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Abstract

It is necessary to consider only relevant predictor variables for prediction purpose because
irrelevant predictors in the regression model will tend to misleading inference. There are so
many model selection methods available in the literature; among these, some methods are
resistant to vertical outliers, but still, the problem of the presence of vertical outliers and
leverage points is not well studied. In this article, we have modified the .S, statistic using
the generalized M-estimator for robust model selection in the presence of vertical outliers
and high leverage points. The proposed model selection criterion selects only relevant
predictor variables by probability one for a large sample size. We found the equivalence of
this criterion and the existing C), and S, criteria. The superiority of a proposed criterion
is demonstrated using simulated and real data.
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1. Introduction

The prime intention behind the use of a regression model is to predict the unknown
response variable for the given values of predictor variables. The prediction of the response
variable depends on the predictor variables in the model. The relevant predictor variables
in the model give accurate predictions. Model selection methods consider only relevant
predictor variables. The general form of a multiple linear regression model is

y=XpB+e, (1.1)

where y is a vector of n observations on a response variable, 5 = (8o, f1, B2, -.-, Bk_l)/ is
a vector of unknown k regression coefficients, X is a matrix of size n X k of observations
on (k — 1) predictor variables X1, X2, X3, ..., X(;—1) with 1’s in the first column and ¢ is a
vector of errors with E(¢) = 0 and Var(e) = %I,. The full model (1.1) can be written as

y=X101+ Xof2 +e, (1.2)
where X and § are partitioned as X = [X; : Xp] and ' = [} : B5]. X1 is n X p matrix of

observations on (p — 1) predictor variables with 1’s in the first column and f; is a vector
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of corresponding unknown regression coefficients. Similarly, X5 is n x (k — p) matrix of
observations on remaining predictor variables and 3 is a vector of corresponding unknown
regression coefficients. Now, consider a submodel based on p—1 (p < k) predictor variables,

y=X151 +e. (1.3)

We can select an appropriate model by testing the null hypothesis Hy : B2 = 0 or using
criterion function available in the literature. Many model selection criteria have been
proposed based on the classical least squares (LS) estimator. Among these, Mallows’s C,
[22] is a well-known model selection technique. It is defined as

RSS,

C,= = — (n — 2p), (1.4)

where RSS), is residual sum of squares of the submodel which has (p—1) predictor variables.
o2 is an unknown error variance, and it can be replaced by its suitable estimate like residual
mean squares of the full model. The LS estimator is used to calculate RSS), and residual
mean squares in Mallows’s C,. It is well-known that the LS estimator is optimal and
strongly efficient when assumptions of regression are satisfied. However, an outlier in the
data destroys the LS estimator, and consequently, it is also affecting on Mallows’s C), and
other LS estimator based methods.

Several robust estimators alternative to the LS estimator have been proposed in the
literature to overcome this issue. The M-estimator [17] is prominent broad class of robust
estimators, and it reduces the effect of outliers by assigning low weights to the outliers. Re-
searchers have suggested robust model selection methods based on this M-estimator. Rao
et al. [25] have reviewed many non-robust and robust model selection criteria. Ronchetti
and Staudte [28] have proposed a robust version of Mallows’s C}, based on the M-estimator.
It is defined as
W

RCP = &2 (Up - Vp)v (1'5)

where W), is the weighted residual sum of squares of the submodel, U,, and V), are constants
depends on weight function and the number of parameters in the corresponding model,
and &2 is a robust and consistent estimate of error variance based on a full model. The
RC), criterion selects the model whose RC), value is close to V. Further, Kashid and
Kulkarni [18] proposed a more simple robust model selection S, criterion based on the
Me-estimator. It is defined as

L2
%:M%ﬁH%Qm (1.6)
where ||-|| represents Ly norm, g, and §, are vector of predicted values of y based on full
model and submodel respectively. The M-estimator is used to calculate these predicted
values. An unknown error variance o2 is replaced by its suitable robust estimate. The S,
criterion selects the model whose S, value is close to the number of unknown parameters
(p) in the submodel.

Kim and Hwang [19] proposed a method based on Mallows’s C,, called as Cp(d) by
deleting d outlying observations to select relevant predictor variables. A robust version
of Akaike information criterion (RAIC) [27] and robust version of Bayesian information
criterion (RBIC) [21] are also available in the literature to select a model in presence of
outliers. Tharmaratnam and Claeskens [32] have compared the classical AIC criterion
with a robust version of AIC based on different robust estimators in the presence of
outliers. André et al. [2], Croux and Dehon [10], Maronna et al. [23], Renaud and
Victoria-Feser [26] proposed different robust coefficient of determination based on robust
estimators to identify appropriate predictor variables and assess the quality of the model.
All the aforesaid robust model selection methods are robust to vertical outliers.
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Generally, three types of outliers namely, vertical outliers, bad leverage points and good
leverage points are considered in the regression analysis . Vertical outliers and bad leverage
points are outlying only in Y-space and X-space respectively, and these types of outliers
are located far away from the regression line. Good leverage points are outlying in both
space, and they are found near to the regression line. The vertical outliers and bad leverage
points are significantly affecting the estimated regression parameters, while good leverage
points are not affecting the estimated regression parameters [11]. All these outlying points
can be identified by using methods available in the literature [1,3,4,6,8,12,29, 30].

The M-estimator is an one of the widely used robust estimator in regression, but it fails
to account the high leverage point in the parameter estimation [33] and consequently in
model selection methods. Almost all the above-cited methods are introduced to curb the
effect of vertical outliers but are not performing well in the presence of leverage points. In
response to this problem, Mallows and Schweppe [20,33] have suggested a generalized M
(GM) estimator as an alternative to classical M-estimator. The GM-estimator j3 of A for
a linear regression model is the solution of an equation,

zn:n (X y_aXﬂ> X; = 0. (1.7)

=1

In general, the function 7 can be represented as

n(X,r) = w(X)p (rv(X)),
where w and v are weight functions such that, w : R¥ - R, v: R¥ - RT, ¢ : R = R,
and r is standardized residual [13]. Mallows and Schweppe [20,33] have recommended the
function 1 choosing v(X) =1 and v(X) = ﬁ weight functions respectively. Thus, the

function 7 for Schweppe type estimator is defined as

r
o) = (X0 (S5 ).
where 1(+) is odd, bounded, uniformly continuous, non-decreasing and ¢(u) > 0 for u > 0
[24]. Hill [14] pointed out that, Mallows and Schweppe estimators are more efficient
than several other estimators with Schweppe’s method having an advantage. The main
advantage of GM-estimator with the Schweppe’s weighting scheme is that it assigns a
weight to the high leverage point considering its distance from the regression line (i.e.
assigns low weight to the leverage point if it has high residual) [9, 13]. The diagonal
values (hs) of the hat matrix H = X (X X)~'X  are used to identify leverage points.
Generally, h;; > 2k/n (or 3k/n) indicates that the corresponding observation is a high
leverage point [6,20,29]. It is necessary to assign a low weight to this observation in
the parameter estimation to reduce the effect of leverage point on regression parameters.
This can be achieved by the weight function w(X;) = /1 — hj; because w(X;) < w(Xj;)
for hy; > hjj,i # j = 1,2,,n. Therefore, in this article we propose a model selection
1

criterion based on the GM-estimator with Schweppe’s weight function, v(X;) = meel and

w(X;) =+1—hi, i =1,2,...,n. Equation (1.7) can be solved using iterative method, and

at convergence the GM-estimator is given as,
B=X(XWX)'X Wy,

n(Xi,ri)

T4

where the final diagonal weight matrix W, W;; =
using w(X) and ¢ (-) function.

The remaining article has organized as follows: Section 2 explains the problem of the
existence of a vertical outlier and a leverage point in the data and evaluates the per-
formance of existing methods. In Section 3, the new criterion is proposed based on the
GM-estimator to combat the simultaneous occurrence of vertical outliers and high lever-
age points. Also, the consistency property of the proposed method has established. An

,t = 1,2,...,n is obtained by
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extensive simulation study is carried out in Section 4 to illustrate the performance of the
proposed criterion and compared with existing methods through the real data. The article
ends with a discussion given in Section 5.

2. The problem

In this section, we consider an example to illustrate the effect of the simultaneous
occurrence of a vertical outlier and a leverage point in the data. Consider the regression
model

Yi =5+ 3.5X51 + 6Xi2 + 0X;3 + 0X4g + &,

where €;,1 = 1,2,...,50 are independent and identical errors generated from a standard
normal distribution. The predictor variables X; (j=1,2,3,4) are generated from standard
uniform distribution and using the above model, we generate the response y. A vertical
outlier has introduced in the data multiplying by three to a response variable corresponding
to the highest absolute residual. The leverage point has introduced in the data multiplying
by three to a row of the X matrix (excluding 1’s column) corresponding to the highest
leverage(max(h;;)). The plot of Modified Generalized Studentized Residuals (MGti) versus
the Diagnostic Robust Generalized Potential (DRGP) is used to identify the outliers in
the data [1].
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Figure 1. (a) MGt-DRGP plot for original data, (b) MGt-DRGP plot in the
presence of a vertical outlier and a leverage point.

