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ABSTRACT 
 

In this study, cumulative and daily cases are estimated online using discrete-time Gompertz model (DTGM) and Adaptive 

Kalman Filter (AKF) based on the total COVID-19 cases between February 29-July 28, 2020 in USA, Germany, India, Russia, 

Italy, Spain, France, United Kingdom, Brazil. Employing the data collected between February 29 and July 28, 2020, it is 

showed that the DTGM in conjunction with AKF provides a good analysis tool for modeling the daily cases made using the in 

terms of mean square error (MSE), mean absolute percentage error (MAPE), and 
2R . 
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1. INTRODUCTION 

 

In December 2019, a new coronavirus disease emerged characterized as a viral infection with a high 

level of transmission in Wuhan, China. Coronavirus 19 (COVID-19) is caused by the virus known as 

Severe Acute Respiratory Syndrome coronavirus 2 (SARS- CoV-2) established by the ICTV [1-3]. 

Gompertz and Logistic models have been used to estimate the number of COVID-19 cases in China by 

Jia et al [4]. Cas torina et al. [5] have used these two modes in China, South Korea, Italy, and Singapore. 

Roosa et al. [6] have used Generalized Logistic Growth Model (GLM) for the data gathered between 

February 5 and February 24, 2020, for China. Roosa et al. [7] have used the Generalized Logistic Growth 

Model (GLM) and Richard model for the data gathered between February 13 and February 20, 2020 for 

China. Munayco et al. [8] have used the Generalized Growth Model for the dates February 29 and March 

30, 2020, for Peru. Gompertz, Logistic, and Artificial Neural Network models were applied in [9]. 

Zuzana et al. [10] used the Gompertz curve to model a trajectory of the number of infections for the 

USA. Cata et al [11] employed the Gompertz function in several countries to make short-time 

predictions. Petropoulos et al. [12] adopted simple time series forecasting approaches. In [4], Logistic, 

Bertalanffy and Gompertz non-linear mathematical growth models are studied and Prediction and 

analysis is given for Coronavirus Disease. The prediction methods of Logistic model, Gompertz model 

and Bertalanffy model are similar, but the mathematical models are different. Specific algorithms such 

as mathematical optimization technique need to be employed for parameter estimation. The authors use 

The regression coefficient (R
2

) for Model Evaluation. The paper applies these models to the Wuhan and 

non-Hubei data in China and stated that “The prediction results of three different mathematical models 

are different for different parameters and in different regions”. Moreover, the authors state that “We 

have collected some COVID-19 epidemic predictions of other researchers, as shown in Table 3. It can 

be seen from Table 3 that the total prediction results of different models are quite different”. In [5], only 

Gompertz non-linear mathematical growth model is studied and apllied to China, South Korea and Italy 
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data. They considered The cumulative number of infected people and stated that this analysis needs to 

be updated on a daily basis. In [6], The generalized logistic growth model (GLM), exponential growth 

dynamics model and The Richards models are used and applied to the data from Hubei and other. Mean 

squared error (MSE) is used as performance criterion. In [7], similar to [6] logistic growth model, the 

Richards growth model, and a sub-epidemic wave model models are use and the data from Guangdong 

and Zhejiang provinces in China. In [8],  the generalized growth model (GGM) differential equation  is 

used an applied to Lima-Peru data. In [9], non-linear the logistic growth model, Gompertz ve Artificial 

Neural Networks models are used and Non-linear least-squares method is used for parameter estimation. 

In [10], only Gompertz model is used and applied to the USA data. In [11], only Gompertz model is 

used and applied to data obtained from different provinces in China. In [12], only exponential smoothing 

model is studied and applied to Global confirmed cases. 

 

The papers cited in our manuscript all utilize “The cumulative number of infected people” as the data. 

Also, the models employed in those papers are non-linear mathematical growth models and there are 

more than one parameter to be estimated in those models. The models are non-linear mathematical 

models and defined using differential equations. Specific algorithms such as mathematical optimization 

technique need to be employed for parameter estimation. The data used in the models employed need to 

be updated daily in order to analyze it. The methods used are offline and all data up to a spesific date is 

needed for parameter estimation in those models where the estimation needs to be updated on a daily 

basis with the inclusion of the new set of data. 

