, D66 denote the 
elements of the bending stiffness matrix Dij which are already found in the Section 2.1.  

Obviously, a residual (ɛR) is obtained if the deflection function (Equation 12) is inserted in 
the governing differential equation (Equation 15), because an approximate solution to the 
problem is searched. The Galerkin Method minimizes the integral of the product of this 
residual (ɛR) and the trial function ( ) over the super-elliptic region.  

∫ ∫ ɛ 𝜑  𝑑𝑥𝑑𝑦 = 0            (16) 

The rest of the calculation will be similar to the above as expressed for Rayleigh-Ritz 
method. A set of homogeneous linear algebraic equations in the unknown displacement w, 
whose determinant must be identically zero, is obtained. The lowest value of Ncr that makes 
the determinant zero is the lowest critical compressive load. 

 

3. NUMERICAL RESULTS 

Critical buckling loads of isotropic and quasi-isotropic, cross-ply and angle-ply elliptical and 
super-elliptical plates under clamped and simply supported boundary conditions were 
calculated by the Rayleigh-Ritz method and the Galerkin Method based on the Classical 
Laminated Plate Theory (CLPT). Verification of the isotropic case, convergence study, and 
the effects of thickness, super-elliptical power (n), aspect ratio and boundary conditions on 
the critical buckling load are investigated in this section.  

 

3.1. Verification of the isotropic case 

The critical buckling load (Ncr) of elliptical (n=1) thin isotropic plates under two different 
boundary conditions (simply supported or clamped) were compared with the results of Sato 
[31, 32] and Ghaheri et al. [17] given in Table 1. The results of the present study given in 
Table 1 seem to be in good agreement with the results of previous studies. Critical buckling 
loads decrease with the increase of the aspect ratio (a/b) in both simply supported and 
clamped condition cases. The deflection function (r=6) used in the verification calculations 
was given in Eq. (12). 
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Table 1 - Comparison of the critical buckling load (Ncr) of elliptical (n=1) isotropic plates 
under different edge conditions (ν = 0.3, r=6) obtained with Rayleigh-Ritz Method 

a/b 

Simply Supported Clamped 

Sato [31] Ghaheri           et al.[17] Present   study Sato [32] 
Ghaheri           

et 
al.[17] 

Present       
study 

1 4.198 4.198 4.198 14.682 14.682 14.682 

2 3.051 3.051 3.051 10.434 10.434 10.434 

3 2.911 2.911 2.911 9.966 9.966 9.969 

4 2.820 2.820 2.820 9.803 9.803 9.825 

5 2.757 2.757 2.757 9.721 9.736 9.796 

 

3.2. Main parameters for composite case 

In this study T300-934 coded carbon/epoxy selected as the plate material for numerical 
calculations. Mechanical properties of carbon/epoxy are given in Table 2 [33].  

 
Table 2 - Mechanical properties of carbon/epoxy (T300-934) [33] 

Longitudinal Young Modulus (E11) 148x109 (N/m2) 

Transversal Young Modulus (E22) 9.65x109 (N/m2) 

Longitudinal Shear Modulus (G12) 4.55x109 (N/m2) 

Longitudinal Poisson ratio (ν12) 0.3 

Lamina thickness (t) 0.185x10-3 – 0.213x10-3 (m) 

 

The short half side (a or b) is selected as 0.1 m. Six different aspect ratios (a/b or b/a=1, 1.2, 
1.4, 1.6, 1.8, 2) are considered. Twenty-eight different types of symmetrically laminated 
quasi-isotropic, cross-ply and angle-ply super-elliptical plates are given in Table 3. Quasi-
isotropic plates have four different sequences (−45°, 0°, 45° and 90°), cross-ply laminated 
plates consist of two different sequences (0° and 90°) and angle-ply laminates have two 
different sequences (-45° and 45°). Thickness of each lamina (t) is equal to 0.2 mm and total 
thickness of a plate is 3.2 mm. 

