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A New Approach to k—Jacobsthal Lucas Sequences
Hakan AKKUS!?, Rabia Nagehan UREGEN*!, Engin OZKAN?

Abstract

In this study, Catalan transformation CS,,,, of k—Jacobsthal-Lucas sequences S ,, is defined.
In addition, the transformation of CS) ,, is written as the product of the Catalan matrix C which
is the lower triangular matrix and the S, matrix of type n x 1, and the Hankel transformations
of some k—Jacobsthal-Lucas numbers is found.
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Hankel Transform

1. INTRODUCTION

For any integer n, it is called a generalized
Fibonacci-type sequence in the following form
G(n+l)=aG(n)+bG(n—1), G(0)=m,G(1)=t ,where
m,t,a and b are any complex numbers. There is
an extensive work in the literature concerning
Fibonacci-type sequences and their applications
in modern science (see e.g.[1-8]). The known
Jacobstahal-Lucas  numbers  have  some
applications in many branches of mathematics
such as group theory, calculus, applied
mathematics, linear algebra, etc. [9-12]. There
exist generalizations of the Jacobsthal-Lucas
numbers. This study is an extension of the papers
[13-15].

In this paper, we put in for Catalan transform to
the k—Jacobsthal-Lucas sequence and present
application of the Catalan transform of the
k—Jacobsthal-Lucas sequence. In section 2, we
introduce some fundamental definitions of k—

* Corresponding author: rabia.uregen@erzincan.edu.tr

Jacobsthal-Lucas sequences and some basic
theorems. In Theorem 2.1, we obtain Binet’s
formula of k—Jacobsthal-Lucas sequences and in
Theorem 2.2, we give the relationship between
positive and negative terms of k—Jacobsthal-
Lucas numbers. In Theorem 2.3, we get Cassini
identity for this sequence. In section 3, Catalan
transform of k—Jacobsthal-Lucas sequence is
given.  Hankel transform  of  Catalan
transformation of k—Jacobsthal-Lucas sequence
is obtained in section 4.

2. k-JACOBSTHAL-LUCAS SEQUENCES

Let k be any positive real number. Then the k-
Jacobsthal-Lucas sequences is defined

Skn+1 = Skn + 2k.Spn-q for m >1 with the
initial values Sy o = 2 and S ; = 1.
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When k=1, the known Jacobsthal-Lucas
sequences is obtained. Characteristic equation of
the sequence is

r2—r—2k =0.

Its characteristic roots are

1+v1+8k
I‘1 =
2
and
1-v1+8k
I‘2 =

Characteristic roots verify the properties

T1+T'2 = 1, Tl.rz = _Zk
Tl—T'2= V1+8k

Binet’s formula for Sy ,, is
Skn =11 + 15
k—Jacobsthal-Lucas sequences as numbered,;
Skn+1 = Skn + 2K Skn—1
Sko =2
Sk1=1
Sk2 =Sk1t+2k.Spo=4k+1
Sk3 = Sk2t 2k.S; 4
=4k+1+2 k. 1
=6k + 1.
Ska = Sk3z+ 2k.Sk,
= 6k+1+2k. (4k+1)
= 8k? + 8k+1.
Sks = Ska + 2k.Sy 3
= 8k? + 8k + 1 + 2k. (6k+1)

=20k%*+ 10k + 1.

Sakarya University Journal of Science 25(4), 969-973, 2021

Ske = Sks t 2k.Sk 4
= (20k? + 10k + 1) + 2k. (8k? + 8k+1)
= 16k3 + 36k? + 12k + 1.

Sk7 = Ske + 2kSk s

= 16k3 + 36k? + 12k + 1+ 2k. (20 k* +
10k + 1)

= 56k3 + 56k? + 14k + 1.

Theorem 2.1. Binet’s formula of k—Jacobsthal-
Lucas sequences are obtained from the relations.

Sk,Tl = Tln + Tzn
Proof.

The solutions of the characteristic equation are

r2—r—-2k=0,
1+VI+8Kk _ 1-VI+8k
= and r,= .

2 2

Skn=c.r" +d. "
forn =0, itis Sx o= 2 and for n=1, itis Sy, = 1.

Thus ¢ =1 and d =1 are obtained. So, the proof is
completed.

