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Beyin-bilgisayar arayüzünün (BBA) amacı, ciddi engelli bireylerin günlük yaşamlarını 

desteklemektir. Pratik BBA için en önemli faktörlerden biri olan kullanım kolaylığı, az sayıda elektrot 

kullanıldığında artmaktadır. Ancak az sayıda elektrot kullanılması BBA performansını olumsuz yönde 

etkiler. Bu çalışmada, tek kanallı durağan hal görsel uyarılmış potansiyel (DHGUP) temelli BBA’nın 

performansını artırmak ve böylece kullanım kolaylığını desteklemek için, deneğe özgü sinüzoit 

yaklaşımı (DÖSY) ile yeni bir tek kanallı DHGUP algılama yöntemi geliştirilmiştir. DÖSY’de deneğe 

özgü sinüzoitler, eğitim aşamasında DHGUP’nin frekans ve faz özelliklerinden faydalanılarak 

tanımlanmıştır. Tanımlanan bu sinüzoitler, test aşamasında, DHGUP yanıtının tespitinde referans 

olarak kullanılmıştır. Geliştirilen yöntemin tespit performansı, bir kıyaslama veri setinde, iyi bilinen 

güç spektral yoğunluk analizi (GSYA), minimum mutlak büzülme ve seçim operatörü (MMBSO) ve 

gelişmiş kanonik korelasyon analizi (KKA) yöntemleri ile karşılaştırılarak test edilmiştir. Deneysel 

sonuçlar, DÖSY yöntemiyle, GSYA, MMBSO ve gelişmiş KKA yöntemlerine kıyasla önemli ölçüde 

daha yüksek tespit doğruluğu ve bilgi aktarım hızı (BAH) göstermiştir. Ve deneğe özgü sinüzoitlerin 

gelişmiş KKA’da kullanılan şablon sinyallerden daha iyi DHGUP yanıtını temsil ettiği gösterilmiştir. 

Ek olarak önerilen yöntem, tek kanallı DHGUP tabanlı BBA için maksimum 125 ve ortalama 81 bit / 

dak BAH ile, bildirilen en yüksek BAH değerlerinden birine ulaşmıştır. 
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The aim of brain–computer interface (BCI) is to support the daily life of individuals with severe 

disabilities. For practical BCI, ease of use is one of the most important factors, which is enhanced 

when fewer electrodes are used. However, using fewer electrode affect the performance of BCI 

negatively. In this study, a novel single-channel steady-state visual evoked potential (SSVEP) 

detection method with subject-specific sinusoids approach (SSSA) was developed to enhance the 

performance of single channel SSVEP based BCI, therefore, to assist the ease of use. For the SSSA, 

subject-specific sinusoids were defined from training data based on SSVEP frequency and phase 

features. To detect the SSVEP response, defined sinusoids were used as reference. To evaluate the 

detection performance of the developed method, it was compared with the well-known power spectral 

density analysis (PSDA), least absolute shrinkage and selection operator (LASSO) and advanced 

canonical correlation analysis (CCA) methods on a benchmark dataset. The experimental results 

showed significantly greater detection accuracy and information transfer rate (ITR) with the SSSA 

method compared to the PSDA, LASSO and advanced CCA methods. And it is worth to noting that 

subject-specific sinusoids better represent SSVEP response than template signals that used in 

advanced CCA. Also proposed method reached one of the highest ITRs reported with max 125 and 

average 81 bits/min ITRs for single-channel SSVEP based BCI. 
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INTRODUCTION 

The brain–computer interface (BCI) is an alternative communication channel which interprets the 

user’s intention and produces an output command, independent of nerves and muscles, to control external 

devices such as a speller [1] or wheelchair [2]. The main goal of BCI is to support the daily life of 

individuals with severe disabilities. There are already numerous BCI studies reported in the literature 

focusing on patients with locked-in syndrome (LIS) [3]. Lately, BCI studies focusing on patients with 

completely locked-in syndrome (CLIS) have started to appear in the literature as well [4,5]. 

In EEG-based BCIs, steady-state visual evoked potential (SSVEP) response is often preferred to 

determine the user's intent. Because it provides a high information transfer rate (ITR) and requires short/no 

training time. Current SSVEP-based BCI studies are most often executed under laboratory conditions with 

healthy individuals [6]. Furthermore, the experiments are led by experts with high-level measurement devices. 