 
Table 3 - Symmetrically laminated composite plate types 

LT1 [-452/02/452/902]s LT15 [452/02/-452/902]s 

LT2 [-452/02/902/452]s LT16 [452/02/902/-452]s 

LT3 [-452/452/02/902]s LT17 [452/902/-452/02]s 

LT4 [-452/452/902/02]s LT18 [452/902/02/-452]s 



Erkin ALTUNSARAY, İsmail BAYER 

12533 

Table 3 - Symmetrically laminated composite plate types (continue) 

LT5 [-452/902/02/452]s LT19 [902/-452/02/452]s 

LT6 [-452/902/452/02]s LT20 [902/-452/452/02]s 

LT7 [02/-452/452/902]s LT21 [902/02/-452/452]s 

LT8 [02/-452/902/452]s LT22 [902/02/452/-452]s 

LT9 [02/452/-452/902]s LT23 [902/452/-452/02]s 

LT10 [02/452/902/-452]s LT24 [902/452/02/-452]s 

LT11 [02/902/-452/452]s LT25 [02/902/02/902]s 

LT12 [02/902/452/-452]s LT26 [902/02/902/02]s 

LT13 [452/-452/02/902]s LT27 [-452/452/-452/452]s 

LT14 [452/-452/902/02]s LT28 [452/-452/452/-452]s 

 

3.3. Convergence study 

Critical buckling loads of LT1 ( [-452/02/452/902]s ) plates with different support conditions 
(clamped or simply supported), for super-elliptical powers (n=1 and 10), for three different 
shape functions (Table 4) and for two solution methods (The Galerkin Method and The 
Rayleigh-Ritz Method) with increasing terms were calculated in order to reach convergence.  

 

Table 4 - Selected three different deflection functions (p=1 for simply supported plate, p=2 
for clamped plate) 

 Deflection Functions 

df1 𝑤 =
𝑥

𝑎
+

𝑦

𝑏
− 1 𝑐 + 𝑐 𝑥 + 𝑐 𝑦 + 𝑐 𝑥 𝑦 + 𝑐 𝑥  

df2 𝑤 =
𝑥

𝑎
+

𝑦

𝑏
− 1 𝑐 + 𝑐

𝑥

𝑎
+ 𝑐

𝑦

𝑏
+ 𝑐

𝑥

𝑎

𝑦

𝑏
+ 𝑐

𝑥

𝑎  

df3 

𝑤 =
𝑥

𝑎
+

𝑦

𝑏
− 1 𝑐 + 𝑐  

𝑥

𝑎
+

𝑦

𝑏
− 1 + 𝑐  

𝑥

𝑎
+

𝑦

𝑏
− 1

+ 𝑐  

𝑥

𝑎
+

𝑦

𝑏
− 1 + 𝑐  

𝑥

𝑎
+

𝑦

𝑏
− 1

+ 𝑐
𝑥

𝑎
+

𝑦

𝑏
− 1  
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3.4. Effect of Super-Elliptical Power (n), Boundary Condition, Method of Solution and  
       Deflection Function 

In this section the effect of super-elliptical power (n), boundary condition, method of solution 
and deflection function on the critical buckling load have been investigated and presented 
(Table 5-6) for LT1 ([-452/02/452/902]s) plate. Critical buckling loads obtained by Rayleigh-
Ritz Method and Galerkin Method (for elliptical plate with clamped edge, that is, n=1) are 
compared in Table 6. If the same shape functions are used, the same results were found with 
two different solution methods (Galerkin Method and Rayleigh-Ritz Method), as Reddy 
stated [12]. However, results were obtained much more rapidly with Rayleigh-Ritz method 
compared with the Galerkin Method. In addition, the results obtained by df1 and df2 were 
the same for both methods. Although the results calculated by using df3 are close to df1 and 
df2 in the case of elliptical plate (n=1), the solution required a longer processing time. The 
use of df3 did not yield accurate results for both simply supported edge and clamped edge. 
For both elliptical (n=1) and super-elliptical plates (n=10), df1 was found to be the most 
suitable option for the calculations. One of the reasons for not arriving at any results by the 
Galerkin Method for simply supported edge may be that there are fourth-degree derivatives 
in the governing differential equation used. Therefore, when the Galerkin Method is applied 
some derivative expressions disappear due to the shape function used during the calculation 
for the simple support boundary condition. On the other hand, because there are quadratic 
derivative expressions in the integral equation, such a problem does not occur in the solution 
with the Rayleigh-Ritz Method. After this investigation it was decided to use Rayleigh-Ritz 
Method with df1 with up to 10 terms for the rest of the study. 