In the simulated data from the model under consideration, 26! observation has the
largest absolute standardized residual and MGt value, and 18" observation has the largest
leverage and DRGP value. To make these observations as a vertical outlier and a high
leverage point multiplying by three to 3¢ and 18" row of an X matrix (excluding 1’s
column) respectively. Thus, the modified data has influential vertical outlier as well as
mild bad leverage point (Figure 1 (b)).

We have evaluated the performance of non-robust and robust model selection methods
using the above simulated data. We compute C),, Sp, RC), and S, (based on GM-estimator)
for all possible submodels using simulated data and compare by plotting values of these
statistics (see Figure 2). The classical C), chooses different subset of predictor variables
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(X1, X2, X3), (X1, X9, X4) and (X1, X2, X3, X4) according to ‘close to p’ criterion. Hence,
C) select overfitted model means a model having all relevant predictor variables and at
least one irrelevant predictor variable. However, the value of the (), statistic corresponds
to correct subset X7, X9 is very small as compared to p and this incline to select overfitted
model. This indicates that, C), statistic is sensitive to vertical outliers and leverage points.
The RC), and S, are M-estimator based robust model selection criteria choose same subset
of predictor variables X1, X5, X3. This model has extra irrelevant variable X3 and is
overfitted.
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Figure 2. a) C, versus p, (b) S, versus p, (¢c) RC, versus V), (d) S, (based on
GM) versus p.

In the light of the above discussion, model selection methods based on LS estimator and
Me-estimator fails to select a proper model in the presence of both a vertical outlier and
a high leverage point. Also, S, statistic based on GM-estimator fails to select the correct
model for this situation. Hence, it is not enough to change the estimator only; it is also
needed to modify the form of criterion. In next Section, we have proposed adaptive S,
statistic based on GM estimator to tackle the same problem.

3. Adaptive S, (AS),)

Let 3 be the GM-estimator of 3 and 91 be the vector of predicted values of y based on
the full model (1.1) using the GM-estimator. The vector of predicted values gy, is given
by r = X3 = Hy, H = X(X/WX)_lX’W is a hat or projection matrix, W is a diagonal
matrix of non-negative weights. Let Bl be the GM-estimator of 51 and ¢, be the vector
of predicted values of y based on the submodel (1.3) using the GM-estimator. The fitted
equation based on submodel is g, = X158 = Hpyy, H, = Xl(Xil/Vle)_lXin is a hat
or projection matrix, Wi is a diagonal matrix of non-negative weights. A good model
selection criterion is one which considers the goodness of fit as well as the complexity of
the model [7]. Therefore, we propose adaptive S, statistic (ASy) based on predicted values
Uk, Jp and model complexity measure C(n,p). It is defined as

~ ~ 112
as, = 100l o) (5.1

o2
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where o2 is an unknown error variance which can be replaced by using suitable estimate

¢ = 1.48xMedian(largest (n-k+1) absolute residuals of full model), the constant term 1.48
is used to achieve consistency of scale parameter at normal distribution [33]. The term

~ ~ 12
Hy’“;i%’p” is a measure of the discrepancy between full model and submodel. The value of
this term is large for the wrong model as compared to the correct model, and it is a good
measure to detect the correct models. However, the smallest value of this term indicates

that the submodel is closer to the full model, and its value is zero when the submodel itself

is the full model. Thus, minimization of Hyk;%lﬁ is not a proper model selection criterion
because this can’t accomplish principle of parsimony. Hence, the measure of discrepancy
is necessary but not sufficient in model selection.

Most of the model selection criterion expressed as a goodness of fit term plus a measure
of complexity. The dimension of the model (p) is a trivial measure of the complexity of the
model. Any increasing function of p can be viewed as a complexity measure of a model.
However, it ignores the sample size, hence making the resulting criterion inconsistent for
instance AIC [16]. Hence, a good complexity measure should be an increasing function
of both dimension of the model, p and the sample size, n. To make a good criterion,
we consider an increasing function of n and p, C'(n,p) as a measure of the complexity of
the model. The model having smaller value of AS, will be the best model for prediction.
Hence, we select the model having smaller AS,,.

The AS, criterion based on LS estimator and M-estimator with certain C(n,p) are
equivalent to Mallows’s C, and S), criteria respectively. The AS, criterion can be viewed
as a generalization of C), and S, statistic. The C), S, (or RC)) criterion selects the model
according to ’close to p (or V,,)’ rule, whereas the AS), criterion selects the model for which
its AS, value is minimum. Hence, the model selection using Cp, S, and RC), are more
intricate as compared to AS),.

Proposition 3.1. Least squares estimator based AS, criterion with C(n,p) = 2p — k is
equivalent to Mallows’s C,.

Proof. The AS,, criterion based on the LS estimator is defined as

~ ~ 112
Ye — Y
ASP = H 0_2 pH + C(n,p),

where LS estimator is used to estimate g and g, values, and
19 = 3pl1* = GG — ) = (G — )
= RSSk + RSSp — 2(0k — y) (9 — ).
After simplification we get,
9k — 9pll> = RSSk + RSS, — 2RSS, = RSS, — RSS}, [18].
Hence, AS), criterion with penalty C(n,p) = 2p — k is

RSS, — RSS

2 is unknown, it replaced by its suitable estimator 2 = %. Thus,

RSS.
= —% —(n—2p)
g

=C,. O

Since o

AS,

Proposition 3.2. M-estimator based AS, criterion with C(n,p) = 2p —k is equivalent to
Sp.
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Proof. The AS), criterion based on the M-estimator with a penalty C(n,p) = 2p — k is
given as

A A2
ASp: Hyk O-Qyp‘ —(k'—2p)

=S, O

Following [16], consider the selected model referred by M, a denotes the set of selected
predictor variables including the intercept. The class of models having all relevant predic-
tor variables is denoted by the class of correct models (M.), and the class of wrong models
(M) is a class of models in which at least one relevant predictor is missing. A model
having only relevant predictors is known as the optimal model, and it is denoted by M.
Proposition 3.3. For any correct model, E(AS,) = tr[(H — H,) (H — H,)] + C(n,p).

Proof. The expected value of AS), is given by,
1 / /
E(ASy) = E(_3ly (H — Hp) (H — Hp)y] + C(n, p)).
Since, (H — H,)' (H — H,) is symmetric matrix and C(n, p) is a constant,

B(AS,) = —5 Bly'(H ~ H,)/(H ~ Hy)y) + Cln,p)

= (% {(H — H,) (H — ) + 6 X (H ~ ) (H ~ H) X8} + C(n,p).

But, for any correct model, 5'X/(H — Hp)/(H — H,) X =0. Hence,
E(AS) = tr[(H — H,) (H — Hy)] + C(n.p). 0

Under following mild regulatory conditions, Theorem 3.6 exhibits consistency property
of the proposed AS), criterion for fixed number of predictor variables.

2
Condition 3.4. For any wrong model M, € M,,, linr_1>inf W > 0.
n o

Whenever M, € M,,, it is prospect that the difference || X3 — XaﬂaH2 is large and hence
the assumption is justifiable.

Condition 3.5. C(n,p,) = o(n) and C(n,ps) — 00 as n — 00, Pq is a cardinality of a
set a (|a]).

The following theorem indicates that, if we choose a model having small AS), value from
all possible models, then asymptotically the selected model is an optimal model.

Theorem 3.6 (Consistency Property). Under Conditions 3.4 and 3.5, AS), selects the
optimal model with probability one, i.e. nh_}ngo Pr(My = Myo) = 1.

