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Abstract
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1. Introduction

Over the years, research in the �eld of functional equations with reference to information theory has
evolved into studying those functional equations which are useful in characterizing entropies. The study of
these entropies is interesting as well as demanding since they have been used in a wide variety of studies in
Economics (Gini [4]); Ecology (Pielou [25]); Biology (Lewontin [11]) and many more. Thus this integrative
approach of functional equations inspired us to explore those functional equations which not only character-
izes entropies but are related to new branches too. In this paper, we have identi�ed a functional equation
arising from statistics and obtained its general solutions. Further, we have tried to establish a connect of
this functional equation with information theory and diversity index.

Throughout the paper, let R denote the set of real numbers; I denote the closed interval [0, 1]. For
n = 1, 2, . . . ; let

Γn =

{
(p1, . . . , pn) ; pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
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denote the set of all �nite n-component discrete probability distributions.
For a given probability distribution (p1, . . . , pn) ∈ Γn, consider a real valued discrete random variable Xn

taking n distinct values x1, . . . , xn with probabilities p1, . . . , pn where

xi =

{
−pβ−1

i log2 pi if 0 < pi ≤ 1

0 if pi = 0

such that β is a �xed positive real power with 0β := 0, 1β := 1 and 0β−1 log2 0 := 0. If we �x β = 1, then
the above random variable Xn reduces to the random variable Zn taking di�erent real values z1, . . . , zn with
respective probabilities p1, . . . , pn where

zi =

{
− log2 pi if 0 < pi ≤ 1

0 if pi = 0.

This random variable Zn has been discussed in detail by Nath and Singh [21]. This random variable Zn is
closely related to Shannon entropies [27]. In this paper we �x β ̸= 1 and discuss the random variable Xn.
Then expected value [16] E(Xn) of the random variable Xn is

E[Xn] = −
n∑

i=1

pβi log2 pi. (1.1)

De�ne the mapping ψ(β,r) : I → R, r = 1, 2, . . . as

ψ(β,r)(p) = −pβ(log2 p)r (1.2)

for all p ∈ I and 0β(log2 0)
r := 0. Furthermore for r = 1, 2, . . ., it follows that

ψ(β,r)(0) = 0 and ψ(β,r)(1) = 0. (1.3)

Clearly with the help of (1.1) and (1.2), we get

E[Xn] = −
n∑

i=1

ψ(β,1)(pi). (1.4)

Thus expected value of random variable Xn has a sum form representation given by ψ(β,1). As a result the
mapping ψ(β,1) is called its generating function [16].

Now substituting r = 1 in (1.2) and using 0β log2 0 := 0, it can be veri�ed easily that mapping ψ(β,1)

satisfy the functional equation
ψ(β,1)(pq) = pβψ(β,1)(q) + qβψ(β,1)(p)

for all p ∈ I, q ∈ I with ψ(β,1)(0) = 0 and ψ(β,1)(1) = 0. As a result for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈
Γm, the functional equation

n∑
i=1

m∑
j=1

ψ(β,1)(piqj) =

n∑
i=1

pβi

m∑
j=1

ψ(β,1)(qj) +

m∑
j=1

qβj

n∑
i=1

ψ(β,1)(pi) (1.5)

holds for an arbitrary pair (n,m) of positive integers where β ̸= 1, 0β := 0, 1β := 1; ψ(β,1)(0) = 0 and
ψ(β,1)(1) = 0.

With the aid of (1.4), it can be concluded that (1.5) is emerging from statistics. So, it seems worthy
to pay attention to this functional equation. Interestingly, Behara and Nath [2] were �rst who came across
functional equation (1.5) as they considered its generalized form which is

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

pαi

m∑
j=1

f(qj) +

m∑
j=1

qβj

n∑
i=1

f(pi) (1.6)
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where f : I → R is an unknown mapping; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 be �xed
integers; α ̸= 1 and β ̸= 1 are �xed positive real powers satisfying

0α := 0, 0β := 0, 1α := 1, 1β := 1 . (1.7)

The functional equation (1.6), is useful in characterizing the nonadditive entropies of type (α, β) given by
Behara and Nath. For a probability distribution (p1, . . . , pn) ∈ Γn, it is de�ned as follows:

H(α,β)
n (p1, . . . , pn) =


(21−α − 21−β)−1

(
n∑

i=1
pαi −

n∑
i=1

pβi

)
if α ̸= β

−2β−1
n∑

i=1
pβi log2 pi if α = β

(1.8)

where H
(α,β)
n : Γn → R, n = 1, 2, . . . ; 0β log2 0 := 0 and α, β are �xed positive real powers satisfying (1.7).