 
Table 5 - Convergence study of critical buckling load Ncr (N/m) of super-elliptical LT1  

( [-452/02/452/902]s ) plate (clamped) 

 n=1 Critical buckling load Ncr (N/m) 

Method of solution 
Increasing terms 

1 2 3 4 5 
Rayleigh-Ritz (df1) 272939 254156 248606 248518 248476 

Rayleigh-Ritz (df2) 272939 254156 248606 248518 248476 

Rayleigh-Ritz (df3) 272939 250793 250457 250455 250455 

Galerkin (df1) 272939 254156 248606 248518 248476 

Galerkin (df2) 272939 254156 248606 248518 248476 

Galerkin (df3) 272939 250793 250457 250455 250455 

 n=10 Critical buckling load Ncr (N/m) 

Method of solution 
Increasing terms 

1 2 3 4 5 

Rayleigh-Ritz (df1) 12505200 6319280 3593230 912713 656662 

Rayleigh-Ritz (df2) 12505200 6319280 3593230 912713 656662 

Rayleigh-Ritz (df3) 12505200 6616170 4836340 3963080 3437660 
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Table 6 - Convergence study of critical buckling load Ncr (N/m) of super-elliptical LT1  
( [-452/02/452/902]s ) plate (simply supported) 

 n=1 Critical buckling load Ncr (N/m) 

Method of solution 
Increasing terms 

1 2 3 4 5 
Rayleigh-Ritz (df1) 89787 80186,4 72271,2 72154,8 72147,8 

Rayleigh-Ritz (df2) 89787 80186,4 72271,2 72154,8 72147,8 

Rayleigh-Ritz (df3) 89787 72375,4 72297,5 72297,4 72297,4 

 n=10 Critical buckling load Ncr (N/m) 

Method of solution 
Increasing terms 

1 2 3 4 5 
Rayleigh-Ritz (df1) 6004240 6003250 1592030 219160 185974 

Rayleigh-Ritz (df2) 6004240 6003250 1592030 219160 185974 

Rayleigh-Ritz (df3) 6004240 2089610 1416880 1135030 978255 
 

It can be observed from Table 7 that the convergence achieved is sufficient, if a shape 
function with 10 terms (r=6) is selected. Hence this shape function will be used for all 
calculations for the rest of the study. 

 

Table 7 - Convergence study of critical buckling load Ncr (N/m) of LT1  
( [-452/02/452/902]s ) with the Rayleigh-Ritz Method 

Shape functions 

Critical buckling load Ncr (N/m) 

Simply Supported Clamped 

n=1 n=10 n=1 n=10 
c00 89787.0 6004240 272939 12505200 

c00+c20x2 80186.4 6003250 254156 6319280 

c00+c20x2+c02y2 72271.2 1592030 248606 3593230 

c00+c20x2+c02y2+c22x2y2 72154.8 219160 248518 912713 

c00+c20 x2+c02 y2+c22 x2y2+c40 x4 72147.8 185974 248476 656662 

c00+c20 x2+c02 y2+c22 x2y2+c40 x4+c04 y4 72129.9 156480 248018 511536 

c00+c20 x2+c02 y2+c22 x2y2+c24 x2y4+c40 x4+c04 

y4 72129.8 144653 248017 436023 

c00+c20 x2+c02 y2+c22 x2y2+c24 x2y4+c40 x4 

+c04 y4+c42 x4y2 72129.6 101350 248017 244432 

c00+c20 x2+c02 y2+c22 x2y2+c24 x2y4+c40 x4 

+c04 y4+c42 x4y2+c60 x6 72129.6 100192 248017 239047 

c00+c20 x2+c02 y2+c22 x2y2+c24 x2y4+c40 x4+c04 

y4+c42 x4y2+c60 x6+c06 y6 72129.6 99773.5 248012 235721 
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3.5. Effect of super-elliptical power (n)  