Proof. The proof is divided into two parts. In first part, we show that AS, value of any
wrong model is greater than any correct model and in second part, AS), value of optimal
model Mo is smaller among the class of correct models M.. For any model M, 9, is a
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vector of predicted values of y and hence
i — puI? = | X5 — Xafo|
=[x~ x| + | Xafa - X8| ~2(XB ~ X8) (Xafa ~ XP)
= %8 X8| + || XaBa — Xaba" +1X8 — Xafal?
—2(Xafa — Xafa) (X8 — Xafa) = 2(X5 — XB) (XaBa — Xabo)
+2(X5 ~ XB) (X8 — Xafa)
= %5 — X8| +||XaBa ~ Xaba| +1X8 ~ Xabal®+ G+ G+ G (32)

Since, fo — Ba = 0p(1) [24] and by law of large numbers, ¢; = 0,(n),a = op(n) and
(3 = op(n). Thus,

191~ pe > = [ X5 — X8| + || XaB — Xaa| +1X5 — Xabal® +0p(n).  (3.3)

N 2
Similarly, under some regulatory conditions, we have HXaBa — XaﬂaH = 0p(1) [9,20,24].
For any M, € M., X3 = X,B~ and by Cauchy-Schwartz inequality

11— G I? = || X3 = XB||" + [ XaBo — Xaba|| —2(X3 — XB) (Xafla — Xafa)
S HXB - XﬁHQ + HXocBa - XO[BOCH2 + 2 HXB - X/BH2 HXocBa - XaﬁaHQ
= 0,(1). (3.4)

Let AS), and AS, . are values of the AS, of any wrong model M, € M, and correct
model M- € M, respectively. By Condition 3.4, 3.5 and combining (3.3), (3.4),

2
||XB B Xaﬁa” + op(n) > 0>

n—00 o2

liminf Pr (ASp, > AS,_.) = lim inf Pr (

n—00 o2

XB — Xofal?
> Pr (liminf IX5 Bl + op(n) > 0>

~1. (3.5)

Thus, the value of AS), of a wrong model is greater than any correct model belongs to the
class of correct models for large sample size. In the light of Equation (3.5), it is sufficient
to show that the AS), value of the optimal model is small among the class of correct models
M, to complete the proof of consistency property. By Condition 3.5, C(n,ps) — oo as
n — oo and C(n,pa+) — C(n,pae) > 0 because pox > pqe for any correct model. From
Equation (3.4), we have

. N 2 N . 2
k — * k — a0
ASPQ* - Aspao = Hy agpa B o Uzp H +C(n,par) — C(n,pac)
= Op(1) + C(n, pa+) — C(n, pac)
> 0. (3.6)
This proves that, the AS), is a consistent criterion. O

4. Performance of AS, criterion

In this section, we evaluate the performance of AS, through a simulation study by
considering three regression models and six penalty functions (Table 1). We have generated
data and introduced vertical outliers and leverage points in this data using the procedure
given in the Section 2. The good leverage point does not affect estimator of regression
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parameters and the AS), criterion based on this estimator. Therefore, throughout the
entire simulation study, bad leverage points are considered and are mentioned as leverage
points. The different combinations of the number of vertical outliers and the number of
leverage points have considered in this simulation study. The Huber ¢ (-) function is widely
used for robust parameter estimation in linear regression, and the tunning constant 1.345
achieves high efficiency over LS estimator in normal case [20]. The AS, statistic for all
possible submodels calculated using Huber’s ¢ (-) function with tuning constant 1.345.

Table 1. Models and Penalty functions.

Sr. No. Model Penalty function C(n,p)
1. M y=5+2X: +3X210Xs +¢ P1=3p
My :y=4+3X1 —2X2+7X3+0X4+0X5 +¢ P2= 2plog(p)

3. Ms:y=3+25X; +1.7Xs — 6X3 +8X4 +0Xs +0Xe + 0X7 +¢  P3= plog(n)
P4= p(log(n) + 1)
P5= 6plog(log(n))
P6= py/n

4.1. AS, criterion with different penalties

In Table 2 and 3, the percentage of optimal model selection based on 1000 runs for
different combinations of penalties, sample sizes, and models has recorded. For model My,
all penalties work well in case of clean data (0-Vertical outliers and 0-Leverage points) and
select an optimal model with at least 75% when the sample size is 50. After adding vertical
outliers/and leverage points in the data still, AS, work well and selects an optimal model
with up to 81.4% in the presence of vertical outlier only, 65.6% in the presence of leverage
point only, 62.7% in the presence of both vertical outlier and leverage point for sample
size 50. Moreover, the AS), works satisfactorily for other combinations of the number of
vertical outliers and leverage points. These percentages of optimal model selection increase
with increasing sample size. The similar results have obtained from model Ms.

For model M3, the AS), criterion selects the optimal model with at least 59% for clean
data and sample size 50; but as sample size increases this percentage increases. AS),
performs better in the presence of vertical outliers/and leverage points, and select optimal
model with more than 90% for large sample size. It is observed that, the performance
of the AS, criterion is based on ratio k/n. The percentage of optimal model selection
increases as k/n decreases.

Hence, for small sample size and in the presence of vertical outliers/and leverage points,
AS), performs satisfactorily. As the sample size increases, the optimal model selection per-
centage increases to 100% for P3, P4, P5 and P6 penalties. Thus, the simulation results
show that the proposed criterion is consistent. Also, the AS), criterion with P1 and P2
penalties select the optimal model preciously in the presence of vertical outliers/and lever-
age points for large sample size. Thus, the simulation study indicates that the proposed
criterion performs well and selects the optimal model more preciously for a large sample
size.

4.2. Comparative study of AS, with C,, S, and RC,

The comparative study of AS, and other criteria (C,, S, and RC)) in the presence of
vertical outlier and leverage point is carried out through model selection ability for same
simulation design and M;, Ms models. The model selection ability of these criteria has
presented in Figure 3 by using 100 simulated datasets. In Figure 3, P1, P2, P3, P4, P5 and
P6 refers to AS, criterion with P1, P2, P3, P4, P5 and P6 penalty function respectively.
This simulation study shows that the simultaneous occurrence of a vertical outlier and a
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leverage point effect on the performance of C,, S,, RC), criteria, and most of the times C),
selects wrong or overfitted model. Mostly S, select overfitted model, but the number of
the wrong model selected by S, is small as compared to C),. Another one robust criterion
RC), select optimal model more preciously as compare to C), and S, but it performs poorly
as compared to AS,. The difference between overfitted models selected by RC), and AS,
is notable. Thus, the AS), criterion increases the optimal model selection percentage by
at least 50% relative to others. As the sample size increases, the probability of selecting
the wrong model using the above criteria approaches to zero. However, the AS), selects
an optimal model with a large percentage as compared to C,, S, and RC),. In conclusion,
the AS, has more model selection ability as compared to others.

Table 2. Percentage of selecting optimal model (1000 runs).

Model

0-Vertical outliers and 0-Leverage points 1-Vertical outlier and 0-Leverage points

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

50 75.4 85.4 81.8 85.6 84.7 86.1 68.5 79.9 75.6 80.2 799 81.4

70 777 87.8 86.7 89.8 91.9 92.2 74.6 86.8 85.3 89.1 91.7 91.8

My 100 78.2 &89.4 89.8 93.0 97.1 97.4 74.0 86.8 87.2 90.7 97.0 97.2
200 81.1 894 929 96.0 99.3 99.8 79.0 90.3 93.5 959 99.5 99.8

300 79.3 91.1 946 97.2 99.6 100.0 79.6 90.5 950 96.5 994 99.8

50 75.0 86.1 81.6 85.2 85.2 86.0 65.5 80.4 741 79.5 81.2 82.5

70 78.1 894 87.1 89.7 933 93.3 75.1 87.3 84.0 882 92.0 92.3

Mo 100 777 91.2 89.7 93.3 97.7 98.4 73.0 89.3 87.3 919 96.8 97.5
200 81.3 922 92.8 95.6 99.1 99.9 79.7 921 93.0 954 98.8 99.8

300 80.0 91.9 940 96.6 99.4 100.0 79.4 915 94.3 96.2 994 99.8

50 59.1 725 66.7 704 674 69.7 55.0 70.3 64.0 68.0 65.0 67.2

70 66.1 84.0 77.8 83.0 82.3 82.8 61.0 80.0 73.1 79.1 81.1 81.5

M3 100 70.0 88.6 85.1 89.3 93.8 92.3 66.6 86.2 81.7 86.9 93.8 92.6
200 73.3 91.7 91.0 95.0 99.0 99.8 70.7 90.1 89.3 939 98.6 99.7

300 72.3 91.7 927 957 99.3 99.8 74.5 92.0 929 955 994 99.8

Model n 0-Vertical outliers and 1-Leverage point  1-Vertical outlier and 1-Leverage point

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

50 54.6 64.1 60.9 639 64.7 65.6 49.0 58.3 54.8 58.6 62.7 61.6

70 579 69.8 681 734 798 79.3 55.4 69.6 68.2 722 79.7 79.8

My 100 63.3 76.5 76.9 81.9 90.7 91.2 58.8 71.5 724 783 879 88.9
200 71.8 824 86.4 90.7 96.8 99.1 69.0 80.4 &85.7 899 96.2 98.6

300 734 84.7 89.3 93.1 98.6 99.9 74.5 85.6 91.8 949 98.1 99.7

50 52.7 65.7 59.7 651 719 70.6 45.8 60.8 53.0 59.6 68.1 64.9

70 56.1 T71.0 66.2 724 82.1 81.4 55.7 69.3 66.0 71.2 824 82.0

Mo 100 60.1 77.7 75.0 80.9 909 91.8 59.8 77.4 747 80.4 90.5 91.4
200 68.6 85.1 86.4 90.8 96.9 99.0 69.8 85.0 86.8 90.2 96.8 99.1

300 73.0 88.9 91.7 945 98.6 99.8 74.3 86.4 90.1 924 97.7 99.9

50 34.8 49.0 41.8 46.5 504 50.6 33.7 47.1 41.0 449 457 47.0

70 49.7 67.0 60.1 655 69.9 69.4 42.1 62.0 53.3 60.6 652 64.9

M3 100 49.6 71.2 65.7 71.6 824 82.7 472 69.4 639 70.1 804 81.6
200 61.2 83.7 82.6 88.2 952 98.1 60.2 83.0 823 87.6 95.6 98.2

300 64.3 84.3 855 89.7 97.1 99.8 63.3 86.5 87.6 904 96.7 99.5
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Table 3. Percentage of selecting optimal model (1000 runs).

