
 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2021; 10(2), 791-799 

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 

Niğde Ömer Halisdemir University Journal of Engineering Sciences 

Araştırma makalesi / Research article 

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh 

 

 

 

* Sorumlu yazar / Corresponding author, e-posta / e-mail: yigit.aksoy@cbu.edu.tr (Y. Aksoy) 

Geliş / Recieved:  14.12.2020   Kabul / Accepted: 30.03.2021    Yayımlanma / Published: 27.07.2021 
doi: 10.28948/ngmuh.840284 

 

791 

A similarity approach to boundary layer equations of a non-Newtonian fluid: 
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Abstract  Özet 

The present study considers a non-Newtonian flow over a 

horizontally immersed flat plate kept at a different 

temperature relative to the fluid. An inviscid free stream 

with uniform velocity induces the flow over the plate where 

an incompressible boundary layer viscously occurs. It is 

stipulated that the fluid obeys the Carreau-Yasuda 

constitutive equation. Analytical investigations begin with 

the derivation of momentum and energy equations followed 

by boundary layer simplifications. Scaling symmetries are 

subsequently calculated to define similarity variables to 

transform boundary layer equations into ordinary 

differential forms. Later, solutions of the governing 

equations are pursued by a numerical scheme based on 

finite differences. Thanks to those solutions, the effects of 

significant non-dimensional parameters, such as Deborah 

and Prandtl numbers, on both momentum and thermal 

boundary layers are examined throughout the figures. The 

Nusselt number's variation with non-dimensional numbers 

is also questioned for the study's heat transfer part. 

 Bu çalışmada, akışkana göre farklı bir sıcaklıkta ve yatay 

olarak yerleştirilmiş düz bir plaka üzerinde Newtonyan 

olmayan bir akış göz önüne alınmıştır. Sıkıştırılamaz, 

kararlı ve düzgün hıza sahip viskoz olmayan bir serbest 

akım plaka üzerinde viskoz bir sınır tabakası akışına neden 

olmaktadır. Newtonyen olmayan akışın Carreau-Yasuda 

akışkan modeline uyması öngörülmüştür. Analitik 

yaklaşım, momentum ve enerji denklemlerinin türetilmesi 

ve ardından sınır tabakası basitleştirmeleri ile başlar. 

Denklemlerin ölçekleme simetrileri kullanılarak 

hesaplanan benzerlik değişkenleri vasıtası ile kısmi 

diferansiyel denklem formunda olan sınır tabakası 

denklemleri adi forma indirgenmiştir. Daha sonra, Söz 

konusu denklemlerin sayısal çözümleri sonlu farklar 

algoritmasına dayanan sayısal bir çözümleyici ile 

bulunmuştur. Bu çözümler sayesinde, Deborah ve Prandtl 

sayıları gibi önemli boyutsuz parametrelerin hem 

momentum hem de termal sınır tabakası kalınlıkları 

üzerindeki etkileri grafikler üzerinden incelenmiştir. 

Ayrıca Nusselt sayısının boyutsuz sayılara göre değişimi de 

çalışmanın ısı transferi kısmı için araştırılmıştır. 

Keywords: Non-newtonian fluids, Carreau fluid, Carreau-

Yasuda fluid, Boundary layer flow, Similarity 

transformations. 

 Anahtar kelimeler: Newtonyen olmayan akışkan, Carreau 

akışkanı, Carreau-Yasuda akışkanı, Sınır tabakası akışı, 

Benzerlik dönüşümleri. 

1 Introduction  

Many fluids commonly possess a varying viscosity with 

shear rate and dissociate from Newtonian fluids of constant 

viscosity. Various mathematical models have been proposed 

to predict their flow for almost a century. Rather than more 

general non-Newtonian fluids, several fluids, such as 

ketchup, toothpaste, and blood that may obey these 

constitutive equations, are generalized Newtonian fluids [1]. 

Accordingly, unlike Newtonian fluid’s constant viscosity, a 

generalized Newtonian fluid, briefly GNF, shall exhibit its 

viscosity, namely apparent viscosity, to either rise or decries 

under varying shear rate conditions. When the viscosity 

reduces with increasing shear rate, the fluid is called shear 

thinning, whereas shear-thickening for growing viscosity. 

Before getting started in mathematical aspects, we further 

remark that while increasing shear rate, the apparent 

viscosity ranges from an initial to a limit value, and between 

these values, each apparent viscosity has a unique curve. 

Excluding shear rates where initial viscosity is exceeded and 

limit viscosity values are reached, the fluid can exhibit 

Newtonian behavior, which indicates constant viscosity. 