The effect of some selected super-elliptical powers (n=1, 2, 4, 6, 8, 10) on the critical 
buckling loads of super-elliptical plate LT1 ([-452/02/452/902]s) was investigated and the 
results are presented in Table 8-9. From the results one can see that the critical buckling load 
(Ncr) generally increases with the increase of the super-elliptical power (n), while Ncr 

decreases with the increase of the aspect ratios (a/b, b/a). 

It is interesting to see from the results of simply supported boundary conditions (Table 8) 
that critical buckling loads for n=1 (elliptical plates) and n=2 are lower than rectangular 
plates. A similar situation is observed in clamped boundary conditions for n=2 and 4 cases 
(Table 9). As shown in Table 7, in the analyzes performed it was only possible to reach a 
maximum of 10 terms (r=6) and a super-elliptical power up to n=10 using Wolfram 
Mathematica software. Analyses for higher number of terms and super-elliptical powers can 
be achieved by using computers with high computational capacity. 

 
Table 8 - Critical buckling load Ncr (N/m) of super-elliptical LT1 ( [-452/02/452/902]s ) plate 

(simply supported r=6) 

a/b 
Critical buckling load (N/m) 

n=1 n=2 n=4 n=6 n=8 n=10 Rectangle [30] 

1 72129.6 76729.2 87361.9 92150.8 95897.9 99773.5 87155 

1.2 56678.2 60865.7 69666.9 73602.3 76632.1 79719.0 69227 

1.4 48209.8 51387.6 58590 61823.4 64343.9 66955.8 57983 

1.6 43197.7 45287.7 51168.7 53835.6 55979.2 58289.4 50452 

1.8 40029.5 41137.5 45950.3 48161.7 50006.7 52089.7 45166 

2.0 37906.3 38188.8 42143.9 43988.4 45589.4 47474.9 41321 

b/a        

1 72129.6 76729.2 87361.9 92150.8 95897.9 99773.5 87155 

1.2 66815.0 69286.9 77740.7 81619 84801.6 88295.5 77739 

1.4 64334.6 64893.8 71564.1 74693.7 77397 80591.1 71597 

1.6 63049.7 62100.2 67353.7 69884.2 72175.9 75087. 67340 

1.8 62278.9 60219. 64356.1 66415.6 68346.2 71001.7 64265 

2 61729.0 58892.3 62147.8 63841.6 65463.7 67858.6 61971 

 
Table 9 - Critical buckling load Ncr (N/m) of super-elliptical LT1 ( [-452/02/452/902]s ) plate 

(clamped, r=6) 

a/b 
Critical buckling load (N/m) 

n=1 n=2 n=4 n=6 n=8 n=10  Rectangle 

1 248012 225054 225518 228595 231984 235721 227709 
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Table 9 Critical buckling load Ncr (N/m) of super-elliptical LT1 ( [-452/02/452/902]s ) plate 
(clamped, r=6) (continue) 

a/b 
Critical buckling load (N/m) 

n=1 n=2 n=4 n=6 n=8 n=10  Rectangle 

1.2 196040 176456 176691 179033 181661 184591 178374 

1.4 167180 150143 150208 152135 154293 156713 151954 

1.6 149911 134807 134727 136389 138235 140278. 136733 

1.8 138913 125319 125108 126581 128189 129943. 127432 

2.0 131522 119149 118819 120141 121554 123088 121464 

b/a        

1.0 248012. 225054. 225518 228595 231984 235721 227709 

1.2 227783 209483. 210036 212935 216001 219284 212665 

1.4 217549. 202952 203603 206363 209136 211999 206921 

1.6 211801 200298 201071 203670 206139 208623 205120 

1.8 208244 199361 200271 202680 204861 207003 205019 

2 205856 199189 200237 202439 204350 206151 205632 
 

3.6. Effect of plate thickness 

Table 10 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (simply supported, r=6, n=1) 

a/b 

Critical buckling load (N/m) 