Behara and Nath were �rst to study (1.6) and obtained its continuous solutions by presuming f : I → R
to be continuous with 0 < α, β ∈ R and n,m = 1, 2, . . . . Later on, Kannappan [8] obtained its integrable
solutions by presuming f : I → R to be integrable and n = 3, m = 2. In the following year, Kannappan
[9] obtained its measurable solutions by presuming f : I → R to be Lebesgue measurable and n = m = 3.
Eventually, Losonczi and Maksa [13] without imposing any regularity conditions on the mapping f : I → R
found the general solutions of (1.6) for n ≥ 3, m ≥ 2 being �xed integers with α ̸= 1, β ̸= 1.

It appears that over the last few years functional equation (1.6) was addressed several times and studied
extensively. Kocsis [10] was �rst to consider a generalization of (1.6) by replacing its power mappings with
multiplicative mappings M1 : I → R, M2 : I → R and studying the functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

M1(pi)

m∑
j=1

f(qj) +

m∑
j=1

M2(qj)

n∑
i=1

f(pi)

where f : I → R is an unknown mapping; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm. He obtained its general
solutions and discussed its stability for n ≥ 3, m ≥ 3 being �xed integers. Thereafter, Nath and Singh [20],
[23]; Singh and Dass [28] discussed a Pexiderized form of (1.6) where they obtained the general solutions
of the functional equation for n ≥ 3, m ≥ 3 being �xed integers. Singh and Grover [29] discussed the
stability problem for a Pexiderized form of (1.6) for n ≥ 3, m ≥ 3 being �xed integers. Apart from these,
few signi�cant contributions that have appeared in the �eld of sum form functional equations which are
characterizing various entropies are as follows: Nath and Singh [17] obtained the general solutions of a
multiplicative type functional equation which is useful in the characterization of the nonadditive measure
of entropy proposed by Havrda and Charvát [5]. Building upon their work, Nath and Singh [18] considered
an extended form of the multiplicative type functional equation (discussed in [17]) and demonstrated the
signi�cance of its solutions with Shannon [27]; Havrda and Charvát [5] entropies. A similar result was
established by Nath and Singh in [19] and [22] by addressing functional equations containing only two
unknown mappings.

It needs to be remarked that most of these results were from information theoretic point of view and sum
form functional equations emerging from statistics are relatively less explored. In this paper, we have tried
establishing its relation with the expected value of a discrete random variable (following from (1.4)) thus,
adding a new dimension to functional equation (1.6). Moreover, one of its Pexiderized form which seems to
have been missed by the researchers is as follows:

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

pαi

m∑
j=1

g(qj) +

m∑
j=1

qβj

n∑
i=1

h(pi) (A)

where f : I → R, g : I → R, h : I → R are unknown mappings; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm ; n ≥ 3,
m ≥ 3 be �xed integers; α ̸= 1 and β ̸= 1 are �xed positive real powers satisfying (1.7).
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Clearly, it can be concluded that functional equation (A) is emerging from statistics and also useful in
providing characterization of the entropies of type (α, β) given by (1.8). Therefore, it seems desirable to
study functional equation (A).

Also, while obtaining solutions of functional equation (A) we came across a new open problem (unfolding
from statistics), which is

n∑
i=1

m∑
j=1

G(piqj) =
n∑

i=1

pαi

m∑
j=1

G(qj) +
m∑
j=1

qβj

n∑
i=1

G(pi)

+ (m− n)G(0)
m∑
j=1

qβj +m(n− 1)G(0) (B)

where G : I → R is an unknown mapping; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 be �xed
integers; α ̸= 1 and β ̸= 1 are �xed positive real powers satisfying the conventions mentioned in (1.7). The
functional equation (B) was �rst observed by Nath and Singh (with G in place of f , see p. 33, [24]). Although
they mentioned it to be an enlargement of (1.6) but still left it unsolved. Consequently functional equation
(B) becomes signi�cant and need to be discussed.