0-Vertical outliers and 2-Leverage points 2-Vertical outliers and 0-Leverage points

Model Pl P2 P3 P4 P5 P6 Pl P2 P3 P4 P5 P6
50 52.3 58.0 552 556 51.8 53.7 82.8 873 85.0 86.7 79.3 82.7
70  62.7 T71.0 69.9 722 725 72.3 85.7 91.5 905 91.6 89.7 90.6
My 100 69.0 777 779 812 86.5 86.0 88.3 943 943 96.3 97.5 96.8
200 736 81.1 844 876 94.8 97.6 88.5 93.5 951 96.8 99.0 99.9
300 81.5 89.2 929 944 98.2 99.7 90.2 949 969 98.6 99.9 100.0
50 44.0 545 504 53.3 59.6 59.6 69.2 794 755 783 76.0 78.4
70 46.7 60.2 55.6 61.1 71.7 70.9 754 88.1 84.7 874 88.3 88.7
Mo 100 51.6 67.5 64.7 T71.0 826 84.6 78.8 91.7 894 940 974 97.3
200 634 79.2 81.0 85.7 93.1 96.3 79.0 91.9 929 958 99.6 100.0
300 66.1 82.7 86.7 90.3 96.8 98.9 81.1 93.6 955 97.6 99.5 100.0
50 304 36.7 335 356 339 34.7 62.0 66.9 66.0 659 54.3 58.9
70 33.6 46.9 428 46.0 489 49.4 66.3 81.0 753 80.3 76.1 77.0
M3 100 42.5 622 577 625 71.1 71.3 73.3 90.6 87.2 90.3 92.3 90.4
200 51.1 735 728 77.8 90.5 95.1 71.9 91.8 91.1 945 98.9 99.4
300 54.0 76.9 787 83.0 949 98.7 74.3 923 929 956 99.3 100.0
Model  n 1-Vertical outlier and 2-Leverage points  2-Vertical outliers and 1-Leverage point
P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6
50 52.1 58.3 555 57.0 532 55.3 65.9 71.8 69.7 70.7 68.8 70.5
70 60.5 68.0 664 674 68.2 68.4 77.0 84.0 82.0 845 845 85.0
My 100 65.7 759 76.1 80.0 85.5 86.0 78.5 854 854 887 934 94.0
200 76.0 84.4 874 89.8 953 97.9 84.1 91.2 93.1 955 984 99.5
300 79.7 87.6 914 936 974 99.2 84.2 914 951 96.8 98.8 99.8
50 39.8 545 48.0 53.5 61.9 59.7 54.5 66.9 61.0 659 67.8 68.0
70 44.7 59.6 54.7 60.9 70.3 70.0 60.1 73.3 69.1 742 815 81.2
Mo 100 51.6 69.1 658 722 825 84.4 64.2 81.0 787 84.0 918 93.2
200 619 78,5 804 84.3 93.8 96.5 72.0 86.5 87.5 90.6 97.2 99.3
300 68.2 825 85.1 88.1 96.5 99.6 754 89.5 922 946 98.9 99.9
50 26.6 36.1 31.8 351 34.0 35.3 36.4 47.6 424 455 43.7 44.6
70 35.3 48.2 43.3 475 49.6 50.3 47.7 62.8 57.2 61.8 62.7 63.0
M3 100 40.3 58.7 53.9 59.3 68.1 69.2 56.0 74.8 699 755 82.7 82.1
200 504 73.6 73.0 788 90.5 94.4 62.6 84.9 84.3 89.5 96.6 98.1
300 53.1 779 79.8 84.7 94.7 99.0 64.8 85.3 86.9 90.2 974 99.5
2-Vertical outliers and 2-Leverage points
Model Pl P2 P3 P4 P5 P6
50 45.6 51.6 48.6 49.2 48.2 49.3
70 61.1 67.2 64.8 67.1 68.2 68.5
My 100 66.8 75.3 75.6 78.4 83.3 83.4
200 77.1 83.5 86.8 89.3 95.6 98.1
300 80.4 88.1 92.3 94.1 97.6 99.7
50 38.4 52.1 44.9 51.1 58.5 58.1
70 44.7 58.3 53.5 59.1 69.9 69.5
Mo 100 49.8 64.9 62.2 69.8 81.1 81.8
200 59.9 74.5 76.2 81.3 90.8 95.2
300 63.1 79.5 84.3 87.9 95.9 99.0
50 24.6 32.4 28.2 30.5 33.6 33.4
70 33.8 48.0 42.3 45.5 50.1 50.6
M3 100 39.0 56.3 51.9 57.1 67.5 68.3
200 50.2 72.6 71.8 78.1 90.1 95.2

300 55.8 79.0 81.2 85.4 95.5 99.1
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Figure 3. (a)-(j) Model selection ability of AS,, Cp, S, and RC),.

4.3. Example: Agglomeration in Bayer precipitation data

Sommer and Staudte [31] and Bab-Hadiashar and Suter [5] analyzed Bayer precipitation
data on the agglomeration of aluminium trihydroxide (AI(OH )3) crystals by means of the
Bayer precipitation process. Data has 51 observations on the response variable y (An
agglomeration of crystals with size exceeding 45 microns, i.e. the difference between the
percentage of crystals exceeding this size, which leave the agglomerator tank and those
which enter it) and nine predictor variables X1 — Xy [5,31]. Figure 4 shows that, the data
has 11 vertical outliers, 6 bad leverage points and 5 good leverage points.

For this data, we compared the performance of non-robust as well as robust criteria. The
C)p and RC), recommend several submodels with three or more variables, and S, suggests
model containing at least five variables (Figure 5). Whereas, the AS, would consider
five predictor variables X1, X3, X4, X5, Xg. Thus, the model having X1, X3, X4, X5, X3
variables seems to be "good", according to AS), criterion with different penalties (Table
4). Sommer and Staudte [31] suggest X1, X3, X4, X5, X7, Xs predictor variables using
RC,, with Mallows weight, and Bab-Hadiashar and Suter [5] suggest three best subsets
(Xl, X3, X4, X5, Xg), (Xl, X3, X4, X5, X7, Xg) and (Xl, X3, X4, X5, X7, Xg, Xg) for the same
data.
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Figure 4. MGt-DRGP plot for Bayer Precipitation data.
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Figure 5. C,, RC, and S, plots for Bayer Precipitation data: (a) C, versus p,
(b) RC,, versus V,, (c) S, versus p.

For a real-life data set, it is difficult to show which submodel is good. Generally, the pre-
diction error increases due to an addition of irrelevant variables in the model [34]. Consider
three models suggested by [5] for further study, and compare the prediction error of these
three models using GM-estimator and k-fold cross-validation (k=10). The prediction er-
ror of (Xl, X3, X4, X5, Xg), (Xl, Xg, X4, X5, X7, Xg) and (Xl, X3, X4, X5, X7, Xg, Xg) are
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57.8597, 69.4523 and 67.7013 respectively. The k-fold cross-validation study indicates that
the model selected by AS), has a small prediction error as compared to other, and the pre-
diction error of the model increases due to an addition of X7 or X7 and Xg. Thus, a subset
of predictor variables namely X1, X3, X4, X5, Xg is appropriate for fitting the model.

Table 4. AS, values and selected variables corresponding to different penalties.

Penalty Selected Variables AS, (minimum)

- 24.9337
Py 98.4348
3 30.5247
py X1, X3, X4, X5, Xs 36.5247
s 56.2214
e 49.7823

4.4. The performance of AS, criterion for different ¢ (-) functions

We have compared the performance of the AS, criterion based on GM-estimator and
M-estimator with different () functions in this section. The data was generated using
the model and procedure explained in Section 2. The performance of three types of
¥(-) functions [15] i) Monotonic- Huber, Fair, ii) Soft Redescending- Cauchy, Welsch
and iii) Hard Redescending- Tukey’s bisquare (or biweight), Talwar has examined. The
percentages of optimal model selection are calculated using 1000 simulated datasets, and
the results are recorded in Tables 5-6. It is observed that, the hard and soft rescending
functions are working well as compared to the monotonic functions. The performance of
the M-estimator with redescending function is notable, and among redesceding functions,
the Tukey’s bisquare function has better performance. Nevertheless, the AS), criterion
based on the GM-estimator selects the optimal model more precisely as compared to that
based on the M-estimator. The performance is dependent on the choice of penalty, and
the penalty function satisfying Conditions 3.4, 3.5 are selecting the optimal model with
a high percentage. Overall, the criterion based on GM-estimator with the redescending
function will be a better choice for small as well as large n.