[-452/02/452/902]s 
(t=3.2 mm) 

[-453/03/453/903]s 
(t=4.8mm) 

[-454/04/454/904]s (t=6.4 
mm) 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

1 72129.6 71104 243394 237267 576957 553980 

1.2 56678.2 55956 189291 187189 449779 439457 

1.4 48209.8 47562 159836 159295 380402 373716 

1.6 43197.7 42548 142542 142576 339570 334755 

1.8 40029.5 39345 131703 131866 313916 309727 

2 37906.3 37168 124503 124581 296830 292680 

b/a 

Critical buckling load (N/m) 

[-452/02/452/902]s 
(t=3.2 mm) 

[-453/03/453/903]s 
(t=4.8mm) 

[-453/03/453/903]s 
(t=4.8mm) 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

1 72129.6 71104 243394 237267 576957 553980 

1.2 66815.0 65754 227851 219525 538753 512939 
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Table 10 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (simply supported, r=6, n=1) (continue) 

 

Table 11 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (clamped, r=6, n=1) 

a/b 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 

1 248012 834717 1979940 

1.2 196040. 653874 1554180 

1.4 167180 553977 1318610 

1.6 149911 494608 1178330 

1.8 138913 457075 1089450 

2 131522 432041 1030030 

b/a 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 

1 248012. 834717 1979940 

1.2 227783 773429 1830780 

1.4 217549. 743275 1756840 

1.6 211801 726584 1715790 

1.8 208244 716238 1690380 

2 205856 709216 1673220 

 

 

b/a 

Critical buckling load (N/m) 

[-452/02/452/902]s 
(t=3.2 mm) 

[-453/03/453/903]s 
(t=4.8mm) 

[-453/03/453/903]s 
(t=4.8mm) 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

Rayleigh-
Ritz FEM 

1.4 64334.6 63194 221132 210982 521865 493092 

1.6 63049.7 61796 217934 206320 513614 482264 

1.8 62278.9 60889 216109 203320 508829 475294 

2 61729.0 60272 214780 201239 505368 470491 
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Table 12 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (simply supported, r=6, n=10) 

a/b 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 
1 99773.5 329924 786523 

1.2 79719. 261649 625061 

1.4 66955.8 218973 523162 

1.6 58289.4 190137 454730 

1.8 52089.7 169687 405734 

2 47474.9 154633 369886 

b/a 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 

1 99773.5 329924 786523 

1.2 88295.5 294463 700661 

1.4 80591.1 271005 643257 

1.6 75087. 254299 602562 

1.8 71001.7 241897 572141 

2 67858.6 232343 548957 
 

In this section, critical buckling loads for super-elliptical plates for three selected different 
thicknesses (3.2, 4.8 and 6.4 mm), super-elliptical powers (n=1 and 10), boundary conditions 
(clamped and simply supported) and aspect ratios (a/b and b/a) were investigated. The results 
are given in Table 10-13. From these results, critical buckling loads increase with the increase 
of the plate thickness as expected. As may be seen from the Tables (10-13), critical buckling 
loads decreases with the increase of the aspect ratio. Critical buckling loads of clamped plates 
are higher than simply supported plates for all cases. 