However, as real-life conditions differ from those of a laboratory, some important factors summarised below 

must be considered when developing a SSVEP-based BCI which is suitable for real life. 

SSVEP-based BCIs have been investigated for about two decades, however, disabled patients have rarely 

been included in studies [6,7]. Clinical SSVEP studies should be extended to real-life SSVEP-based BCI, and 

the long-term feasibility of the SSVEP paradigm must be investigated. In real life, BCI must meet the needs of 

its users. It must interpret the user’s intention quickly and reliably, and it must be robust. In this way, the user 

can partially regain their lost functions. A very robust SSVEP detection method was recently developed [8]; 

however, it must be tested in disabled people under real-life conditions. Ease of use is another important factor 

for patients and caregivers. Most SSVEP detection methods use multiple EEG electrodes, which negatively 

affect ease of use. Furthermore, the difficult and time-consuming set-up procedure can be overcome by using a 

small number of dry electrodes. Finally, the system should be affordable.  

This work is focused on single-channel SSVEP detection method to assist the ease of use and cost. Single-

channel SSVEP detection was realized largely by PSDA methods [9–13]. As the frequency of the SSVEP 

response is the same as the flickering frequency and harmonics of a focused stimulus, the simplest solution for 

detecting a target stimulus in single-channel SSVEP detection is frequency domain analysis. But it has a 

drawback. The number of possible selections is an important parameter for BCI. With a greater number, more 

useful BCIs can be designed. The use of stimuli with different frequencies increases the number of possible 

selections in SSVEP-based BCI. But the use of more stimuli leads to a smaller frequency step, and the 

frequencies used at these stimuli become closer together. As the EEG epochs shorten, the resolution of the 

frequency decreases. Furthermore, when more stimuli are used, target stimulus detection becomes more difficult. 

In this case, PSDA method were deemed not suitable for SSVEP detection of short EEG signals [14]. Another 

method to access frequency feature of SSVEP response is canonical correlation analysis (CCA) [13,15,16]. 

Besides system that exploits time-domain based method was also reported [17]. Also, the combination of 

standard CCA and individual template based CCA (IT-CCA), which gave the highest ITR for multichannel 

SSVEP based BCI  [18,19], was used for single-channel SSVEP detection. Thanks to this combinatorial method, 

the frequency and time features of SSVEP could be exploited [20].  However, detection accuracy of SSVEP 

based BCI systems that use single channel is lower than those that use multiple channels. To achieve robust 

SSVEP based BCI systems single-channel SSVEP detection methods that provide higher ITR must be 

developed.  

In this study, we developed a novel single-channel SSVEP detection method, named the subject-specific 

sinusoid approach (SSSA), to increase the ITR of single channel SSVEP based BCI, therefore, to help the ease 

of use of it. With this method, subject-specific reference sinusoids are defined, taking advantage of the frequency 

and time-locked features of SSVEP. As a result, the references reflect an individual’s SSVEP response. Target 
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stimulus detection was performed using these references. Using subject-specific sinusoids instead of sinusoids 

at zero phase allowed us to apply the frequency and phase feature of the stimulus. In addition, we compared the 

SSSA method with traditional power spectral density analysis (PSDA), least absolute shrinkage and selection 

operator (LASSO) and CCA & IT-CCA methods, which were preferred to single-channel SSVEP detection [9–

12,20,21], using a benchmark dataset. Very high detection accuracy and ITR were provided by the proposed 

method when compared with the other methods for all time windows. And obtained coefficients of variation 

showed that it also provided more consistent detection accuracy with regard to inter-subject differences. Thus, 

the proposed method can contribute the ease of use of BCI. 

The rest of the paper is organised as follows: section 2 explains the proposed method, the dataset and data 

analysis; section 3 presents the experimental results; section 4 discusses the findings, and section 5 concludes 

the study.  

MATERIAL AND METHODS  

Subject-Specific Sinusoid Approach 

In addition to its frequency characteristics, the SSVEP response is time-locked to the onset of the stimulus. 

About 80–160 milliseconds after stimulus onset, the SSVEP response arises [22]. This delay varies with age, 

stimulus frequency and number of harmonics [23]. The time difference between the stimulus onset and the 

response signal is called the SSVEP phase (Figure 1). The SSVEP phases of an individual at different stimulus 

frequencies can be determined, from which sinusoids that represent the individual’s SSVEP response can be 

defined. These subject-specific sinusoids can be used as reference for target detection [24].  