However, the apparent viscosity solely alters in the transition 

zone, namely, the power-law zone, where the fluid exposes 

non-Newtonian behavior. A convenient mathematical model 

that can anticipate the zones in an optimum manner requires 

the least parameter to fit the viscosity data with a minimal 

deviation. In practice, however, only focusing on the power-

law zone, the Oswalt‐de‐Waele model [2], i.e., power-law 

fluid, is frequently used due to its simple mathematical form 

as below: 

 

 
1n

 


γ γ  (1) 
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where μ is the apparent viscosity, |�̇�| is the rate of 

deformation tensor, 𝜂 is the consistency index and 𝑛 is the 

power-law index. Since the apparent viscosity in the 

preceding formula is proportional to 𝑛 − 1 power of the 

shear rate, the fluid gets thinner as shear rate increases for  

𝑛 < 1. Such fluids are called “shear thinning” as mentioned 

before, otherwise “shear thickening” for 𝑛 > 1. Although a 

viscous fluid must have a non-zero and finite viscosity at any 

shear rate, the power-law formula yields zero and infinite 

values for the apparent viscosity at very low and at very high 

shear rates, respectively. To overcome the shortcoming in 

question, numerous mathematical models, for instance, 

Cross [3], Sisko [4], Carreau [5], and Carreau-Yasuda [6], 

have emerged over the years to ensure the entire viscosity 

curve. For the rest of the study, we now pay our attention to 

the Carreau-Yasuda model by the equation: 

 

     
1

0 1

n
m m    



    γ γ
 (2) 

 

In the equation above, μ0 and μ∞ are the limit viscosities at 

the very low and high enough shear rates, respectively, and 

𝑛 is power-law index as the former. Unlike the Oswalt‐de‐

Waele model, Carreau-Yasuda requires secondary power-

law exponent m that characterizes the curvature connecting 

the Newtonian plateau with the power-law region. 𝜆 the time 

constant, namely material relaxation time defines specific 

shear rates corresponding to boundaries of the power-law 

region in a viscosity-shear rate curve. GNF models lack 

molecular insight due to their strong empirical base but can 

roughly describe molecular weight dependence of viscosity 

by correlating the time constant with molecular structure.  

Note that when 𝑚 = 2, Equation (2) turns out to Carreau 

fluid model [5] moreover Newtonian fluid for 𝜆 = 0.  

Carreau-Yasuda and its predecessor have been 

extensively used in studies on non-Newtonian flow problems 

for recent years. For instance, a peristaltic flow of electrically 

conducting Carreau-Yasuda fluid induced by the peristaltic 

motion of a curved channel is examined under the influence 

of a magnetic field by Abbasi et al. [7]. Boyd and Buick [8] 

studied a blood-flow inside arteries and treated the blood as 

Carreau-Yasuda and Casson model compared to analogous 

Newtonian flows. Raju [9] et al. assessed Carreau, Ellis, and 

Cross models' applicability to polymeric materials' viscosity 

data. The study reveals that Carreau and Ellis are far ahead 

of the Cross model regarding the overall error in estimates of 

the non-Newtonian viscosity-shear rate relationship. Due to 

their ease of calculations, among non-Newtonian fluid 

models, GNF formulas, especially Carreau, Cross, and 

power-law models [10], are widely used in commercial 

software products such as Moldflow, Comsol, and Ansys.  

Governing equations of a Newtonian fluid require 

powerful analytical or most likely numerical tools to analyze, 

and so do those of non-Newtonian fluids, of course. 

Therefore, numerical approaches are conventional for the 

solutions, albeit the need for supercomputers due to intensive 

matrix operations. In contrast, analytical solutions are more 

robust and reliable, nevertheless literally rare in the 

literature. As well as linearization procedures, logical 

simplifications on the equations can also be prerequisites for 

the analytical solutions. Thus, results are possibly 

approximate and limited; however, they are still necessary 

for the fundamental understanding and will be. As one of 

those and a systematic approach for ease of calculation, the 

boundary layer theory [11] recently draws keen attention, 

especially in non-Newtonian fluid flows over solid bodies. 

Boundary layer theory states that if the changes occur only 

in a narrow area, not all the factors affecting the problem may 

be necessary, so that some may be negligible. It is, therefore, 

a general guide that enables us to reach a more 

straightforward form of governing equations. While 

considering only conservation of momentum for flow over a 

flat plate, boundary layer equations of Carreau fluid are 

derived and solved numerically in [12]. The boundary layer 

approach yields partial differential equations ultimately, 

despite being quite simplifying. However, in most studies, 

unlike [12], transforming boundary layer equations into 

ordinary differential equation forms using similarity 

variables is preferred for ease of numerical calculations. For 

instance, Khan and Hashim [13] presented a stepwise study 

on Carreau fluid flow over a stretched sheet and obtained 

similarity solutions for both momentum and thermal 

boundary layer equations. 