 

Table 13 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (clamped, r=6, n=10) 

a/b 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 
1 235721 797535 1889260 

1.2 184591 617921 1467230 

1.4 156713 520596 1238340 
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Table 13 - Critical buckling load Ncr (N/m) of different thinner or thicker super-elliptical 
plates (clamped, r=6, n=10) (continue) 

a/b 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 

1.6 140278. 463805 1104200 

1.8 129943. 428404 1020290 

2 123088 404905 964996 

b/a 

Critical buckling load (N/m) 

[-452/02/452/902]s [-453/03/453/903]s [-454/04/454/904]s 

t=3.2 mm t=4.8 mm t=6.4 mm 

1 235721 797535 1889260 

1.2 219284 750242 1772210 

1.4 211999 731457 1724620 

1.6 208623 724438 1705180 

1.8 207003 722194 1697880 

2 206151 721874 1695730 

 

3.7. Effect of lamination types, boundary conditions and aspect ratios 

Twenty-eight different types of quasi-isotropic, cross-ply and angle-ply plates shown in 
Table 3 are used for the calculations of the critical buckling loads Ncr (N/m) of super-elliptical 
plates (r=6 and n=10) under simply supported or clamped conditions, and the results are 
presented in Figure 2-5.   

It can be seen from the results that the critical buckling loads depend on the types of 
lamination. Critical buckling loads decrease with the increase of aspect ratios (a/b and b/a) 
and change with the selection of the short half side of the plates (a or b). It is also observed 
that the results change with the boundary restraints. Critical buckling loads for simply 
supported conditions are lower than those for clamped conditions. The lowest critical 
buckling load of the plates seems to decrease as the aspect ratio increases for both the simply 
supported case and the clamped case. 

The principal objective of this parametric study is to seek the best possible lamination among 
28 alternatives under uniform in-plane load, which is in fact the one with the highest value 
of lowest critical buckling load. 

From the Figure 2-5, it is seen that the critical buckling values of 24 different quasi-isotropic 
plates (LT1-24) in pairs and 2 different types of angle-ply (LT27-28) plates have the same 
values. 
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Figure 2 - Critical buckling load Ncr (N/m) of super-elliptical plates (simply supported  
r=6, n=10 ) 

 

 

Figure 3 - Critical buckling load Ncr (N/m) of super-elliptical plates (simply supported r=6, 
n=10) 
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Figure 4 - Critical buckling load Ncr (N/m) of super-elliptical plates (clamped) r=6, n=10 

 

 

Figure 5 - Critical buckling load Ncr (N/m) of super-elliptical plates (clamped) r=6, n=10 
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4. CONCLUSIONS 

Buckling analyses of elliptical and super-elliptical quasi-isotropic, cross-ply and angle-ply 
plates have been carried out based on the Classical Lamination Plate Theory (CLPT) by using 
the Rayleigh-Ritz Method for different boundary restraints (clamped or simply supported). 
Computations were done by Wolfram Mathematica [34] and MATLAB [35] software 
platforms. 

The critical buckling loads of plates with different super-elliptical powers (n), thicknesses, 
aspect ratios and lamination types were investigated. The verification of the isotropic case 
for two different boundary conditions (clamped and simply supported) and for different 
aspect ratios (1 to 5) was compared with some available studies in the literature and reliable 
convergence was obtained. 

Convergence studies of up to five terms were carried out with the Rayleigh-Ritz Method and 
the Galerkin Method,  known as a powerful weighted residual method using three different 
shape functions for clamped and simply supported boundary conditions in Section 3.4. From 
these results, it was observed that buckling analysis for super-elliptical plates (n=1,10), for 
simply supported or clamped boundary conditions, Rayleigh-Ritz Method with suitable shape 
function is the more proper method in terms of less computational time and accurate results. 

It can be seen from the convergence analysis of the LT1 ([-452/02/452/902]s) plate that 
reasonable accuracy was obtained for a trial function with 10 terms with Rayleigh-Ritz 
Method. It was observed that critical buckling loads of plates are influenced by the change of 
the super-elliptical power, lamination types, boundary conditions, thickness and aspect ratios. 
It was also observed that critical buckling loads of simply supported super-elliptical plates 
are lower than those of clamped super-elliptical plates. 