Summarizing so far, it can be concluded that we have arrived at two open problems i.e. functional
equations (A) and (B) both arising from statistics and characterizing entropies as well. Hence both functional
equations are connecting two di�erent branches of research which are information theory and mathematical
statistics. This provides us su�cient reasons to study functional equations (A) and (B). Thus, our goal in
this paper is to obtain the general solutions of (A) and (B) without imposing any regularity conditions on
the mappings appearing in them.

This paper is structured as follows:
In section 1, we have established the relation between functional equations and statistics, from which we
have arrived at functional equations (A) and (B). In section 2, we state few known results and de�nitions
which will be used in the subsequent sections. In section 3, we obtain general solutions of the functional
equations (A) and (B) for n ≥ 3, m ≥ 3 being �xed integers. In section 4, we discuss the signi�cance of the
general solutions obtained in section 3 with reference to information theory and diversity index.

2. Auxiliary results

We begin this section by stating some de�nitions followed by results, which we will be using in the
subsequent sections.

A mapping a : I → R is said to be additive on I if it satis�es a(x + y) = a(x) + a(y) for all x ∈ I,
y ∈ I. Similarly, a mapping A : R → R is said to be additive on R if it satis�es A(x + y) = A(x) + A(y)
for all x ∈ R, y ∈ R. Further, Daróczy and Losonczi [3] established an interesting connect between these
two additive mappings and proved that there exists a unique additive extension of the additive mapping
a : I → R to the set of real numbers.

A mapping ℓ : I → R is said to be logarithmic on I if it satis�es ℓ(0) = 0 and ℓ(xy) = ℓ(x) + ℓ(y) for all
x ∈ ]0, 1], y ∈ ]0, 1].

A mapping m : I → R is said to be multiplicative on I if it satis�es m(0) = 0, m(1) = 1 and m(xy) =
m(x)m(y) for all x ∈ ]0, 1[, y ∈ ]0, 1[.

Lemma 1 ([14]). Let n ≥ 3 be a �xed integer and ϕ : I → R be a mapping which satisfy the functional

equation
n∑

i=1
ϕ(pi) = c for all (p1, . . . , pn) ∈ Γn; c a given real constant. Then there exists an additive mapping

A1 : R → R such that ϕ(p) = A1(p)− 1
nA1(1) +

c
n for all p ∈ I.

Lemma 2 ([10]). If an additive mapping A2 : R → R and a multiplicative mapping M : I → R satisfy
A2(p) = M(p) + c0; c0 a given real constant, then there exists some c∗ ∈ R such that A2(p) = c∗p for all
p ∈ R; c0 = 0 and M(p) = 0 or M(p) = p for all p ∈ I.
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Lemma 3 ([10]). If an additive mapping A3 : R → R and multiplicative mappings M1 : I → R, M2 : I → R
with M1 ̸=M2 satisfy A3(p) + d =M1(p)−M2(p) ; d being a real constant, then M1 and M2 are identity or
zero mappings on I.

3. The general solution of functional equations (A) and (B)

The main result of this section is as follows:

Theorem 3.1. Let n ≥ 3, m ≥ 3 be �xed integers and f : I → R, g : I → R, h : I → R be mappings which
satisfy the functional equation (A) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; α ̸= 1 and β ̸= 1 be �xed
positive real powers satisfying (1.7). Then for all p ∈ I, any general solution (f, g, h) of (A) is of the form
(for α = β)

(i) f(p) = pβℓ(p)+[g(1)+(m−1)g(0)+h(1)+(n−1)h(0)]pβ

+E0(p) + f(0), E0(1) = −nmf(0),
(ii) g(p) = pβℓ(p) + [g(1) + (m− 1)g(0)]pβ + E0(p) + g(0),

E0(1) = −mg(0),
(iii) h(p) = pβℓ(p) + [h(1) + (n− 1)h(0)]pβ + E∗

0(p) + h(0),

E∗
0(1) = −nh(0)


(α1)

and (for α ̸= β)

(i) f(p) = d(pα−pβ)+[g(1)+(m−1)g(0)+h(1)+(n−1)h(0)]pβ

+E1(p) + f(0), E1(1) = −nmf(0),
(ii) g(p) = d(pα − pβ) + [g(1) + (m− 1)g(0)]pβ + E1(p) + g(0),

E1(1) = −mg(0),
(iii) h(p) = {d− [g(1)+(m−1)g(0)]}(pα−pβ)

+[h(1)+(n−1)h(0)]pβ+E∗
1(p)+h(0), E

∗
1(1) = −nh(0)


(α2)

where E0 : R → R, E0 : R → R, E∗
0 : R → R, E1 : R → R, E1 : R → R and E∗

1 : R → R are additive
mappings; ℓ : I → R is a logarithmic mapping and d is an arbitrary real constant.