 

The Gompertz model is well known and widely used in many sub-fields of biology. The Gompertz 

model was originally recommended to explain human mortality curves Gompertz (1825) [13], and it has 

been further used in the description of growth processes, for example, growing of bacterial colonies 

Zwietering et al. [14] and tumors Gerlee [15]. Numerous parametrizations and re-parametrizations of 

the Gompertz model can be found in the literature Kathleen [16].  

 

The model, a stochastic version of the Gompertz model, can be transformed into a linear Gaussian state-

space model for convenient fitting to time-series data. The study makes an emphasis on modeling and 

estimating the cumulative cases and daily cases of COVID-19 in USA, Germany, India, Russia, Italy, 

Spain, France, United Kingdom, and Brazil using DTGM and AKF in order to make estimations on the 

COVID-19 progress in these regions. This paper presents the use of AKF in the analysis of the COVID-

19 cumulative cases and daily cases. This work presents the modeling and estimation of cumulative 

cases and daily cases of COVID-19 infection in these regions through mathematical and computational 

models using only the confirmed cases provided by the daily technical reports of COVID-19 until July 

28th. Here, we employ the DTGM to analyze the dynamics of the spreading of COVID-19 to make 

short-term estimations of the new cases for the subsequent days. We use the DTGM for the growing 

process, for the modeling of the cumulative cases and daily cases of COVID-19. With the DTGM, we 

calculated the instantaneous reproduction number with daily case time series at the modeling and 

estimation stages. 

 

The rest of this article is organized as follows. In Section 2, the mathematical and computational 

methodologies are specified and mathematical equations which will be used further in this study are 

given, and the modeling analysis and estimation results are also presented. In Section 3, the computation 

of the reproduction number with AKF is presented. Finally, the last section presents the conclusions. 

 

2. DISCRETE-TIME GOMPERTZ MODEL 

 

The underlying model we use for COVID-19 cumulative cases is a DTGM. Let tn  denote COVID-19 

cumulative cases at time t . The process model is 

 



Özbek and Demiştaş / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 22 (3) – 2021 

 

241 

1 1exp( ln )t t t tn n a b n e                      (1) 

where a  and b are constants, and te  is 
2~  (0, )te N  . The random variables 1 2, ,..., ne e e  are assumed 

to be uncorrelated. On the logarithmic scale, the DTGM is a linear, autoregressive time-series model of 

order 1 [AR (1) process]. 

 

1 1 1t t t t t ty y a by y a cy e                      (2) 

 

where lnt ty n  and 1c b  . The statistical properties of the DTGM are well-known Dennis et al 

(2006) [17]. 

 

2.1. Mathematical and Computational Methodologies 

 

The optimum linear filtering and estimations methods introduced by Kalman (1960) have been 

considered one of the greatest achievements in estimation theory.  

 

Discrete-time linear state-space models and Kalman filtering (KF) have been employed since the 1960s, 

mostly in the control and signal processing areas. The KF has been extensively employed in many areas 

of estimation the extensions and applications of discrete-time linear state-space models can be found in 

almost all disciplines [18-26].  

 

In this work, Kalman filtering1 has been used to estimate the time-varying parameter of the discrete-

time Gompertz model. KF is a recursive estimator to estimate the time-varying parameters. If 0a   in 

Eq.(2), tn  being the case counts observed until t  and lnt ty n ,  equation  

1t t ty cy e                    (3) 

is acquired. In the case where the c  parameter in Eq.(3) is time-varying and presumed as  

1t t tc c w 
           

 random walk process, state-space model  

1t t t ty c y e                              (4) 

1t t tc c w 
                           (5) 

is written. Here, the state variable is an unobservable, time-varying tc  parameter, and can be estimated 

through AKF (explanation regarding AKF is given in the Appendix section). If this time-varying 

parameter is estimated using on-line AKF, estimation for the total case counts in times 1t  , 2t  , ... 

can be made via this online-estimated parameter.  

 

                                                           
1 Kalman filter is in fact an estimator rather than a conventional filter, however it is employed to estimate parameters from a noisy data 

sequence, hence the name filter. 
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Actual cumulative case estimations that have been made online using AKF. The number of daily cases 

can be easily calculated with 1t t ti n n    to show the total number of cases up to tn , t  days. Since we 

have the estimates of tn , we can easily find the estimations of ti  with  1
ˆ ˆ ˆ
t t ti n n   . The data used 

was taken from Johns Hopkins University [31].  
 