 

Figure 1. Visual stimulus onset and steady-state visual evoked potential (SSVEP) response 

As mentioned below steps and shown in the flow diagram of the SSSA method, illustrated in Figure 

2, subject-specific reference sinusoids were defined during the training stage.  

Step 1 (Filtering): EEG signals were filtered by band-pass filters. To calculate SSVEP phases belong 

to each harmonic, cut-off frequencies of FIR band-pass filters are selected as 8-16 Hz, 16-32 Hz and 24-

48 Hz. 

Step 2 (Averaging): The filtered signal is averaged.  

Step 3 (Optimization): The phase is determined in order to maximise the correlation between average 

EEG and 𝑓𝑖 Hz sinusoid by equation 1: 

𝜃𝑖ℎ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃[𝑐𝑜𝑟(𝑆𝑚𝑒𝑎𝑛
′ , cos(2𝜋𝑓𝑖𝑛 × ℎ + 𝜃))],    𝑖 = 1,2 … 𝐾 (1) 

where 𝑆𝑚𝑒𝑎𝑛
′  is the averaged EEG, 𝑓𝑖 is the stimulus frequency, ℎ is the number of harmonics, 𝐾 is the 

stimulus number and 𝜃𝑖ℎ indicates the optimal phase. 𝜃 was calculated by tan−1(−𝑏/𝑎) where  
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𝑎 = (𝑆𝑚𝑒𝑎𝑛
′ )𝑇 × cos(2𝜋𝑓𝑖𝑛 × ℎ) and 𝑏 = (𝑆𝑚𝑒𝑎𝑛

′ )𝑇 × sin(2𝜋𝑓𝑖𝑛 × ℎ). 

Using these phases, subject-specific reference sinusoids are defined according to equation 2: 

𝑟𝑓𝑖1

𝑟𝑓𝑖2

:
𝑟𝑓𝑖ℎ

= 𝑐𝑜𝑠(2𝜋𝑓𝑖𝑛 × 1 + 𝜃𝑖1)

= 𝑐𝑜𝑠 (2𝜋𝑓𝑖𝑛 × 2 + 𝜃𝑖2)
:

= 𝑐𝑜𝑠(2𝜋𝑓𝑖𝑛 × ℎ + 𝜃𝑖ℎ)

 (2) 

At the test stage, the references were used for target stimulus detection. To detect the target, total 

correlation values between filtered signals and subject-specific sinusoids were compared using equation 3:  

𝑓𝑡 = max
𝑓𝑖

𝜌𝑖 , 𝑖 = 1,2, … , 𝐾 (3) 

where 𝜌𝑖 is the total correlation value at 𝑓𝑖 frequency and 𝐾 is the stimulus number. 

 

Figure 2. Flow diagram of the proposed method 

Comparison Methods 

Power spectral density analysis is a common and basic method for SSVEP detection. The SSVEP 

components can be detected by examining the EEG spectrum. In this method, PSD values that correspond to 

stimuli frequencies are found. The frequency with the maximal PSD value is accepted as the target frequency, 

determined by equation 4: 
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𝑓𝑡 = max
𝑓𝑖

𝑃𝑖 , 𝑖 = 1,2, … , 𝐾 (4) 

where 𝑃𝑖  is the PSD value at 𝑓𝑖 frequency and 𝐾 is stimulus number. 

Although LASSO-based SSVEP detection was developed for multiple-channel systems [25], it has been 

used successfully in single-channel SSVEP-based BCI [21]. The EEG epoch 𝑦 is defined as a linear regression 

model in the LASSO method, calculated by equation 5: 

𝑦 = 𝑿𝛽 + 𝜀 (5) 

where 𝜀 is the noise vector, 𝛽 is the contribution coefficient vector and 𝑿 is the sine and cosine functions at each 

stimulus frequency and harmonic. With LASSO estimation, the contribution of each of the functions to the EEG 

epoch can be determined. For target detection, coefficient vectors are found, and the absolute values of 

components of the coefficient vector are summed for each stimuli frequency. The frequency at which the highest 

total value is obtained is considered the target frequency. A detailed explanation of LASSO can be found 

elsewhere [21,25,26]. 