Similarity solutions necessitate new variables, namely 

similarity variables, which can transform boundary layer 

equations ultimately into relevant ordinary form. Although 

conventional forms of similarity are used in most studies, Lie 

group techniques detailed in [14] may unveil further by 

finding out invariants, i.e., symmetries, of the equations. 

Applications of Lie groups on non-Newtonian fluids, 

especially GNF, are given in [15-17] for consideration of 

readers. We intend to conduct an analytical study on a non-

Newtonian fluid flow over a flat plate in light of previous 

studies. On account of studying the cooling of the cold plate, 

the heat transfer part of the problem is further considered in 

terms of non-dimensional parameters, especially the Nusselt 

number, which is engineering interest to evaluate.  As the 

Carreau-Yasuda model holds for non-Newtonian behavior in 

the flow, we ignore viscous heating in the energy equation. 

We divide the study into the following sections, respectively; 

formulation of the problem, boundary layer analysis, 

similarity transformations, and finally, numerical solutions 

followed by comments of the results via figures.  

2 Physical configuration and conservation laws 

 

 
Figure 1. Schematic view of boundary layer flow over a flat 

plate. 
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Before embarking on the study's theoretical aspects, let 

us introduce a schematic description of the problem through 

Figure 1. As shown in the representation, an incompressible 

stream is of a uniform velocity profile until it reaches the 

motionless plate. As soon as the flow is in contact with the 

plate, the pioneer fluid layer takes its velocity, namely zero, 

due to the slip law. As ascending perpendicular to the plate, 

the subsequent layers tend to increase their velocity to the 

free stream velocity relative to the subjacent layer. Along the 

plate's length, the spatial distribution of points where fluid 

layers already acquire the free stream velocity carves out the 

momentum boundary layer in Figure 1. Note that the thermal 

part of the sketch is to be described before deriving the 

energy equation. 

2.1 Momentum equations 

To determine the velocity profile for an incompressible 

flow, first, we give the tensorial form of Cauchy momentum 

equation regardless of the coordinate system and fluid model 

as below, 

 
*. .P    v v τ  (3) 

 

where 𝜌 is the density, 𝐯  is the vectoral velocity, ∇𝑃∗ is the 

pressure gradient and 𝛕  is the stress tensor specific to the 

fluid type. Accordingly, continuity equation is: 

 

. 0 v  (4) 

 

which holds for compressible flows. In cartesian coordinates, 

Equation (3) turn out to be, 

 

* * * *

* * *
* *

* * * * *X X X Y

u u P
u v

X Y X X Y
  
     

    
     

 
(5) 

* * * *

* * *
* *

* * * * *X Y Y Y

v v P
u v

X Y Y X Y
  
     

    
     

 
(6) 

 

for 
*X and 

*Y  momentum, respectively, and Equation (4) 

is simply: 

 
* *

* *
0

u v

X Y

 
 

 

 
(7) 

 

One can obtain stress components in momentum equations 

from Equation (2), accordingly: 

 

 * *

1

2 2 2 2* * * * *

0 * * * * *
2 1 2 2

n
m m

m

X X

u v u v u

X Y Y X X
    



 

 
                                           

 

 

(8) 

 * *

1

2 2 2 2* * * *

0 * * * *

* *

* *

1 2 2

n
m m

m

X Y

u v u v

X Y Y X

v u

X Y

    



 

 
                                         

 

  
 

  

 

(9) 

 * *

1

2 2 2 2* * * * *

0 * * * * *
2 1 2 2

n
m m

m

Y Y

u v u v v

X Y Y X Y
    



 

 
                                           

 

 

(10) 

 

Notice that since stress tensor is inherently symmetric, it 

is unnecessary to express 𝜏𝑋∗𝑌∗ above, i.e., 𝜏𝑋∗𝑌∗ = 𝜏𝑌∗𝑋∗. 

Before boundary layer analysis, complete analytical forms of 

momentum equations follow in the steps of Equation (5-10) 

except Equation (6). Alternatively, we apply boundary layer 

assumptions to Equation (5,6) and Equation (8,10) separately 

instead of exact momentum equations.  

2.2 Energy equations 

Predicating the plate and free stream at discrete 

temperatures of 𝑇𝑤
∗    and 𝑇∞

∗ , respectively, the fluid’s 

temperature is likely to vary in the vicinity of the surface, 

referred to as the thermal boundary layer.  However, the 

conservation of energy also applies to this narrow zone. 