4.5. The performane of AS, criterion for difference w(-) weight functions

In the previous simulation study, the weight function w(X;) = /1 — h;; based on the
hat matrix has considered to compute the AS, criterion value. The hat matrix is ham-
pered by a masking effect, and consequently, the diagonal values of the hat matrix do
not always detect leverage points [30]. To overcome this problem, we can use alternative
w(+) weights based on robust measures. The Robust Mahalnobis Distance (RMD) based
on Minimum Volume Ellipsoid (MVE) can be used to identify leverage points [11,29,30].
The Generalized Potential (GP) is an another measure used to identify the leverage point,
and the observation is said to be a high leverage point if corresponding GP value is greater
than the threshold value Median(GPF;) +3MAD(GPF;) [1].

In this section, the superiority of the AS,, criterion based on GM-estimator with different
w(-) weights (Table 7) and #(-) functions is checked for severe cases: 5% vertical outliers
and 5% leverage points, 10% vertical outliers and 10% leverage points, 15% vertical outliers
and 15% leverage points. The data was generated using the model explained in the Section
2. Vertical outliers were included in the data multiplying by three to the response variable
corresponding to maximum absolute residual, and bad leverage points were included in
the data multiplying by three to response variable and row of the matrix X (excluding 1’s
column) corresponding to maximum leverage (h;;). The results are reported in the Table
8. A weight function w; is unable to detect all leverage points for large n and consequently,
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it effect on the performance of the AS, criterion in presence of multiple leverage points. It
is observed that, AS), criterion based on GM-estimator with robust weights w3, w4 and ws
perform better in presence of multiple outliers. Also, the performance of wy is remarkable.
The AS), criterion with hard rescending functions and robust weights perform well. Hence,
the AS), criterion with hard rescending function with robust weight is a better choice in
presence of multiple outliers.

Table 5. Performance of AS,, criterion for GM-estimator and M-estimator with
different () functions.

W(-) 1-Vertical outlier and 1-Leverage point 2-Vertical outliers and 1-Leverage point
function  P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6
Huber 5290 64.30 60.80 66.90 80.40 75.80 49.30 62.40 58.10 65.10 77.10 73.80
Fair 43.00 53.80 49.70 55.60 70.40 65.00 40.10 51.80 46.80 53.80 66.90  63.50
GM Cauchy 59.60 71.10 66.70 73.30 84.50 81.90 55.80 68.80 64.10 71.00 83.20  79.40
estimator ~ Welsch  61.30 74.10 69.30 76.20 86.60 83.50 59.30 70.00 66.10 72.30 84.20 81.30
Bisquare 61.50 74.00 69.50 76.50 86.90 83.50 59.30 69.70 66.40 72.50 84.50  81.20
Talwar  60.00 71.80 67.60 73.70 83.10 80.70 58.50 69.10 65.90 71.20 82.80  80.40
Huber 2940 38.80 36.40 41.00 50.60 47.60 29.20 38.20 35.40 40.20 49.40 46.20
Fair 23.30 31.70 28.10 32.90 41.60 40.10 22.30 31.00 28.50 32.90 42.60  40.00
M Cauchy 38.60 47.80 44.70 50.70 60.50 57.70 36.60 48.00 44.20 50.00 61.20 57.60
estimator ~ Welsch  44.80 54.70 52.00 56.60 65.60 63.60 43.00 53.40 50.20 55.40 65.70 63.00
Bisquare 43.60 54.40 51.30 56.30 65.20 63.00 43.20 53.60 49.90 55.50 65.50  63.00
Talwar  30.20 37.60 35.20 39.00 45.30 44.10 29.40 37.50 34.10 38.70 45.70  43.90
Huber  60.10 71.90 7040 75.60 86.70 85.90 56.00 69.70 67.70 74.10 86.30  85.30
Fair 48.50 61.10 59.30 64.90 78.20 77.60 47.50 58.80 57.50 62.30 77.80 76.70
GM Cauchy 64.60 77.10 75.60 81.50 89.80 89.50 60.70 74.20 72.50 78.50 89.50  88.60
estimator ~ Welsch  66.80 79.50 78.10 83.60 91.40 90.90 62.50 76.30 75.00 80.70 92.00 91.30
Bisquare 66.60 79.10 77.90 83.70 91.50 91.20 63.40 76.60 75.40 81.10 92.00 91.60
Talwar  66.40 77.80 76.60 81.30 89.50 89.30 63.70 77.70 75.80 81.40 90.70  90.50

n  Estimator

o Huber  38.10 49.60 47.90 53.10 64.60 64.50 38.00 49.20 46.70 52.70 65.30 63.80
Fair 30.90 40.60 39.60 44.30 54.80 53.70 31.20 40.00 39.00 44.50 55.40  54.90

M Cauchy 50.60 62.70 61.40 67.30 78.00 77.30 47.40 60.00 57.70 64.50 76.90 75.90
estimator ~ Welsch  57.30 70.30 68.10 74.00 84.80 84.40 53.90 65.90 63.80 70.60 82.40 81.40
Bisquare 57.40 70.30 68.30 74.40 85.00 84.50 54.80 66.80 64.40 71.10 82.70  81.70

Talwar 47.00 57.40 56.00 60.80 68.30 67.90 46.30 56.40 54.60 59.60 69.10 68.80

Huber  65.00 75.50 75.90 80.30 91.20 92.50 63.50 73.50 74.00 79.20 91.90 92.80

Fair 54.70 66.60 67.40 73.60 86.30 87.50 52.20 63.90 64.90 70.60 84.90  87.00

GM Cauchy 68.90 79.50 80.20 84.20 94.00 95.30 66.60 79.40 80.30 85.20 95.10 95.80
estimator ~ Welsch  70.70 82.20 82.60 86.80 95.30 96.90 69.50 80.90 81.50 86.50 95.80  96.50
Bisquare 71.20 82.70 82.90 87.00 95.20 96.80 69.80 81.30 82.10 87.30 95.90  96.50

100 Talwar 71.30 81.60 82.40 86.70 95.90 96.50 69.90 81.30 81.80 87.60 95.60  96.50
Huber  49.40 60.30 60.70 65.60 79.00 81.50 49.50 59.80 59.90 64.30 78.90  81.10

Fair 40.10 50.10 50.40 54.80 68.40 70.70 37.90 48.40 48.60 53.40 68.50  70.50

M Cauchy 5880 69.40 70.10 76.30 87.40 89.20 58.10 70.20 70.50 75.20 86.70  88.70
estimator ~ Welsch ~ 65.60 77.20 77.70 82.70 92.30 93.60 63.30 75.80 76.30 81.30 91.80  93.60
Bisquare 65.30 77.00 77.80 83.30 92.30 93.80 64.50 76.20 77.00 82.30 92.20 93.40

Talwar  61.10 72.00 72.60 77.00 86.80 87.80 61.70 7240 72.70 78.30 87.00 88.30

Huber 68.70 81.40 85.10 89.30 95.90 98.40 67.20 81.20 85.20 88.90 96.70  98.60

Fair 59.80 73.40 79.60 84.40 92.90 97.40 60.20 72.80 77.80 83.10 92.80  98.20

GM Cauchy 72.80 85.10 89.30 92.30 97.30 99.50 72.60 84.90 88.40 91.50 97.60  99.50
estimator ~ Welsch ~ 74.40 87.00 89.70 92.40 98.30 99.60 74.90 86.50 90.10 94.10 98.20 99.70
Bisquare 74.40 87.20 89.70 92.40 98.30 99.60 75.00 86.60 90.40 94.10 98.30  99.60

200 Talwar  74.60 87.50 90.20 93.30 97.80 99.50 74.70 87.40 90.60 93.80 98.40  99.70
Huber  61.40 7470 79.20 84.70 9320 97.20 61.10 74.00 79.10 83.30 93.20 97.70

Fair 50.40 64.90 69.60 75.80 87.40 93.30 50.20 64.90 69.30 74.20 86.40  92.50

M Cauchy 68.50 81.10 86.00 89.70 95.60 98.50 68.50 81.40 85.10 88.30 96.60  99.00
estimator ~ Welsch ~ 71.10 85.60 89.10 91.60 97.60 99.20 71.90 84.60 88.30 92.20 98.00  99.60
Bisquare 71.90 86.10 89.10 91.90 97.70  99.20 73.10 85.40 89.20 92.90 98.00  99.60