CCA, that is used detection of target frequency by searching correlation between reference sinusoids and 

EEG signals, is a very popular statistical method. CCA-based SSVEP detection was developed for multiple-

channel BCI [27] but also it was applied successfully to detect target stimulus in single-channel SSVEP-based 

BCI [13,15,16]. Since CCA-based SSVEP detection was a revolutionary method, some upgraded versions were 

developed to advance its detection performance. One of them is combination of CCA & IT-CCA method [19]. 

It utilizes standard CCA and templates EEG signal of subjects and it offered the highest ITR for SSVEP based 

BCI [18]. In this method, that also was used for single-channel SSVEP detection [20], the total correlation value 

between EEG signals and standard reference sinusoids and individual template signals are used to detect target 

stimulus. A detailed explanation of CCA & IT-CCA can be found in [19]. 

 Dataset 

The developed method was evaluated using a benchmark dataset [28]. A Synamps2 EEG system with 64 

channels was used to collect EEG data from 35 healthy individuals. The EEG signals sampled at 1000 samples/s 

were down-sampled to 250 samples/s to reduce computation and storage costs. Only a 50-Hz notch filter was 

applied to raw data.  

The SSVEP-based BCI experiments were executed with 40 repetitive visual stimuli. The stimuli were 

rendered on a 23.6-inch LCD monitor with a 60 Hz refresh rate. To obtain a unique stimulus property, different 

combinations of frequencies and phases were used. Forty different frequency values between 8 and 15.8 Hz in 

steps of 0.2 Hz were used, together with four different phase values between 0 and 1.5𝜋 with steps of 0.5𝜋. The 

flicker sequence was obtained according to equation 6: 

𝑠(𝑓, ∅, 𝑖)  =
1

2
{1 + 𝑠𝑖𝑛[2𝜋𝑓 (

𝑖

𝑟𝑒𝑓𝑟𝑒𝑠ℎ𝑟𝑎𝑡𝑒
) + ∅]} (6) 

where 𝑓 is the flicker frequency, ∅ is the flicker phase and 𝑖 indicates the frame index of the sequence. 

The experiments consisted of six sessions, each of which contained 40 trials that lasted for 6 s. At the 

onset of the trial, a cue was presented for 0.5 s to guide the subject to the target stimulus. Afterwards, all stimuli 

flickered for 5 s. At the end of each trial, a blank screen was displayed for 0.5 s. Subjects were allowed a few 
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minutes to rest between sessions. 

Data Analysis 

Target stimulus detection by SSSA, PSDA, LASSO and CCA & IT-CCA were performed on signals 

collected from Oz location. Analyses were carried out at varying epoch lengths. Because of visual latency, the 

first 135 ms of each data epoch was extracted. First three harmonics were used to detect target stimulus. Target 

visual stimulus detection accuracy were calculated and compared. Leave-one-run-out cross-validation was 

applied to evaluate the SSSA method. Among the six sessions conducted, five were used in training to determine 

references and the remaining session was considered test data. 

In addition to target stimulus detection accuracy, performances of the methods were also evaluated by 

ITR. The ITR is defined by equation 7: 

𝐼𝑇𝑅 =
60

𝑇
× [𝑙𝑜𝑔2𝑁 + 𝑃𝑙𝑜𝑔2𝑃 + (1 − 𝑃)𝑙𝑜𝑔2

(1−𝑃)

(𝑁−1)
]  (7) 

where 𝑇 is time window, 𝑁 is the number of stimuli and 𝑃 is detection accuracy between 0 and 1.  

RESULTS 

The SSVEP response is time-locked to the onset of the stimulus and in the proposed method it is claimed 

that this characteristic can be used as a distinctive feature. To prove this, a subject’s SSVEP phases that 

corresponds to stimuli with different phase is shown in the Figure 3. In the figure, the frequencies of the stimuli 

are close, about 8 Hz, but there are phase differences between them. It is seen that the SSVEP phases is related 

to time difference between the stimulus onset, and it can be used to detect target stimulus. Also, SSVEP phases 

related to 8 Hz 0° stimulus for 6 session of each subject was obtained then standard deviations of each subject's 

phases calculated. Average of standard deviations of 35 subject's phases is 27°. 