Right then, the energy equation reads 

 
* * 2 * 2 *

* *

* * *2 *2

p

T T k T T
u v

X Y c X Y

    
   

    

 
(11) 

 

in which 𝑘, 𝜌 and 𝑐𝑝 are, in turn, thermal conductivity, 

density, and specific heat of the fluid. Furthermore, known 

solid surface and free-stream temperature conditions 

imposed on Equation (11) are; 

 

 * * * * * *,0 and ( , ) .wT X T T X T    
(12) 

 

3 Boundary layer analysis 

One can define the thickness of the boundary layer, i.e., 

𝛿∗(𝑋∗), as a distance from the surface of the plate where 

fluid achieves %99 of the velocity of the free stream. For 

convenience, let us assume the thickness is minimal, 

therefore mathematically speaking, 𝛿∗(𝑋∗) ≪ 1. 

Conventional boundary layer assumptions require following 

order of magnitude estimates. 

 

        *2 *

* *2

* 1 ,  ,  1 ,  
1 1

andx O y O u O v O  





        
 

(13) 

 

Following above relations, retaining the highest order terms, 

the x-momentum equation then reads: 

 

* *

* * *
* *

* * * * X Y

u u P
u v

X Y X Y
 
    

   
    

 
(14) 

 

Invoking the same estimates, Equation (9) reduces to; 

 

 * *

1

* *

0 * *
1

n
m m

m

X Y

u u

Y Y
    



 

 
    
            

 

 
(15) 

 

Since the initial viscosity is greater than limit viscosity for 

shear thinning fluids, i.e., 𝜇0 ≫ 𝜇∞, we can disregard 𝜇∞  

from above by comparison with 𝜇0. Substituting Equation 

(15) into Equation (14), one can obtains the x-momentum 

equation in a reduced form as follows: 
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 

1

* * * * 2 *
* *

0 0* * * * *2

2 1

* * 2 *

* * *2

1 1

1

n
m m

m m

n m
m mm

m

u u P u u
u v n

X Y X Y Y

u u u

Y Y Y

    





 

        
                   

      
            

 

(16) 

 

Notice that 𝜇0 and 𝜆 have to be of order 𝛿∗2
and 

𝛿∗𝑚
 respectively to retain terms except those of viscous. The 

dimensionless variables and parameters can be defined as 

follows. 

 
** * *

* *

2

0 0

, , , , and
Uu v V V P

u v X X Y Y P U
V V V V

 

  


     
 

(17) 

 

where 𝑉 is the reference velocity related to the free stream 

velocity 𝑈∞
∗ . Substituting new variables into Equation (16) 

and rearranging terms to be dimensionless, the x-momentum 

equation reads, 

 

1

2

2
1 1 ( 1)

1

m

n
m m

m

u
De

u u P u uY
u v De n

X Y X Y Yu
De

Y


  
                                 

  

 

(18) 

 

in which 𝐷𝑒 = 𝜆𝜌𝑉2 𝜇0⁄  is referred to the Deborah number 

that withstands non-Newtonian behavior. Keeping in mind 

that 𝜇0~𝑂(𝛿∗2)  and 𝜆~𝑂(𝛿∗𝑚) as well as considering 

Equation (13), y-momentum therefore turns out to be: 

 

0
P

Y






 
(19) 

 

which indicates 𝑃 = 𝑃(𝑋). Thus, the pressure distribution 

outside the boundary layer is calculated by the potential 

theory for the inviscid free stream as follows: 

 
21

constant
2

P U  
 

(20) 

 

We obtain pressure gradient involved in Equation (18) by 

deriving Equation (20) with respect to 𝑋, 

 
dP dU

U
dX dx

 
 

(21) 

 

Substituting preceding into Equation (18) yields the final 

form of the boundary layer equation of Carreau-Yasuda fluid 

as below: 

 

1

2

2
1 1 ( 1)

1

m

n
m m

m

u
De

u u dU u uY
u v U De n

X Y dx Y Yu
De

Y


  
                              

  

 

(22) 

 

subjected to following non-dimensional boundary 

conditions; 

 

( ,0) ( ,0) 0, ( , ) and ( , ) 0
u

u X v X u X U X
Y


     



 
(23) 

 

The total drag force exerted by fluid to the plate is attributed 

to the shear stress experienced by the surface. In non-

dimensional form, the appropriate shear stress component 

given in Equation (15) is accordingly is set to the surface as 

below. 