Talwar 71.60 85.00 88.70 91.90 97.50 99.10 73.00 85.10 87.90 91.60 97.60  99.20

Huber  73.60 85.40 90.60 93.10 98.20 100.00 72.70 85.40 91.20 93.60 98.40 99.80

Fair 66.90 80.90 87.00 89.70 96.40 99.90 67.60 80.10 86.30 89.60 96.80  99.50

GM Cauchy 76.20 89.60 93.30 95.10 98.60 99.90 77.00 88.80 92.30 95.90 98.90 100.00
estimator ~ Welsch ~ 78.20 89.60 94.10 95.90 98.70  99.90 77.90 89.20 93.90 96.60 99.00 100.00
Bisquare 78.30 89.70 94.20 95.90 98.80 99.90 77.50 89.40 93.60 96.70 99.00 100.00

300 Talwar 78.90 89.70 94.20 96.00 98.90 99.70 78.00 88.30 93.30 96.30 99.00 100.00

Huber  69.00 81.20 88.00 90.50 97.00 99.90 69.20 82.20 87.60 91.90 97.00  99.50

Fair 61.00 75.00 81.70 85.90 9490 99.30 62.40 7520 81.80 85.80 93.90 98.70

M Cauchy 73.90 87.20 92.00 94.30 9820 99.80 74.40 87.30 91.30 94.70 98.40  99.70
estimator ~ Welsch ~ 76.70 89.00 93.40 95.80 98.60 99.70 76.10 88.40 92.70 96.00 98.70  99.90
Bisquare 77.30 89.10 93.90 95.80 98.60 99.70 76.40 88.20 92.70 96.40 98.90 100.00

Talwar  77.30 88.80 93.30 95.30 98.50 99.70 76.70 87.30 92.50 95.90 99.10 100.00
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Table 6. Performance of AS, criterion for GM-estimator and M-estimator with

different () function.

n Estimator P(-) 1-Vertical outlier and 2-Leverage points 2-Vertical outliers and 2-Leverage points
" ! function ~ P1 P2 P3 P4 P5 P6 Pl P2 P3 P4 P5 P6
Huber  30.90 41.40 37.40 44.10 5850 53.60 31.70 42.10 38.60 44.70 59.70 55.70
Fair ~ 21.50 31.90 27.00 33.80 46.40 43.10 23.90 33.80 30.70 35.50 47.20 43.30
GM Cauchy 40.80 53.00 4820 55.30 68.10 63.40 39.50 51.80 47.50 53.20 66.60 63.60
estimator ~ Welsch ~ 47.30 58.90 55.00 61.00 72.90 69.20 46.50 58.10 54.00 60.00 71.90 67.90
Bisquare 47.50 58.60 55.50 60.60 72.90 69.70 48.10 59.00 55.10 60.90 72.90 69.40
50 Talwar  38.40 46.90 43.60 4820 57.50 54.90 38.70 48.30 45.10 49.60 59.80 57.60
Huber  13.70 19.20 16.60 20.10 29.70 28.00 1550 20.80 18.90 21.70 29.40 27.70
Fair 12.60 18.20 16.00 19.10 24.40 22.90 14.20 1890 16.90 19.20 25.40 23.60
M Cauchy 18.10 24.10 21.70 25.80 35.20 33.00 17.20 23.50 21.10 24.90 34.50 30.90
estimator ~ Welsch ~ 24.10 31.40 28.30 33.10 41.30 38.60 23.50 30.90 28.70 32.80 41.00 38.90
Bisquare 24.70 32.00 29.00 33.80 41.70 38.60 23.70 30.90 28.90 32.80 41.80 39.80
Talwar  12.90 17.00 1520 17.90 24.00 22.10 16.70 20.60 18.50 21.40 26.60 24.90
Huber  39.50 49.50 48.10 53.40 68.70 67.00 39.60 52.00 49.80 55.90 71.10 69.50
Fair 29.10 39.40 38.00 42.70 56.50 55.90 30.70 40.50 38.90 44.70 57.40 56.60
GM Cauchy  51.00 60.60 5890 65.60 79.20 78.10 50.90 63.10 61.00 66.80 80.50 80.10
estimator ~ Welsch ~ 56.10 67.10 65.00 72.20 83.90 82.90 58.70 68.70 67.30 73.10 84.20 83.30
Bisquare 56.30 67.50 65.90 72.10 83.70 83.20 59.10 69.70 67.90 73.60 85.30 84.00
0 Talwar 5040 60.30 5840 64.30 76.20 75.80 53.60 64.40 62.50 67.80 79.50 78.70
Huber  21.00 28.60 27.40 31.70 42.70 42.10 23.90 31.10 30.10 34.20 46.00 45.00
Fair 15.40 22.80 21.20 24.50 33.40 33.00 19.10 25.90 25.20 27.40 36.10 35.30
M Cauchy  32.00 41.10 40.00 44.60 55.50 54.70 31.90 40.30 39.70 43.00 58.60 56.80
estimator ~ Welsch ~ 42.80 52.20 50.90 56.60 68.80 68.30 44.10 57.00 54.60 60.30 71.20 70.90
Bisquare 43.40 52.10 50.90 56.80 6840 68.10 44.40 56.60 54.70 59.90 71.20 70.90
Talwar  26.70 33.40 32.20 36.00 43.30 43.00 29.90 36.10 34.80 38.80 47.50 47.00
Huber  43.60 54.90 5540 61.20 74.80 76.70 40.00 53.10 53.60 59.60 74.60 76.40
Fair ~ 32.80 44.60 45.30 50.60 64.30 66.80 31.80 42.70 43.10 48.10 62.00 63.90
GM Cauchy 5210 65.10 66.30 72.90 85.90 87.90 49.90 64.80 65.00 72.30 85.30 86.80
estimator ~ Welsch ~ 59.40 73.10 73.80 78.80 90.30 91.50 57.50 70.80 71.60 77.10 89.40 90.90
Bisquare 59.70 73.90 74.80 79.30 90.40 91.80 57.70 7120 71.80 77.20 89.50 90.70
100 Talwar 5590 69.90 70.10 74.60 86.40 87.70 56.50 69.30 69.80 75.20 86.60 88.00
Huber  28.40 38.20 38.50 43.40 57.10 59.70 27.70 37.10 37.30 42.20 54.70 57.70
Fair 21.60 29.10 29.30 33.70 46.20 49.90 20.30 27.20 27.70 33.00 45.20 47.50
M Cauchy  39.80 50.40 50.70 54.50 68.40 70.70 37.10 48.40 49.40 54.90 68.60 70.60
estimator ~ Welsch ~ 49.40 63.80 64.80 71.00 83.00 8450 49.60 62.10 62.80 68.40 81.50 83.90
Bisquare 50.60 65.50 66.40 71.40 83.30 84.80 50.80 62.80 63.70 69.50 82.60 84.10
Talwar  41.50 53.20 53.50 5810 68.20 70.00 42.00 53.60 53.90 60.10 69.80 71.40
Huber  55.30 68.50 72.70 77.20 88.30 94.10 56.90 67.60 72.60 77.20 89.70 94.80
Fair ~ 43.10 57.80 60.40 65.80 78.50 86.10 45.30 57.80 61.80 66.50 79.70 88.00
GM Cauchy  65.10 79.60 84.00 87.00 95.50 97.30 66.20 78.80 82.90 87.00 95.10 98.40
estimator ~ Welsch ~ 70.10 82.50 87.30 91.50 96.80 98.10 71.00 83.00 87.90 90.50 96.50 99.30
Bisquare 70.40 82.40 87.50 91.40 97.10 98.20 7170 83.80 88.00 90.90 96.90 99.40
200 Talwar  69.30 81.60 86.80 91.00 96.50 97.90 71.90 83.90 87.60 90.80 96.60 98.60
Huber  44.90 58.10 63.10 67.60 80.40 88.40 47.50 60.80 64.10 68.40 82.00 88.80
Fair ~ 34.00 45.10 49.80 55.00 68.70 77.50 35.70 47.50 51.90 56.70 70.30 79.40
M Cauchy 57.80 72.30 77.40 81.50 91.00 95.50 59.80 71.90 75.60 80.80 90.50 95.80
estimator ~ Welsch ~ 67.00 79.90 84.80 89.30 95.70 97.50 67.20 80.60 84.80 87.90 95.50 98.20
Bisquare 67.50 79.50 85.10 89.40 95.90 97.60 68.20 81.80 85.70 89.30 96.10 98.60
Talwar  65.50 78.90 83.80 87.90 94.60 96.80 68.90 80.70 84.50 87.70 93.60 96.80
Huber  63.10 76.10 82.50 86.50 95.60 98.70 62.60 76.00 82.70 86.90 94.90 98.70
Fair ~ 52.80 66.50 72.90 77.80 89.40 96.60 53.90 64.60 72.70 77.70 89.00 97.00
GM Cauchy 70.20 83.60 90.10 93.00 97.60 99.40 72.10 84.70 90.10 92.90 97.80 99.70
estimator ~ Welsch ~ 73.40 86.10 92.10 94.60 98.20 99.90 75.10 87.10 91.20 93.70 98.60 99.90
Bisquare 73.70 86.70 92.20 94.50 98.50 99.90 74.90 87.70 91.30 94.00 98.90 99.90
300 Talwar  74.30 86.90 91.50 94.80 98.40 99.80 75.60 86.80 92.00 94.10 98.70 99.90
Huber  57.00 70.00 77.50 82.10 91.90 97.40 57.80 68.60 77.30 81.40 91.60 98.00
Fair  45.30 5890 66.90 71.10 83.10 93.70 46.70 5840 65.40 69.90 83.40 92.70
M Cauchy  66.20 80.30 86.50 90.00 96.60 98.80 66.90 79.60 86.40 90.80 96.70 98.90
estimator ~ Welsch ~ 71.40 84.90 91.40 93.40 98.00 99.70 73.20 86.00 90.30 93.00 98.20 99.70
Bisquare 72.30 84.80 91.60 93.40 98.10 99.80 73.50 86.30 90.30 93.10 98.40 99.70
Talwar ~ 72.40 85.20 90.50 93.60 98.10 99.50 73.70 85.30 91.00 93.10 98.50 99.80
Table 7. List of w(-) weight functions.
Sr. No. w(-) weight function
1. w1 (X;) =1 —hyg
1, ifhy <22
2. UJQ(XZ') = ’ his < n
0, otherwise
1, if RMD; < Median(RMD;) + 3M AD(RMD;)
3. w3(X;) =
0, otherwise
i ) 2
N wa(Xi) = 1L, if RMD; < /X2 o5
0, otherwise
1, if GP; < Median(GP;) +3MAD(GP;)
5. ws(X;) = :
0, otherwise
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Table 8. Performance of AS,