Daily cases and estimations are given in odd-numbered figures. As can be seen from these figures, the 

estimation results obtained from the model used are very close to the real values. According to the 

estimation results obtained by using the daily number of cases in the Gompertz model, MSE, MAPE, 

and R2, were calculated (see Table 1). These calculated values indicate that the compatibility of the 

model with real data is quite high. This situation tells us that estimating the daily number of cases via 

the Gompertz model is a reliable method. Since estimation using the AR(1) stochastic process does not 

require any other model assumption, it is much simpler than the estimation method through the 

Gompertz model. As for AKF, utilizing only the observation in time t  and the preceding estimation is 

the most advantageous aspect of this method. 

 

 

 

Figure 1. USA-Florida, daily cases and estimated 
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Figure 2. USA-Florida, reproduction number estimated 

 

 

Figure 3. USA-Texas, daily cases and estimated 
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Figure 4. USA-Texas, reproduction number estimated 

 

 

Figure 5. USA-Arizona, daily cases and estimated 
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Figure 6. USA-Arizona, reproduction number estimated 

 

 

Figure 7. USA-New York, daily cases and estimated 
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Figure 8. USA-New York, reproduction number estimated 

 

 

Figure 9. Germany, daily cases and estimated 
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Figure 10. Germany, reproduction number estimated 

 

 

Figure 11. India, daily cases and estimated 
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Figure 12. India, reproduction number estimated 

 

 

Figure 13. Russia, daily cases and estimated 
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Figure 14. Russia, reproduction number estimated 

 

 

Figure 15. Italy, daily cases and estimated 
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Figure 16. Italy, reproduction number estimated 

 

 

Figure 17. Spain, daily cases and estimated 

0 50 100 150
0.5

1

1.5

2

2.5

3

3.5

February 23 - July 28 2020

Italy: Reproduction number

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

March 2 - July 28 2020

Spain: Daily Cases and Estimated

 

 

Real Data

AKF Estimated Data



Özbek and Demiştaş / Eskişehir Technical Univ. J. of Sci. and Tech. A – Appl. Sci. and Eng. 22 (3) – 2021 

 

251 

 

Figure 18. Spain, reproduction number estimated 

 

Figure 19. France, daily cases and estimated 
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Figure 20. France, reproduction number estimated 

 

Figure 21. United Kingdom, daily cases and estimated 
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Figure 22. United Kingdom, reproduction number estimated 

 

 

Figure 23. Brazil, daily cases and estimated 
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Figure 24. Brazil, reproduction number estimated 
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3. COMPUTATION OF THE REPRODUCTION NUMBER WITH AKF 

 

The instantaneous reproduction number, tR  at time t  can be estimated as in Eq,(8). 

 

1

( )t
t t

t s s

s

E i
R

i w






                    (8) 

 

where ( )E X  denotes the expectation of a random variable X  [27]. In Eq.(8), sw  is the probability 

distribution of the infectivity profile which is dependent on time. In practice, sw  is approximated by the 

distribution of the serial interval. In this study, we have taken the distribution of sw as a uniform 

distribution in a ( ) 1, 1sf w s   form. Since ˆ( )t tE i i , Eq.(8) can be written in the form of Eq.(9). 

 

1

ˆ
, 2,3,..., 1G t

t

t

i
R t n

i 

                  (9) 

 

The value of  
G

tR  (using the Gompertz model) calculated using the Equation (9) is given in even-

numbered figures. There is no need for any other model assumption in estimating tR  with this method 

by using the AR(1) model. Modeling the daily case time-series with the time-varying parameter AR(1) 

stochastic process and estimating the time-varying parameter with AKF both estimate the number of 

daily cases and estimate the instantaneous reproduction number without any other operation. It is quite 

a simple method to model the daily case number time series with the time-varying parameter AR(1) 

stochastic process and estimated the time-varying parameter with online AKF. 