 

   

1

1 0 0

n
m m

XY

u u
De

Y Y




   
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(24) 

 

In a similar fashion, boundary layer assumptions simplify the 

energy equation in non-dimensional form to, 

 

 
  

2
1

2
Pr

u T T
r X T v

r X X Y Y

  
 
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(25) 

 

where 𝑃𝑟 = 𝑐𝑝𝜇0 𝑘⁄  is the Prandtl number. The 

dimensionless temperature is defined as; 

  

 

* *

* *

1

w

T T
T

T T r X





 
  

 

 
(26) 

 

in which 𝑟(𝑋) is deliberately assigned to the denominator to 

transform boundary conditions with success and to be 

acquired in an analytical form later.  The boundary 

conditions are written dimensionless as 

 

 
1

,0 and ( , ) 0
( )

T X T X
r X

  
 

(27) 

 

By now, we have the momentum and thermal boundary layer 

equations in partial differential equation forms, about which 

a thorough search of the relevant literature did not yield any 

related article on Carreau-Yasuda fluid. Thus, the equations 

have, to the best of the authors’ knowledge, not been 

presented in literature before. 

4 Symmetries of the boundary layer equations  

A set of transformations that remains an equation 

invariant is a type of symmetry in an algebraic manner. The 

existence of such symmetries may lead us to success in 

solutions of the differential equation. Using the symmetries, 

in essence, as a set of transformations belonging to a partial 

differential equation, a reduction to an ordinary form is quite 

possible. Lie groups and their algebra overcome the 

problems associated with finding out fundamental 

symmetries that a differential equation accepts. For the 

details of the theory, please refer to Bluman and Kumei [14]. 

Considering the findings, equations arising from boundary 

layer flows admit several transformations for the 

symmetries, such as scaling and translational [18]. As was 

just pointed out, we only consider scaling symmetries to 

adopt the equations and, hence, define the following new 

variables as;  

 
3 5 6 71 2 4, , , , , ,x e x y e y u e u v e v U e U T e T r e r

          
        (28) 

 

In terms of the above variables, momentum, continuity, and 

energy equations, in turn, are 
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(29) 

 

from which we extract the following equations leaving the 

original equations invariant. 

 
1 3 4 2

3 5

1 2 3

3 2

0,

2 2 0,

2 0,

0.

   

 

  

 

   

  

  

 

 

(30) 

 

Notice that all parameters can be found in terms of 𝛼3, 

whereas 𝛼6 and 𝛼7  are arbitrary due to lack of equations 

depending on them. Thus, the invariance holds if and only if, 

 
1 3

2 3

4 3

3 ,

,

,

 

 

 





 

 
(31) 

 

regardless of 𝛼6  and 𝛼7. Setting 𝛼6 = 1 and remaining 𝛼7 

as itself, the associated equations which yield similarity 

variable and functions are; 

 

7

.
3

dx dy du dv dU dT dr

x y u v U T r
     



 
(32) 

 

Stepwise integration of the system leads to the similarity 

variable and functions, 

 
       

  7

1 3 1 3 1 3 1 3 1 3

3

, , , , ,

.

x y f x u g x v h x U z x T

w x r


    



   



    



 
(33) 

 

which are expected to transform the governing equations into 

ordinary form. The transformation is achieved by ultimate 

equations in which, except similarity variables, originals are 

anticipated to vanish, and of course, in boundary conditions. 

Although comparatively tedious calculations emerge from 

partial differential equations, similarity transformations 

usually collapse due to boundary conditions. Therefore, 

before getting into equations, here we unconventionally 

exploit the reference velocity 𝑉 and arbitrary constant 𝛼7 to 

overcome our case. For instance, the third condition in 

Equation (23) is equivalent to, 

 

 
1

3f x U


   (34) 

 

in which presenting the term of 𝑥−1 3⁄  associated with 

original variables is inconvenient for a complete 

transformation. To discard it, recalling the dimensionless 

stream velocity as 𝑈 = 𝑈∗ 𝑉⁄  and defining 𝑉 = 𝑥−1 3⁄ 𝑈∗   

yield 

 

  1.f    (35) 

 

Fortunately, the remaining conditions in Equation (23) are 

not alike the previous, that is,  

 
   0 0, (0) 0, 0.f g f      (36) 

 

In the following, we treat analogously the first condition in 

Equation (23) 

 

 
1

3

0
( )

x
z

r X




 

(37) 

 

where 𝑟(𝑥) = 𝑤(𝜉)𝑥𝛼7 3⁄  as seen from Equation (33). By the 

definition of dimensionless temperature given in Equation 

(27), 𝑟(𝑥) must depend only on 𝑥, i.e., ( )r r x ; 

nevertheless, the dependence of y arises from the similarity 

function 𝑤 = 𝑤(𝜉) and variable 𝜉 = 𝜉(𝑥, 𝑦). There is no 

objection to assume 𝑤(𝜉) as an arbitrary constant, so that 

𝑟(𝑥) = 𝑥𝛼7 3⁄  provided by 𝑤(𝜉) = 1, since the preceding 

assumption that the similarity function ℎ(𝜉) is assigned to 1 

is fundamentally adequate. Note that it is analogously 

admissible for similarity function ℎ = ℎ(𝜉) to assume       

ℎ = 1. Returning to Equation (37), it now follows that, 

 
 0 1z   (38) 