 
Figure 3. SSVEP phases related to 8 Hz 0° stimulus (blue), 8.2 Hz 90° stimulus (red), 8.4 Hz 180° stimulus 

(yellow), 8.6 Hz 270° stimulus (purple),  

The accuracy and ITR of target stimulus detection using the SSSA, PSDA LASSO and CCA & IT-CCA 

methods are presented in the figures. Statistical analysis of the accuracy of each method is also reported. Figure 

4 shows the average target detection accuracy at various time windows ranging from 1 to 4 s. The SSSA method 

provided higher detection accuracy when compared to the other methods for all time windows. 
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Figure 4. Average detection accuracy at various time windows 

Figure 5 presents a comparison of target detection accuracies obtained for each subject using the four 

methods. The results were obtained from 2-s epochs. As seen in the figure, SSSA consistently outperformed 

PSDA and LASSO for each of the subjects and outperformed CCA & IT-CCA for most of the subjects. The 

average accuracy was 77.7%, 55.4%, 58.1% and 70.5%, for SSSA, LASSO, PSDA and CCA & IT-CCA, 

respectively. For each method, the standard deviations were 20.3, 22.8, 23.5 and 24 and coefficients of variation 

were 0.26, 0.41 0.41 and 0.34 for SSSA, LASSO, PSDA and CCA & IT-CCA, respectively.  

 
Figure 5. Target detection accuracy for all subjects at 2-s epochs 

Statistical analysis was performed to compare the proposed method to the LASSO and PSDA methods. 

Paired-sample t-tests (SSSA vs. LASSO, SSSA vs. PSDA and SSSA vs. CCA & IT-CCA) were used to evaluate 

differences in detection accuracy. All of the results were highly significant (p < 0.0001), confirming that the 

proposed method allowed better SSVEP detection. 

Figure 6 depicts the ITR obtained from the average accuracy at various time windows. As shown in the 

figure, the proposed method provided a much better ITR than the other methods. The highest ITR of 81 bits/min 

was obtained at 2-s EEG epochs. As there was a 0.5-s cue duration, the detection time used in the ITR formula 

for the 2-s EEG epoch was 2.5 s.  
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Figure 6. Average information transfer rate (ITR) for various time windows with two harmonics 

Table 1 shows the ITR obtained by SSSA at 2-s EEG epochs for each subject. The highest ITR was 125 

bits/min (subject 3), and the average ITR was 85.2 ± 31.8 bits/min.  

DISCUSSION 

When patients and caregivers are considered, an important goal for BCI is that it is easily usable by home 

users, which can be achieved by successful detection through fewer measurement channels. In this regard, an 

advantage of the SSVEP response is that the SSVEP signal can be detected from only one channel, allowing the 

BCI to be designed with high ITR. Based on this, we developed a method that uses both SSVEP frequency and 

phase in order to increase single-channel SSVEP detection accuracy. In this method, which uses the behaviour 

of the SSVEP response, SSVEP phases were determined. Since several factors like individual difference, 

stimulus frequency [23] affect the SSVEP response delay, optimal phases of each subject were calculated for 

each stimulus frequency and its harmonics. Then subject-specific reference sinusoids were defined using the 

phases. By identifying the optimal phase, the reference sinusoids better reflect an individual’s SSVEP response 

than the commonly used sinusoids at zero phase [19,29]. These references were able to successfully detect the 

target stimulus frequency.  

Table 1. Information transfer rate (ITR) for all subjects at 2-s epochs with two harmonics. 

Subject ITR (bits/min) Subject ITR (bits/min) Subject ITR (bits/min) Subject ITR (bits/min) 

1 69,2 10 103,8 19 69,2 28 100,5 

2 85,0 11 22,0 20 112,6 29 24,6 

3 125,0 12 65,9 21 107,2 30 102,9 

4 60,3 13 15,8 22 122,7 31 120,5 

5 108,1 14 65,3 23 75,2 32 123,8 

6 119,5 15 113,6 24 118,4 33 16,6 

7 67,9 16 82,1 25 78,6 34 47,4 

8 96,4 17 94,8 26 100,5 35 110,8 

9 61,5 18 74,5 27 120,5 Average 85.2 ± 31.8 

Taking into account that high intent detection accuracy in a short time is one of the aims of BCI, 

importance of SSVEP detection methods cannot be ignored. The results showed that the SSSA method increased 

target detection accuracy, yielding even more pronounced improvement when compared to the other methods.  

Besides, much better detection accuracies for each of the subjects were obtained by the proposed method. 

This shows that the proposed method enabled the consistent production of subject-specific sinusoids. The 

standard deviations obtained by the methods were close to each other; however, as the average values of groups 
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were very different, the coefficient of variation was used instead of the standard deviation to compare results. 