 

4. CONCLUSION  

 

In this study, cumulative and daily cases have been estimated online using DTGM and AKF based on 

the total of COVID-19 cases between February and July 28, 2020 in USA, Germany, India, Russia, 

Italy, Spain, France, United Kingdom, Brazil. The cumulative case number was modeled with DTGM, 

and the time-varying parameters of the obtained AR(1) stochastic time series were estimated by on-line 

AKF. Estimation by acquired data observed between February 29 and July 28, 2020 shows that 

employing the DTGM model and AKF in terms of MSE, MAPE, and R2 provides efficient analysis for 

modeling the total case. It is proposed that the use of DTGM and AKF will be appropriate. After 

estimating the number of cumulative cases, the estimation of daily cases was made. After estimating the 

daily case number, the estimation of reproduction number was obtained. The AR(1) model is an 

appropriate estimation method for the daily cases. As for AKF, utilizing only the observation in time t  

and preceding the estimation is the most advantageous aspect of this method. Modeling the cumulative 

case time-series with the time-varying parameter AR(1) stochastic process and estimating the time-

varying parameters with AKF both leads to the number of daily cases and the instantaneous reproduction 

number without any other operation. 

 

It is quite a simple method to model the cumulative case number time series with the time-varying 

parameter AR(1) stochastic process and estimate the time-varying parameter with online AKF. Among 

the studies made on COVID-19 pandemic, the progress of modeling the disease is remarked primarily. 

The progress of modeling the disease is substantial for the precautions which will be taken by countries 

and interventions, and treatments to be administered. As a result of estimations by acquired data taken 
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observed between February 29 and July 28, 2020, it is proposed that the efficient analysis for modeling 

the total case is to be made using the DTGM and AKF in terms of MSE, MAPE, and R2. It is thought 

that the method we have proposed will be suitable for the estimation of the forthcoming progress. Our 

suggestion is that the simplest method for the estimation of the reproduction number can be performed 

by modeling the daily case number time series using AR(1). 

 

Appendix. State-Space Model and Adaptive Kalman Filter (AKF) 

Let us consider a general discrete-time stochastic system represented by the state and measurement 

models given by 

 

1t t t t tx F x G w  
                                                                                         (A1) 

t t t ty H x v 
                 (A2) 

where tx  is an n1 system vector, ty  is an m1 observation vector, tF  is an nn system matrix, tH  is 

an mn matrix, tw  an n1 vector of zero mean white noise sequence and tv  is an m1 measurement 

error vector assumed to be a zero mean white sequence uncorrelated with the tw  sequence. The 

covariance matrices tw  and tw are defined by ~  (0, )t tw N Q , ~  (0, )t tv N R . The filtering problem 

is the problem of determining the best estimate of its tx  condition, given its observations 

0 1( , ,..., )t tY y y y  Jazwinski (1970) [18-26]. When 0 1( , ,..., )t tY y y y  observations are given, the 

prediction of state tx  with  

0 1
ˆ ( , ,..., ) ( )t t t t tx E x y y y E x Y 

 

and the covariance matrix of the error with 

'ˆ ˆ( )( )t t tt t t t t t
P E x x x x Y   

   

when 1 0 1 1( , ,..., )t tY y y y   observations are given, the prediction of state tx  with

0 1 1 11
ˆ ( , ,..., ) ( )t t t tt t
x E x y y y E x Y 

 
 

and the covariance matrix of the error are shown with 

'

11 1 1
ˆ ˆ( )( )t t tt t t t t t

P E x x x x Y   
   
  . 

Let the initial state be assumed to have a normal distribution in the form of  )P,N( ~ 000 xx . The 

optimum update equations for KF are, 

1 11
ˆ ˆ

t tt t
x F x 


                                      (A3) 
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' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G      

 
                   (A4) 

' ' 1

1 1
( )t t t t tt t t t

K P H H P H R 

 
 

           (A5) 

1
[ ]t tt t t t

P I K H P


 
             (A6) 

1 1
ˆ ˆ ˆ( )t t t tt t t t
x x K y H x

 
  

          (A7) 

In the above equations, / 1
ˆ

t tx   is the a priori estimation and ˆtx  is the a posteriori estimation of tx . Also, 

1t t
P


 and 

t t
P  are the covariance of a priori and a posteriori estimations respectively Jazwinski [18], 

Anderson and Moore [19]. In some cases, divergence problems may occur in the Kalman Filter due to 

the incorrect installation of the model. In order to eliminate divergence in the Kalman filter, adaptive 

methods are used Özbek and Aliev [28], Efe and Özbek [29], Özbek and Efe [30]. One of these is the 

use of the forgetting factor. A forgetting factor is proposed by Ozbek and Aliev [28]. 

 

 ' '

1 1 1 1 11 1 1t t t t tt t t t
P F P F G Q G       

 
      (A8) 
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