 

by setting 𝛼7 = 1. Enforcing the similarity variables for the 

latter in Equation (27), we have 

 
  0.z    (39) 

 

In the light of previous results so far, substituting similarity 

variables and functions into, in turn, continuity, momentum, 

and thermal boundary layer equations yields  

 

    

  
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3 0,

3 1 3 (1 ) 1 ,
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z g z
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








   

        

 
    

 

 

(40) 

 

 

which are subjected to six boundary conditions given in 

Equations (35), (36), (38) and (39). Consequently, 

equivalence of shear stress in terms of similarity functions is 

 

     
1

1 0 0

n
m m

xy Def f



  
 (41) 

 

and similarly, Nusselt number turns out to be; 

 
 0 .Nu Re z   (42) 

 

Scaling horizontal velocity and axis with √𝑅𝑒 in Equation 

(17) leads that √𝑅𝑒 𝐷𝑒 arises as a modified Weissenberg 

number instead of Deborah number in the rest from Equation 

(18). Therefore, the Nusselt number can also be calculated 

using 𝑁𝑢 = −√𝑅𝑒 𝑧′(0) instead of Equation (42). In the 
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next chapter, we focus on a numerical procedure for the 

system of differential equations given in Equation (40). 

5 Numerical analysis 

Since the system of differential equations is highly 

nonlinear and coupled, exact solutions are presumably not 

tractable. Exploiting numerical approaches are, therefore, 

more useful for such systems, despite the need for higher 

computational labor. In order to handle a system of 

differential equations numerically, it is common to convert 

them into a first-order system in advance. Here, we start by 

introducing following variables;  

 

1 2 3 4 5, , , , .f f f f g f z f z f       (43) 

 

Together with solving the highest order terms from Equation 

(40) in terms of above variables, the first order derivatives 

constitute the system in question as follows, 
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   

 

  

 

(44) 

 

subject to, 

 
         1 1 3 4 40 0, 1, 0 0, 0 1, 0.f f f f f        (45) 

 

In general, finite difference schemes in which differential 

equations are transformed to a system of algebraic equations 

are employed for boundary value problems, such as 

boundary layer equations.  For the purpose of achieving 

numerical solutions of the system given in Equation (44), we 

utilize a MATLAB subroutine, i.e., bcp4c, implementing 

finite difference technique with adaptive mesh refinement by 

collocation polynomials. The numerical procedure 

accomplishes when the relative error tolerance of 10−6 is 

met.  

6 Results and discussions 

In this chapter, to feature primarily non-Newtonian 

effects on the boundary layer flow, the results are provided 

in detail through figures plotted via the numerical data. It 

should be emphasized here that since the boundary layer 

originates substantially from the horizontal velocity, we only 

discuss the alterations over first similarity functions related 

to that, namely 𝑓.  

Variations of 𝑓 the similarity function with increasing 

Deborah number are shown in Figure 2. The boundary layer 

undergoes thickening for an increase in Deborah number, 

which indicates slower fluid velocity. More simply, when a 

large Deborah number presents, the fluid tends to be solid-

like 

 

 

Figure 2.  Variations of similarity function 𝒇 related to 

horizontal component of the velocity for various Deborah 

numbers (𝒏 = 𝟏. 𝟓  and 𝒎 = 𝟐  ). 

 

In Figure 3, the effect of the power-law index 𝒏 on the 

same similarity function is depicted. Analogous to Deborah 

number, giving an increase in 𝒏 triggers retardation in the 

overall fluid velocity and consequently leads to a thicker 

boundary layer. It may be noted from the figure that while 

descending the Newtonian case, i.e., 𝑛 < 1 related to shear 

thinning, resistance to flow diminishes as well, thus a thinner 

boundary layer is manifest.  

 

 

Figure 3.  Variations of similarity function 𝒇 related to the 

horizontal component of the velocity for various primary 

power-law index 𝒏 (𝑫𝒆 = 𝟏𝟎  and 𝒎 = 𝟐). 