From the tabulated results and graphics critical buckling loads increase with an increase in 
the thickness. However, they generally decrease with increase of the aspect ratios. It can also 
be concluded that some lamination types have favorable circumstances with regard to the 
critical buckling load, as given in Section 3.2.  

It was observed that from the results of highest value for the lowest critical buckling loads 
(Ncr) of super-elliptical plates (n=10), angle-ply plates are more advantageous than cross-ply 
and quasi-isotropic plates for lowest aspect ratio is (a/b=1, 1.2 and 1.4). Besides, quasi-
isotropic plates are more advantageous than others for highest aspect ratios (a/b=1.6, 1.8 and 
2) similar to the rectangular plate in previous work [30] for the simply supported boundary 
condition. However, quasi-isotropic plates are more advantageous than others for all aspect 
ratios for clamped boundary conditions. From the results of elliptical plates (n=1) for simply 
supported and clamped boundary conditions, quasi-isotropic plates are more advantageous 
than angle-ply and cross-ply plates for all aspect ratios. 

Critical buckling loads of symmetrically laminated elliptical plates (super-elliptical power 
n=1) have been demonstrated in Appendix A (Figures A1.–A4.) for designers. Some mode 
shapes of laminated quasi-isotropic, cross-ply and angle-ply elliptic plate types (n=1) in 
simple support boundary condition was obtained with FEM software ANSYS [36] and 
presented in Appendix B (Figures B1, B2 and B3.).  

Consequently, in the preliminary design of composite structures, it is possible to obtain 
optimum data sets with parametric analyzes as illustrated in this study. The Rayleigh-Ritz 
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method gives faster and more convenient results than the Galerkin Method for buckling 
analysis of elliptical and super-elliptical plates when the appropriate shape function is 
selected.  
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APPENDIX A 

In this section, the results of the critical buckling loads found for the simply support and 
clamped boundary conditions, edge ratios a/b and b/a by the Rayleigh-Ritz Method analysis 
of the elliptical plates (n=1) are shown in (Figure A1-A4).  

 

Figure A1 - Critical buckling load Ncr (N/m) of super-elliptical plates (simply supported) 
r=6, n=1 
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Figure A2 - Critical buckling load Ncr (N/m) of super-elliptical plates (simply supported) 
r=6, n=1 

 

 

Figure A3 - Critical buckling load Ncr (N/m) of super-elliptical plates (clamped) r=6, n=1 
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Figure A4 - Critical buckling load Ncr (N/m) of super-elliptical plates (clamped) r=6, n=1 

 
APPENDIX B 

In this section, first three mode shapes of some elliptic plate (n=1) types (quasi-isotropic, 
cross-ply and angle-ply laminates) in simply supported boundary condition were calculated 
and plotted in the FEM analysis program ANSYS  [36] (Figure B1,  B2 and B3). No result 
could be obtained with the program for the clamped boundary conditions or super-elliptical 
plates (n=10). 

It may be seen from Figure B1 (a/b=1), LT27 (angle-ply plate) has the highest critical 
buckling loads for mode-1 and mode-2, LT25 (cross-ply plate) has the highest critical 
buckling load for mode-3. From Figure B2 (a/b=2), LT19 (quasi-isotropic plate) has the 
highest critical buckling loads for mode-1, LT27 (angle-ply plate) has the highest critical 
buckling loads for mode-2 and LT25 (cross-ply plate) has the highest critical buckling load 
for mode-3. 

Similar to the results found in the previous studies of the authors [30] in which they analyzed 
rectangular plates, although the critical buckling loads of some plates in super-elliptical plates 
are the same in this study, these results change when the aspect ratio changes. For instance, 
LT8 and LT19 plates have equal critical buckling loads for the a/b=1 case, but mode shapes 
are different (Figure B1). However, as seen in Figure B2 and B3, the critical buckling loads 
and mode shapes of the LT8 and LT19 plates are different in the a/b=2 and b/a=2 cases. 