The coefficient of variation for the proposed method was lower than the other methods. Therefore, the SSSA 

method appears to be more robust against inter-user differences. 

Although LASSO could successfully detect the target stimulus [25], the results obtained by this method 

were at the same level as PSDA. In LASSO, also in standard CCA, target stimulus is detected by similarity 

between EEG signal and reference signals. Since sine and cosine functions with zero phase are generally used 

as reference, the methods don’t use temporal features of SSVEPs [30]. Therefore, they are not phase-sensitive 

and don’t use SSVEP phase feature like PSDA method. When a high noise at stimuli frequencies add to EEG, 

they decide this frequency as target stimulus frequency. Because they use only SSVEP frequency feature. In the 

proposed method, since reference sinusoids are determined taking SSVEP phase feature into account higher 

detection accuracy is obtained. The phase feature can be used with the FFT-based method [22], but the resolution 

in FFT-based methods is negatively affected by short epochs. 

CCA & IT-CCA method uses both frequency and phase features of SSVEP response. Standard CCA 

method evaluates frequency feature of SSVEP response and IT-CCA method assess phase features of SSVEP 

response. Template signals (𝑆𝑚𝑒𝑎𝑛
′ , which is calculated in step 2) are obtained by averaging multiple trials in 

training stage. Because of time-locked property of SSVEP, this template allows using phase features. But the 

results showed that CCA & IT-CCA didn’t give higher detection accuracy than SSSA method. Because 𝑆𝑚𝑒𝑎𝑛
′  

contains noise components in addition to the SSVEP signal. Since noise components are random, it causes 

decreases in the correlation values during the test stage. This case can be seen using 𝑆𝑚𝑒𝑎𝑛
′  as reference signal 

for the proposed method instead of subject specific sinusoids 𝑟𝑓𝑖
. When 𝑆𝑚𝑒𝑎𝑛

′  was used as reference, the 

detection accuracy decreased as seen in the Figure 7. Therefore, subject specific sinusoids can better represent 

SSVEP response than template signals. 

 

 
Figure 7. Average detection accuracy using 𝑆𝑚𝑒𝑎𝑛

′  as reference signal  

The performance of BCIs can be compared using the ITR. As the ITR is dependent on the intent detection 

time, accuracy and number of choices, it allows comparison between different systems. With the SSSA method 

we reached an ITR of 81 bits/min. These results are higher than those reported by other single-channel SSVEP-

based BCI studies cited in Table 2. 

Bipolar referencing is a simple and efficient method to eliminate noise components. To improve the 

method, optimal lead selection or a generated reference can be applied [33,34]. Also using different features that 
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Table 2. Some other single channel SSVEP studies. 

 ITR (bits/min) used SSVEP feature 

X. Chai et al. [16] 45 Frequency feature of SSVEP by CCA 

A. Bisht et al. [13] 58.3 Frequency feature of SSVEP by CCA 

D. Kim et al. [20] 72 Frequency and phase features of SSVEP by CCA & IT-CCA 

S. Ajami et al. [21] 67.1 Frequency feature of SSVEP by LASSO 

S.-C. Chen et al. [9] 20.6 Frequency feature of SSVEP by PSDA 

A. Luo et al. [17] 34.3 Time domain signal form of SSVEP 

T.H. Nguyen et al. [31] 49 Frequency feature of SSVEP by PSDA 

H.J. Hwang et al. [10] 40.7 Frequency feature of SSVEP by PSDA 

Q. Gao et al. [32] 21 Frequency feature of SSVEP by CCA 

characterize the SSVEP response may help to detect target stimulus [35]. Finally, subject-specific sinusoids can 

be used in multiple-channel SSVEP detection methods to facilitate the detection of a target stimulus. 

CONCLUSION 

In this study, a novel single-channel SSVEP detection method named SSSA was developed, which was 

subsequently evaluated using a benchmark dataset. Subject-specific reference sinusoids were defined in the 

proposed method. Due to these references, both the frequency and phase characteristics of the SSVEP response 

were used in target detection. The proposed method was compared with the LASSO and well-known PSDA 

methods, and was found to provide much better target detection accuracy and ITR. Thus, the SSSA method is 

suitable for single-channel SSVEP-based BCI. 

ETHICAL APPROVAL 

The collection of the dataset used in this study was approved by the Research Ethics Committee of 

Tsinghua University. 
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