Before giving the proof of this theorem, we need to obtain the general solutions of the functional equation
(B). So, we provide it in the following lemma:

Lemma 4. Let n ≥ 3, m ≥ 3 be �xed integers and G : I → R be a mapping which satisfy the functional
equation (B) for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; α ̸= 1 and β ̸= 1 be �xed positive real powers
satisfying (1.7). Then for all p ∈ I, any general solution of (B) is of the form (for α = β)

G(p) = pβℓ(p) + E0(p) +G(0), E0(1) = −mG(0) (3.1)

and (for α ̸= β)

G(p) = d(pα − pβ) + E1(p) +G(0), E1(1) = −mG(0) (3.2)

where E0 : R → R and E1 : R → R are additive mappings; ℓ : I → R is a logarithmic mapping; d is an
arbitrary real constant.

Proof. By applying Lemma 1 on the functional equation (B), there exists a mapping E : Γn × R → R,
additive in the second variable such that

n∑
i=1

G(piq)− [G(q)−G(0)]
n∑

i=1

pαi − qβ

[
n∑

i=1

G(pi)+(m− n)G(0)

]
−nG(0)

= E(p1, . . . , pn; q) (3.3)
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with

E(p1, . . . , pn; 1) = −mG(0)

[
1−

n∑
i=1

pαi

]
. (3.4)

Let x ∈ I and (r1, . . . , rn) ∈ Γn. Substituting q = rtx, t = 1, . . . , n successively in (3.3); adding the resulting

n equations so obtained and then putting the expression
n∑

t=1
G(rtx) calculated from (3.3). We obtain

n∑
i=1

n∑
t=1

G(pirtx)− [G(x)−G(0)]
n∑

i=1

pαi

n∑
t=1

rαt − n2G(0)

= E(p1, . . . , pn;x) + xβ

{
n∑

t=1

rβt

[
n∑

i=1

G(pi) + (m− n)G(0)

]

+

n∑
i=1

pαi

[
n∑

t=1

G(rt) + (m− n)G(0)

]}
+ E(r1, . . . , rn;x)

n∑
i=1

pαi

for all x ∈ I, (p1, . . . , pn) ∈ Γn, (r1, . . . , rn) ∈ Γn. The left hand side of the above equation is commutative
in pi and rt, i = 1, . . . , n; t = 1, . . . , n (see p. 59, Ac¹el [1]). This implies the right hand side must also be
commutative in pi and rt, i = 1, . . . , n; t = 1, . . . , n. As a result, we obtain the equation

E(p1, . . . , pn;x)

[
1−

n∑
t=1

rαt

]
− E(r1, . . . , rn;x)

[
1−

n∑
i=1

pαi

]

= xβ

{[
n∑

t=1

rαt −
n∑

t=1

rβt

][
n∑

i=1

G(pi) + (m− n)G(0)

]

−

[
n∑

i=1

pαi −
n∑

i=1

pβi

][
n∑

t=1

G(rt) + (m− n)G(0)

]}
. (3.5)

Here, we notice that equation (3.5) depends on the parameters α and β. Therefore, we divide our discussion
into two cases.