In general, there are two types of construction systems called transverse system or 
longitudinal system depending on the placement directions of supporting structural members 
in composite hull design. In this study, one of the reasons for calculating ratios of a/b and b/a 
separately is that the designers would be able to prefer either transverse or longitudinal 
construction system. For instance, as can be seen in Figure B2 and B3, plate numbered LT8 
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gives the same critical buckling values as plate numbered LT19 in case of edge ratio b/a=2 
when the edge ratio is a/b=2. It is recommended that a designer may prefer the plate type 
LT8 for production in the transverse system, and the plate type LT19 for production in the 
longitudinal construction system. 

 

 

 

LT8  [02/-452/902/452]s  

mode1= 71223 N/m 

LT8  [02/-452/902/452]s  

mode2= 142470 N/m 

LT8  [02/-452/902/452]s  

mode3= 243650 N/m 

  

 

LT19 [902/-452/02/452]s 

mode1= 71224 N/m 

LT19 902/-452/02/452]s 

mode2= 142460 N/m 

LT19 [902/-452/02/452]s 

mode3= 243650 N/m 

  

 

LT25 [02/902/02/902]s     

mode1=71303 N/m 

LT25 [02/902/02/902]s    

mode2=167510 N/m 

LT25 [02/902/02/902]s    

mode3=266310 N/m 

  

 

LT27 [-452/452/-452/452]s 
mode1=71282 N/m 

LT27 [-452/452/-452/452]s 
mode2=167850 N/m 

LT27 [-452/452/-452/452]s 
mode3=26580 N/m 

Figure B1 - Some mode shapes of laminated plates (quasi-isotropic, cross-ply, angle-ply) 
(a/b=1, n=1)  
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LT8  [02/-452/902/452]s  

mode1= 34050 N/m 

LT8  [02/-452/902/452]s  

mode2= 71657 N/m 

LT8  [02/-452/902/452]s  

mode3= 124900 N/m 

 

  

LT19 [902/-452/02/452]s 

mode1= 70237 N/m 

LT19 [902/-452/02/452]s 

mode2= 89999 N/m 

LT19 [902/-452/02/452]s 

mode3= 120140 N/m 

 

  

LT25  [02/902/02/902]s    

 mode1=41837 N/m 

LT25  [02/902/02/902]s      
mode2=77156 N/m 

LT25  [02/902/02/902]s   
mode3=150210 N/m 

 

 

 

LT27 [-452/452/-452/452]s  

mode1=45783 N/m 

LT27 [-452/452/-452/452]s 
mode2=91731 N/m 

LT27 [-452/452/-452/452]s 
mode3=149030 N/m 

Figure B2 - Some mode shapes of laminated plates (quasi-isotropic, cross-ply, angle-ply) 
(a/b=2, n=1)  
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LT8  [02/-452/902/452]s  

mode1= 70236 N/m 

LT8  [02/-452/902/452]s  

mode2= 89995 N/m 

LT8  [02/-452/902/452]s  

mode3= 120140 N/m 

  

 

LT19 [902/-452/02/452]s 

mode1= 34049 N/m 

LT19 [902/-452/02/452]s 

mode2= 71657 N/m 

LT19 [902/-452/02/452]s 

mode3= 124890 N/m 

 

 

 

LT25  [02/902/02/902]s    

 mode1=69296 N/m 

LT25  [02/902/02/902]s       
mode2=85989 N/m 

LT25  [02/902/02/902]s      
mode3=123110 N/m 

 

 

 

LT27 [-452/452/-452/452]s  

mode1=45782 N/m 

LT27 [-452/452/-452/452]s 
mode2=91731 N/m 

LT27 [-452/452/-452/452]s 
mode3=149030 N/m 

Figure B3 - Some mode shapes of laminated plates (quasi-isotropic, cross-ply, angle-ply) 
(b/a=2, n=1)  
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