K.S. Shende, D.N. Kashid

criterion for different w(-) weight functions.

w()

weight

o()

function

5%-Vertical outliers and 5%-Leverage points

10%-Vertical outliers and 10%-Leverage points

15%-Vertical outliers and 15%-Leverage points

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

100

wi (X3)

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

8.40
6.80
16.00
37.50
38.30
22.00

11.50
10.10
22.60
47.50
48.70
28.90

11.70
10.60
23.00
47.80
48.80
29.30

24.10
19.10
37.00
65.20
67.00
40.30

25.90
20.90
39.30
66.50
68.20
41.50

1.70
2.60
1.90
6.20
6.60
3.00

3.10
3.70
3.10
8.20
9.60
4.10

3.20
3.80
3.10
8.30
9.70
4.10

4.00
5.00
4.10
10.20
11.40
4.80

7.50
8.40
8.00
13.80
15.70
7.80

8.60
9.70
8.60
14.70
17.10
8.20

1.00
1.80
0.60
1.70
2.20
1.50

1.90
2.70
1.30
2.50
2.80
2.30

1.90
2.70
1.30
2.60
2.80
2.60

2.20
3.70
1.70
3.00
3.00
3.10

5.00
9.20
3.60
4.60
6.00
4.80

6.00
10.90
4.30
5.40
6.10
5.80

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

44.50
38.40
47.80
49.40
50.00
50.50

57.40
50.50
58.80
61.00
61.50
62.60

57.70
51.00
58.90
61.50
61.60
63.30

77.00
71.30
80.30
81.40
81.90
82.00

80.10
74.60
81.90
83.00
82.90
85.10

20.10
11.80
25.80
31.70
31.70
31.80

31.40
19.90
38.60
43.90
44.10
44.50

31.90
20.20
38.70
44.40
44.30
45.20

37.00
25.60
44.70
49.40
49.80
50.20

52.70
39.80
60.90
65.30
65.70
66.40

56.50
43.50
64.80
67.90
69.00
69.70

10.00

5.50
21.30
30.70
30.50
30.90

16.10
10.40
30.30
40.90
42.10
42.00

16.50

9.90
30.30
41.80
42.70
43.30

21.70
12.80
36.20
47.30
48.40
49.50

35.30
21.90
50.70
63.60
63.60
63.60

38.20
24.50
54.20
66.50
67.80
66.90

w3(Xi)

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

46.50
39.30
47.90
49.20
49.70
50.50

57.40
52.00
59.10
60.70
61.10
62.00

58.00
52.40
59.00
61.30
61.30
62.70

76.70
71.30
79.40
81.10
81.60
81.70

80.40
74.80
81.20
83.00
83.00
84.70

21.60
14.60
26.30
31.50
31.70
31.90

33.20
22.70
39.00
44.20
44.50
44.70

33.50
23.00
39.40
44.80
44.80
45.30

38.80
28.30
45.10
49.70
50.00
50.50

54.20
42.80
61.60
65.30
65.30
66.30

57.50
46.20
65.00
67.70
68.60
69.90

12.80

6.40
25.00
30.60
30.60
31.50

22.20
14.20
34.80
40.50
41.70
42.50

22.30
13.90
34.90
41.50
42.40
43.80

28.10
17.50
39.40
48.00
48.50
50.30

43.70
29.60
57.20
63.70
63.90
64.60

46.50
32.70
60.10
66.50
67.80
67.50

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

44.50
38.10
47.60
49.70
49.80
49.90

55.80
51.10
58.90
60.30
60.20
62.00

56.70
51.80
58.90
60.60
60.80
62.80

76.20
70.70
79.70
81.10
81.70
82.20

79.70
74.10
80.90
83.50
83.90
84.90

23.00
16.00
27.40
30.90
31.40
31.60

33.00
24.30
38.80
44.20
44.50
44.90

33.60
24.20
39.40
44.80
45.00
45.30

38.60
29.80
45.30
50.10
50.20
50.90

54.50
43.50
62.00
65.20
65.20
66.60

58.10
46.60
64.90
67.50
68.40
69.90

14.00

7.70
25.40
30.70
30.70
32.20

24.20
15.00
34.90
41.10
42.10
43.30

24.40
14.90
35.10
41.90
42.60
44.50

29.70
18.80
40.40
48.30
48.80
50.90

44.70
31.10
57.50
63.80
64.00
65.20

48.20
33.90
59.90
66.50
68.00
68.00

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

45.20
38.50
47.90
49.40
49.70
50.60

56.70
49.50
58.60
60.60
60.90
62.00

57.10
49.90
58.90
61.30
61.20
62.80

76.70
72.10
80.00
81.20
81.50
82.10

80.00
75.50
81.60
82.90
82.90
85.30

22.80
15.60
27.00
31.30
31.40
31.60

33.50
24.30
38.90
43.90
44.10
44.40

33.60
24.60
39.20
44.30
44.20
45.10

39.00
29.80
45.30
49.60
49.80
50.50

54.90
44.00
61.40
65.30
65.50
66.60

58.60
47.10
64.50
67.80
68.80
69.90

13.60

7.90
25.40
30.20
30.20
31.10

23.50
15.20
34.90
40.60
41.70
42.80

23.50
15.20
35.20
41.60
42.50
44.10

29.00
19.10
41.10
48.40
48.80
50.80

46.30
30.90
58.20
64.30
64.20
65.40

48.60
34.00
60.50
67.10
68.10
68.40

200

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

1.20
1.20
5.50
40.50
43.10
27.70

2.30
1.70
8.20
50.20
53.30
34.80

2.80
2.10
10.20
54.50
58.00
38.80

8.60
5.90
18.30
69.80
74.30
50.70

12.40

9.50
24.80
78.30
83.10
56.90

0.00
0.00
0.00
2.90
5.80
0.70

0.00
0.10
0.00
4.00
8.00
0.90

0.00
0.10
0.10
4.90
9.10
0.90

0.00
0.10
0.10
5.40
10.10
1.30

0.90
0.70
0.30
8.00
14.20
2.50

1.70
2.40
1.60
10.40
17.80
3.50

0.00
0.30
0.00
0.20
0.30
0.20

0.20
0.30
0.00
0.40
0.40
0.30

0.20
0.50
0.10
0.40
0.50
0.40

0.30
0.60
0.20
0.40
0.50
0.40

0.70
1.00
0.30
0.70
1.80
0.80

1.20
2.50
0.70
1.70
2.20
1.40

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

43.60
37.00
47.70
49.90
49.70
50.10

56.60
48.70
59.70
61.80
62.00
62.90

62.60
55.00
64.70
67.00
67.30
68.30

82.60
78.40
85.00
84.80
84.80
86.00

91.70
87.50
92.90
93.60
93.80
93.70

22.80
12.40
30.90
33.80
33.10
33.50

33.80
20.80
42.10
46.10
46.20
46.60

38.20
25.30
46.70
50.70
50.80
51.20

43.40
30.80
51.70
54.80
55.40
56.30

59.90
47.10
67.00
69.60
70.10
70.70

72.80
59.00
78.60
81.00
81.40
82.00

9.80
3.00
21.30
33.90
34.10
34.10

17.30

7.20
33.50
43.50
44.10
43.70

20.20

9.10
37.80
46.70
47.70
47.50

25.40
11.90
43.50
52.20
52.50
52.60

41.50
22.60
60.10
67.80
67.80
68.40

54.40
35.40
72.20
78.40
79.00
78.70

w3 (Xi)