Case 1: α = β
In this case, equation (3.5) reduces to

E(p1, . . . , pn;x)

[
1−

n∑
t=1

rβt

]
= E(r1, . . . , rn;x)

[
1−

n∑
i=1

pβi

]
. (3.6)

Now, we assert that

1−
n∑

t=1

rβt ̸≡ 0 (3.7)

for �xed positive real power β ̸= 1 satisfying (1.7). To the contrary, suppose that 1 −
n∑

t=1
rβt = 0 for all

(r1, . . . , rn) ∈ Γn. By Lemma 1, there exists an additive mapping a : R → R so that rβ = a(r) with a(1) = 1.
By Lemma 2, this holds when β = 0 or β = 1. Consequently we arrive at a contradiction as β is presumed to
be a �xed positive real power with β ̸= 1, and hence (3.7) follows. Thus there exists a probability distribution

(r∗1, . . . , r
∗
n) ∈ Γn so that 1−

n∑
t=1

r∗βt ̸= 0. Using this in (3.6), we obtain

E(p1, . . . , pn;x) = E0(x)

[
1−

n∑
i=1

pβi

]
(3.8)
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where E0 : R → R de�ned as E0(x) =

[
1−

n∑
t=1

r∗βt

]−1

E(r∗1, . . . , r
∗
n;x) is an additive mapping. Also from

(3.4), we get

E0(1) = −mG(0). (3.9)

From (3.3), (3.8) and (3.9) with α = β, we obtain

n∑
i=1

G(piq)−G(q)
n∑

i=1

pβi − qβ
n∑

i=1

G(pi) = 0 (3.10)

where G : I → R is de�ned as

G(x) = G(x)− E0(x)−G(0) (3.11)

for all x ∈ I. Clearly G(0) = 0. On applying Lemma 1 on the functional equation (3.10) and using G(0) = 0,
it follows that there exists a mapping E∗ : R× I → R, additive in the �rst variable so that

G(pq)− pβG(q)− qβG(p) = E∗(p; q) (3.12)

with E∗(1; q) = 0. The left hand side of (3.12) is symmetric in p and q (see Ac¹el [1]), so its right hand side
must also be symmetric in p and q. This implies the mapping E∗ is additive in the second variable also.
Moreover from (3.12), it can easily be veri�ed that

G(pqr)− pβqβG(r)− qβrβG(p)− rβpβG(q) = E∗ (r; pq) + rβE∗ (p; q)

= E∗ (rp; q) + qβE∗(r; p) (3.13)

for all p ∈ I, q ∈ I, r ∈ I.
Now, we proceed to show that E∗(p; q) ≡ 0 on I × I. On the contrary, suppose E∗(p; q) ̸= 0 on I × I.

This implies there exists some p∗ ∈ I, q∗ ∈ I such that E∗(p∗; q∗) ̸= 0. From (3.13), it follows that

rβ = [E∗(p∗; q∗)]−1
[
E∗(rp∗; q∗) + q∗βE∗(r; p∗)− E∗(r; p∗q∗)

]
.

The right hand side of the above equation is additive, while its left hand side being a power mapping is
multiplicative. Consequently by Lemma 2, this holds only if β = 0 or β = 1. As a result we arrive at a
contradiction and so E∗(p; q) vanishes identically on I × I. With the aid of this (3.12) reduces to

G(pq)− pβG(q)− qβG(p) = 0 (3.14)

for all p ∈ I, q ∈ I. The general solution of (3.14) is G(p) = pβℓ(p) for all p ∈ I; ℓ : I → R being a
logarithmic mapping. Hence from (3.11), the solution (3.1) is attained.

Case 2: α ̸= β
In this case, let (z1, . . . , zn) ∈ Γn and substitute q = zt, t = 1, . . . , n consecutively in (3.3). Then summing
the resulting n equations so obtained and using (3.4), it follows that

n∑
i=1

n∑
t=1

G(pizt) +mG(0)− n2G(0) =

n∑
i=1

pαi

[
n∑

t=1

G(zt) + (m− n)G(0)

]

+
n∑

t=1

zβt

[
n∑

i=1

G(pi) + (m− n)G(0)

]
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for all (p1, . . . , pn) ∈ Γn, (z1, . . . , zn) ∈ Γn. The left hand side of the above equation is commutative in pi
and zt, i = 1, . . . , n; t = 1, . . . , n. Thus the commutativity on the right hand side yields[

n∑
i=1

G(pi) + (m− n)G(0)

][
n∑

t=1

zαt −
n∑

t=1

zβt

]

=

[
n∑

t=1

G(zt) + (m− n)G(0)