 

For the last in the debate of the momentum boundary 

layer, we devote Figure 4 to the alteration of 𝑓 with the 

denominator index peculiar to the fluid model, i.e., 𝑚. As 

seen from the figure, 𝑚 manifestly takes a contrariwise role 

to 𝑛 in the alteration; however, as values grow, its effect 

progressively diminishes. Note that as 𝑚 → ∞, the fluid 

behaves more like a Newton fluid. 

 

 
Figure 4.  Variations of similarity function 𝑓 related to the 

horizontal component of the velocity for various secondary 

power-law index 𝑚 (𝐷𝑒 = 10  and 𝑛 = 1.5). 
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Figure 5 depicts 𝑧 the similarity function related to the 

fluid temperature as a function of 𝜉 for various Deborah 

numbers. Following the figure, a fluid with slower velocity 

due to an increasing Deborah number has a higher 

temperature over a warmer flat plate since the convection 

becomes less forced. In contrast, the heat transfer between 

the fluid and the warmer plate enhances as the fluid gains 

speed at lower Deborah numbers.  

 

 

Figure 5.  Variations of similarity function 𝑧 related to the 

temperature of the fluid for various Deborah numbers  (𝑛 = 1.5, 

𝑚 = 2 and 𝑃𝑟 = 1). 

 

In the same manner, the power-law constants, i.e., 𝑛 and 

𝑚, alter fluid temperature implicitly over fluid velocity, as 

seen from Figure 6 and Figure 7. The fluid thickens and 

slows down with increasing n or equivalently decreasing m 

and becomes warmer as a result of less effective forced 

convection.  

 

 

Figure 6.  Variations of similarity function 𝑧 related to the 

temperature of the fluid for various power-law index 𝑛 

(𝐷𝑒 = 10, 𝑚 = 2, and , 𝑃𝑟 = 1). 

 

 
Figure 7.  Variations of similarity function 𝑧 related to the 

temperature of the fluid for various secondary power-law 

index 𝑚 (𝐷𝑒 = 10, 𝑛 = 1.5 and  𝑃𝑟 = 1). 

 

It is also convenient to employ the Prandtl number to 

determine whether the heat transfer is dominated by 

convection or conduction through the fluid motion. For a 

boundary layer flow, the Prandtl number, widely regarded as 

the ratio of momentum diffusivity to thermal diffusivity, 

compares the thickness of momentum and thermal boundary 

layers. Thus, for various Prandtl number values, the curves 

of 𝑧 versus ξ are plotted in Figure 8. Decreasing Prandtl 

number indicates that conduction becomes more critical than 

convection, plus shrinking the thermal boundary layer 

thickness. Contrarily, momentum diffusivity dominates total 

heat transfer, which triggers smaller temperature gradients 

within a thicker thermal boundary layer. 

 

 

Figure 8.  Variations of similarity function 𝑧 related to the 

temperature of the fluid for various Prandtl number (𝐷𝑒 =
10, 𝑛 = 1.5 and Pr= 1). 

 

In seeking more in-depth insight into the convection and 

the rate of heat transfer, we plotted the Nusselt number as a 

function of Deborah number for several values of n in Figure 

9. The Nusselt number is, in brief, a measure of the 

enhancement of heat transfer by convection relative to 

conduction, and therefore implies the improvement of 

convective heat transfer for increasing values. From Figure 

9, one can observe three distinct characteristics concerning n 

values of Nusselt versus Deborah curves. For 𝑛 = 1, which 

extinguishes the Deborah number entirely in the governing 

equations and corresponds to Newtonian fluid, the Nusselt 

number becomes constant of a value of 4.5. For 𝑛 =
1.5 associated with a shear thickening fluid, from a value of 

4.5 at 𝐷𝑒 = 0, the Nusselt number decreases asymptotically 

to a value of 3.45 for an increasing Deborah number. 

However, for 𝑛 = 0.5 associated with a shear-thinning fluid, 

the heat transfer by convection becomes elevated by 

increasing the Nusselt number, even though Deborah 

number increases considerably. 

 

 
Figure 9.  The Nusselt number curves as a function of the 

Deborah number for various primary power-law index 𝑛 

(𝑅𝑒 = 10, 𝑚 = 2and 𝑃𝑟 = 1). 
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Since it is also of interest to examine how the Nusselt number 

can vary with the Prandtl number and 𝑚, Figure 10 is 

plotted. Unlike 𝑛,  increasing 𝑚 makes fluid thinner, which 

leads Nusselt number to increase as would be expected. 

Furthermore, from the figure, we infer that as the Prandtl 

number increases, the flow becomes more convective 

compared to the conduction, which gives the Nusselt number 

rise.  

 
Figure 10.  The Nusselt number curves as a function of the 

Prandtl number for various secondary power-law index 𝑚 

(𝑅𝑒 = 10, 𝑛 = 2 and 𝐷𝑒 = 10). 