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

43.30
36.80
47.50
49.90
49.60
50.30

57.40
49.40
59.90
61.80
62.00
62.90

63.20
55.20
64.50
67.00
67.30
68.30

82.90
78.70
84.90
84.80
85.00
86.00

92.20
87.50
93.00
93.80
93.90
93.90

23.20
12.40
31.00
34.00
33.30
33.90

34.80
21.30
42.10
46.30
46.30
46.70

39.60
25.30
47.30
50.70
50.90
51.20

44.50
30.60
52.00
55.10
55.50
56.50

60.70
47.30
67.30
69.60
70.00
70.70

72.20
60.30
78.90
81.30
81.40
82.10

12.70

4.70
25.00
34.10
34.20
34.20

22.70

9.60
37.50
43.50
44.10
44.10

25.90
12.00
40.60
47.60
48.40
47.70

29.60
15.30
46.40
52.30
52.90
53.30

46.30
27.90
61.90
68.10
68.50
69.10

59.50
40.70
74.10
78.50
79.10
79.20

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

43.40
37.20
46.60
49.50
49.10
49.80

57.80
49.60
59.80
61.60
62.00
63.10

62.70
55.50
64.60
67.00
67.10
68.40

82.70
78.30
84.70
85.10
85.10
86.30

92.00
87.70
93.00
93.60
93.80
93.70

22.60
12.80
31.00
33.90
33.40
34.00

34.20
20.90
41.50
46.50
46.40
46.80

39.30
25.40
46.90
50.80
51.00
51.30

44.40
30.70
52.00
55.20
55.60
56.40

61.00
47.20
67.50
69.40
69.80
70.60

72.60
60.80
78.90
81.20
81.40
81.90

13.40

4.70
24.50
34.10
34.30
34.30

22.80

37.00
43.40
44.00
44.10

25.80
12.00
41.30
47.50
48.40
47.90

28.90
16.20
46.60
52.30
52.80
53.50

46.20
27.70
61.50
68.00
68.30
69.00

59.60
40.80
74.80
78.70
79.10
79.20

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

43.20
37.10
47.10
49.60
49.30
50.00

57.30
49.40
59.70
61.80
62.10
62.80

62.60
55.10
64.30
66.70
67.00
68.20

82.80
78.10
84.90
84.70
84.80
86.00

91.90
87.60
92.90
93.60
93.80
93.80

23.00
12.80
30.70
33.80
33.40
33.80

34.00
20.70
42.00
46.20
46.20
46.60

39.50
25.20
47.10
50.80
51.00
51.20

44.60
30.50
51.90
55.30
55.50
56.50

61.00
47.20
67.50
69.60
70.20
70.80

72.50
61.00
78.60
81.20
81.30
82.00

13.50

4.60
25.00
34.20
34.20
34.30

21.70

9.30
36.50
43.40
44.10
44.20

25.00
12.30
41.10
47.50
48.40
47.90

29.00
16.10
45.80
52.30
52.80
53.50

46.80
27.20
61.40
68.10
68.30
69.10

60.00
41.60
74.70
78.50
78.90
79.10

300

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

0.30
0.00
1.20
34.30
38.90
29.50

0.40
0.20
2.50
44.90
52.10
38.40

0.60
0.20
2.90
52.20
58.60
43.30

1.30
0.70
5.50
71.50
78.20
56.90

4.30
2.60
12.10
80.80
87.20
66.40

0.00
0.00
0.00
1.30
6.50
0.20

0.00
0.00
0.00
1.80
9.10
0.50

0.00
0.00
0.00
2.00
10.20
0.50

0.00
0.00
0.00
2.50
11.50
0.60

0.00
0.20
0.00
4.50
15.50
0.90

0.40
0.60
0.20
6.70
20.70
2.30

0.00
0.00
0.00
0.00
0.20
0.00

0.00
0.00
0.00
0.00
0.20
0.00

0.00
0.00
0.00
0.00
0.30
0.00

0.00
0.00
0.00
0.00
0.30
0.10

0.00
0.10
0.00
0.10
0.30
0.10

0.30
0.60
0.20
0.20
0.80
0.60

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

40.40
31.50
44.50
46.50
46.80
48.80

55.60
46.70
58.60
61.20
61.60
62.50

64.60
56.00
66.00
67.90
67.80
68.90

83.70
78.10
85.90
87.20
87.50
86.90

93.30
91.30
95.40
95.90
96.30
96.10

23.70
12.40
31.20
38.00
38.00
39.30

35.30
20.70
44.60
50.80
50.90
51.50

43.70
28.90
53.50
57.00
57.60
59.00

49.40
32.90
59.00
62.70
63.50
64.20

66.90
48.80
73.00
76.80
76.90
78.60

82.80
71.50
87.70
89.20
89.90
90.50

7.50
2.10
21.40
30.40
31.30
32.50

16.40

5.90
31.60
41.70
42.20
42.90

22.60

9.10
38.80
49.20
50.00
50.20

26.30
11.40
44.60
54.80
54.90
55.20

42.10
22.20
60.80
68.60
69.10
69.40

62.40
41.50
76.60
83.50
83.80
83.80

ws(Xi)

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

40.20
30.90
44.40
46.50
46.80
48.70

56.00
47.10
58.80
61.30
61.60
62.50

65.00
56.10
65.80
68.00
67.80
68.90

83.40
77.80
85.90
87.30
87.60
87.00

93.40
91.20
95.40
95.90
96.30
96.10

24.40
13.20
32.10
38.10
38.10
39.30

36.50
22.40
45.20
50.90
51.00
51.30

43.60
29.60
53.60
57.20
57.60
58.70

49.90
34.50
59.40
62.80
63.60
64.00

68.10
50.50
73.80
77.00
77.00
78.60

83.80
72.40
87.30
89.30
89.90
90.50

9.10

22.40
31.90
31.80
33.10

18.40

6.80
32.60
42.80
43.00
43.50

24.60
10.70
40.70
49.90
50.20
50.40

30.20
13.20
46.80
55.00
54.90
55.50

45.30
24.90
62.50
69.00
69.40
69.60

65.60
45.60
78.20
83.60
83.50
84.10

Huber
Fair
Cauchy
‘Welsch
Bisquare
Talwar

40.20
30.90
44.70
46.50
46.90
48.50

56.00
47.30
59.20
61.40
61.70
62.50

64.80
55.90
66.00
67.90
68.00
69.20

83.50
77.50
85.60
87.10
87.40
87.00

93.50
90.90
95.50
95.90
96.30
96.10

24.20
13.80
32.40
38.20
38.40
39.40

35.80
22.90
45.30
51.00
51.20
51.30

43.90
29.80
53.60
57.30
57.70
58.80

49.90
34.20
59.40
62.90
63.80
64.10

67.90
50.00
73.60
77.00
77.10
78.70

84.10
72.60
87.30
89.30
89.90
90.50

9.60
2.80
22.00
31.90
31.80
33.10

17.90

7.70
32.60
42.90
43.10
43.60

24.90
12.00
40.60
50.10
50.30
50.50

29.50
15.00
47.20
54.90
54.80
55.40

44.40
24.80
61.70
69.10
69.40
69.70

66.00
46.20
78.60
83.40
83.50
84.20

Huber
Fair
Cauchy
Welsch
Bisquare
Talwar

39.90
31.00
44.30
46.50
46.70
48.70

55.40
46.70
58.90
61.50
61.70
62.60

65.00
55.70
65.70
67.90
67.90
68.90

83.40
77.70
85.50
87.00
87.40
87.00

93.40
91.10
95.40
95.90
96.20
96.00

24.10
12.70
32.50
38.40
38.30
39.30

35.70
23.10
45.10
50.80
51.00
51.20

43.80
29.40
53.10
57.20
57.60
58.80

49.60
34.70
59.40
62.70
63.50
64.00

68.10
50.20
73.30
77.00
77.00
78.70

84.00
71.60
87.20
89.30
89.90
90.50

9.20
2.80
21.80
31.80
31.70
33.10

16.80

7.20
32.40
43.20
43.10
43.60

24.70
10.80
40.80
50.10
50.40
50.50

28.70
14.90
46.70
54.80
54.70
55.50

45.30
25.10
62.10
69.20
69.40
69.80

65.90
45.80
78.30
83.50
83.60
84.30
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5. Discussion

We have suggested the AS), model selection criterion based on GM-estimator. It can
be viewed as a generalization of C, and S, criteria. The proposed criterion takes into
account a discrepancy between the full model and submodel as well as complexity in the
model. This criterion has consistency property and selects an optimal model with a high
probability for large n. The simulation study reveals that the proposed criterion works
well in the four different situations: clean data, vertical outliers, leverage points, and both
vertical outliers and leverage points. The proposed criterion performs well and simple as
compared to Cp, S, and RC,. The AS), criterion based on the GM-estimator with hard
redescending 9 (-) function and robust weight can be a better choice.
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