Theorem 2.2. For the k—Jacobsthal-Lucas
numbers, the following identity holds for:

Sk = (_Zk)n-sk,—n .
Proof. By virtue of Binet’s formula, we find that

Sk,_n = I‘l_n + rz_n

1 1
=4 —

r1n rzn
_ 4"

T (rpro)n

((r.r)" = (=2K)")

— Sk,n
(=2

Sk,n: (_Zk)n-sk,—n-
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Theorem 2.3. (Cassini identity) For the
k—Jacobsthal-Lucas numbers, the following
equailty holds:

Sk,n+1-5k,n—1' Slg,n: (_Zk)n_l-(8k+1)

Proof. By using the Binet’s formula, we have
Sk,n+1-5k,n—1-Sl§,n:

(an+1 _l_ bn+1). (an—l + bn—l)_ (aTL _l_ bn)z

_.aZn +_an+1.bn—1_+ an—llbn+1_+ bZn__
n __ zanbn _ bZn

= (ab)" 2 + (ab)" 2 -2.(ab)"

- npd b _

= (ab)"[; +7-2]

= (—2k)"(E= - 2)
= (=2k)""1. (8k + 1).

3. CATALAN NUMBERS
For n >0, the n*"* Catalan number [13] is defined
as follows

(2n)!
(n+1)n!

C, = —(2n n)or C, =

Its generating function is given by

1-v1-— 4x

2x

C(x) =

The first Catalan numbers are
{1,1,2,5,14,132,429,1430,4862, ...}.

3.1. Catalan Transform of the k—Jacobsthal-
Lucas sequences

We define the Catalan transform of the
k—Jacobsthal-Lucas sequences { Sy ,,} as

CSkn= 2i- . )Sk,l-, n = 1 with

i (Zn—l
=050 n—i
CSk,():O.

We can give the first few of Catalan transform of
the first k—Jacobsthal-Lucas numbers. These are
the polynomials in k:
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1 _
Cka = Z)z - i (i _ ;)S"'i
=

=15, = 1,

2 .
CSkea 22041—1'(;:;)5’”
=

()5 ()5
=4k +2.
I
CSkes =26_i(§_§) ko
i=0

=1 ()5t 5 (1) St 3(0) s

= 10.1+ =.4.(4k + 1) + 2.1.(6k + 1)

= 14k + 5.
4 l .
CSka :;8—1'(481:;)5’”
30+ s 2 -
4
+ (o) Ses
2\o

==.351+ >.15.(4k + 1) + = .5,
(6k +1)+%.1.(8k? + 8k + 1)

= 8k? + 46k + 14.

10
CSys = Zm—l DS

=5 (q) S +5 () 5k +3(3) S +
4(?)5,(4 (g)SkS
=2.1261+2.56.(4k+1) + 21

(6k+1) + 2 .6.(8Kk? + 8k +1) + 2.1.(20k? +
10k + 1)
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=52k* 4+ 152k + 42.
6 -
1 12 —i
1=

=31(5) 8 +55(}y) S +3(3) s +
5 (2) e +3 (1) 865 +2(g) s

=2 .462.1+—.210.(4k + 1) +
11 10
3.84. (6k + 1) +§.28. (8k?% + 8k + 1)+
2.7.(20k? + 10k + 1) +2.1.(16k3 +
56k? + 14k + 1)

= 16k> + 268k?* + 512k +132.

We can show {Sj ,,} as the n x 1 matrix S;, and the
product of the lower triangular matrix C as

[CSka] 11 e [3ka]
[CSk2| |11 o || Sk2|
CSk,g = 2 2 1 Sk,3
CSk,a 5 531 ISk
So, we have

1

4k + 2

14k + 5

8k? + 46k + 14

1 1
11 4k + 1
=221 .. 6k +1
5531--- 8k?>+ 8k +1
4. HANKEL DETERMINANT OF THE

CATALAN k—-JACOBSTHAL-LUCAS
SEQUENCES

The Hankel matrix H of the integer sequence A =
{ay, a, a, ...} is the infinite matrix
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aga, a,das ..
a; a, as ay ..
H, = |a, a3 a4 as ...
az a4 A5 dg -

with elements h; ; = a;;j_; . The Hankel matrix
H,, of order n of A is the upper-left nxn submatrix
of H, and h,,, the Hankel determinant of order n
of A, is the determinant of the corresponding
Hankel matrix of order n, h,, = det (H,,) [14,15].

In addition, by applying Hankel determinant
return to the CS; polynomials we obtain;

HCS, = Det[1] = 1

HES, = 4k1—|—2 gll::i
= 6k+1— (16k? + 16k + 4)
=-16k? — 10k-3.
HCS3=
1 4k + 2 14k +5

4k + 2 14k + 5
14k +5 8k?+ 16k + 14

8k?% + 16k + 14
52k% + 152k + 42

=-384k* — 3232k3 + 2024k? + 2282k —
255.

5. CONCLUSION

We introduced Catalan transformation of
k—Jacobsthal-Lucas sequences  and  Hankel
determinant of the Catalan k—Jacobsthal-Lucas
sequences.
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