 

Relying on Equation (41), Figure 11 depicts the non-

dimensional shear stress varying with Deborah number for 

various n values. As seen from the figure, the friction force 

that is merely exerted by shear thickening fluids, i.e., 𝑛 in 

excess of 1, grows while both 𝐷𝑒 and 𝑛 increase. For a shear-

thinning fluid of 𝑛 = 0.5, conversely, the friction force 

associated with shear stress on the surface reduces 

asymptotically as Deborah number increases. Even though 

fluids considered in the figure are mere shear-thinning, we 

must state that a shear-thickening fluid responds contrariwise 

as Deborah number increases. However, the response of 

shear stress acts reversely for increasing 𝑚 values which 

diminish the apparent viscosity, as seen from Figure 12. 

 

 
Figure 11. The shear stress curves as a function of the 

Deborah number for various power-law index 𝑛 

(𝑅𝑒 = 10, 𝑚 = 2 and 𝑃𝑟 = 1)  

 

 

Figure 12. The shear stress curves as a function of the 

Deborah number for various secondary power-law index 

𝑚 (𝑅𝑒 = 10, 𝑛 = 2 and 𝑃𝑟 = 1).  

7 Conclusions 

The present study rests on the boundary layer theory 

renowned for its simplifying but realistic assumptions in 

studies of external viscous flows. The flow concerning a 

non-Newtonian fluid is accordingly over a flat plate and 

induced by a free stream and being steady besides. The free 

stream is regarded as an inviscid flow with uniform velocity, 

except the flow inside the boundary layer overlies the plate. 

For the rest of the governing equations, we assigned the 

Carreau-Yasuda model to non-Newtonian fluid because of 

its capability to predict varying viscosity decently within the 

broadest possible range of deformation rates. To examine the 

fluid’s thermal attributes, we also introduced a temperature 

difference between the motionless plate and the upcoming 

stream to initiate the heat transfer. Thus, the temperature of 

the fluid varies solely within the thermal boundary layer 

analogous to that of momentum, which is coupled with the 

conservation of energy. Momentum and thermal boundary 

layer equations were derived in partial differential form; 

however, later solved numerically in ordinary form thanks to 

similarity transformations. Therefore, solutions of similarity 

variables related to velocity and temperature profiles were 

illustrated for varying convenient nondimensional 

parameters, such as Deborah and Prandtl numbers. To 

inquire how effectively convective heat transfer takes place, 

we carried through an investigation based on the Nusselt 

number. The force that a fluid exerts a solid body in external 

flows is of engineering interest; accordingly, the shear stress 

at the surface was presented in depictions for various 

dimensionless parameters.  

To conclude, we briefly review the key results 

emphasized throughout the paper as follows. 

 Increasing Deborah number gives a decrease to the 

fluid velocity, consequently resulting in thickening 

in the momentum boundary layer.  

 When 𝑛 > 1  belongs to shear thickening fluids, the 

fluid behaves more like a solid in a way that the 

momentum boundary layer thickens.  

 Unlike 𝑛, increasing the secondary power-law 

index, i.e. 𝑚, that occupies in the denominator 

peculiar to the Carreau-Yasuda model, accelerates 

the fluid in a way that the momentum boundary 

layer gets thinner.  

 Fluids at great Deborah numbers are in higher 

temperatures than those with less, requiring a 

thicker thermal boundary layer. 

 An effect that facilitates the flow, for instance, 

decreasing 𝑛 or controversially increasing 𝑚, 

reduces the fluid temperature, and narrows the 

thermal boundary layer.  

 For small Prandtl numbers, especially 𝑃𝑟 < 1, the 

heat transfer across the fluid layers is mainly via 

conduction, resulting in higher fluid temperature 

and a thicker thermal boundary layer.   

 Relying on variations of the Nusselt number, the 

convection enhances throughout a shear-thinning 

fluid by increasing Deborah number, whereas an 
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increase alike counterworks in a shear-thickening 

fluid. 

 When 𝑃𝑟 ≫ 1, heat transfer by momentum 

diffusivity, i.e., convection, dominates relative to 

thermal diffusion, i.e., conduction. This fact also 

exposes the Nusselt number increases as long as the 

Prandtl number increase in such flows. 

 Increasing the Deborah numbers leads to growing 

shear stress, which a shear thickening fluid exerts 

on the plate. However, concerning a shear-thinning 

fluid, shear stress decreases as the Deborah number 

increase. 

We here concluded that the Carreau-Yasuda model is 

highly capable of mathematically representing a diverse 

range of non-Newtonian fluids at the expense of intense 

calculation labor. 
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