][
n∑

i=1

pαi −
n∑

i=1

pβi

]
(3.15)

for all (p1, . . . , pn) ∈ Γn, (z1, . . . , zn) ∈ Γn. Now, we show that for α ̸= β

n∑
t=1

zαt −
n∑

t=1

zβt ̸≡ 0 (3.16)

where (z1, . . . , zn) ∈ Γn and α ̸= 1, β ̸= 1 are �xed positive real powers satisfying (1.7). Suppose
n∑

t=1
zαt −

n∑
t=1

zβt = 0 for all (z1, . . . , zn) ∈ Γn. By Lemma 1, there exists an additive mapping a∗ : R → R so that

zα − zβ = a∗(z) with a∗(1) = 0. By Lemma 3, this holds when α = 0, β = 0 or α = 1, β = 1. Consequently
we get a contradiction as α and β are presumed to be �xed positive real powers with α ̸= 1 and β ̸= 1.
Thus (3.16) holds for α ̸= β and so there exists a probability distribution (z∗1 , . . . , z

∗
n) ∈ Γn such that

n∑
t=1

z∗αt −
n∑

t=1
z∗βt ̸= 0. Now choosing 0 ̸=

n∑
t=1

z∗αt −
n∑

t=1
z∗βt = d−1

0 (say) in the equation (3.15), we get

n∑
i=1

G(pi)− d

[
n∑

i=1

pαi −
n∑

i=1

pβi

]
= (n−m)G(0)

where d = d0

[
n∑

t=1
G(z∗t ) + (m− n)G(0)

]
∈ R and (p1, . . . , pn) ∈ Γn. By Lemma 1, there exits an additive

mapping E1 : R→ R such that the solution (3.2) follows.

Proof of Theorem 3.1. Let us put p1 = 1, p2 = · · · = pn = 0 in the functional equation (A). We obtain

m∑
j=1

{
f(qj)− g(qj)− [h(1) + (n− 1)h(0)]qβj

}
= m(1− n)f(0)

for all (q1, . . . , qm) ∈ Γm. By Lemma 1, there exists an additive mapping a : R → R such that

f(q) = g(q) + [h(1) + (n− 1)h(0)]qβ + a(q) + f(0)− g(0) (3.17)

with

a(1) = m[g(0)− nf(0)]. (3.18)

From (A), (3.17) and (3.18), we get

n∑
i=1

m∑
j=1

g(piqj) + [h(1) + (n− 1)h(0)]

n∑
i=1

pβi

m∑
j=1

qβj

−
n∑

i=1

pαi

m∑
j=1

g(qj)−
m∑
j=1

qβj

n∑
i=1

h(pi) = m(n− 1)g(0) (3.19)
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for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 3 being �xed integers. Now, substituting q1 =
1, q2 = · · · = qm = 0 in (3.19). We have

n∑
i=1

{
g(pi) + [h(1) + (n− 1)h(0)] pβi − [g(1) + (m− 1) g(0)] pαi − h(pi)

}
= (n−m)g(0)

for all (p1, . . . , pn) ∈ Γn. By Lemma 1, there exists an additive mapping e : R → R such that

h(p) = g(p) + [h(1) + (n− 1)h(0)]pβ − [g(1) + (m− 1)g(0)]pα

− e(p)− g(0) + h(0) (3.20)

with

e(1) = nh(0)−mg(0). (3.21)

Functional equation (3.19) with (3.20) and (3.21) yields the functional equation (B) where the mapping
G : I → R is de�ned as

G(x) = g(x)− [g(1) + (m− 1)g(0)]xβ (3.22)

for all x ∈ I. By Lemma 4, mapping G is of the form (3.1) and (3.2). Thus solutions (α1)(ii) and (α2)(ii)
are immediate consequences of (3.1), (3.2) and (3.22) with G(0) = g(0).

From (3.20), (3.21), (α1)(ii) and using α = β; solution (α1)(iii) follows by de�ning an additive mapping
E∗

0 : R → R as E∗
0(x) = E0(x) − e(x) with E∗

0(1) = −nh(0). Further from (3.17), (3.18) and (α1)(ii);
the solution (α1)(i) follows by de�ning an additive mapping E0 : R → R as E0(x) = E0(x) + a(x) with
E0(1) = −nmf(0). Similarly with the aid of (3.20), (3.21) and (α2)(ii); the solution (α2)(iii) is attained
by de�ning an additive mapping E∗

1 : R → R as E∗
1(x) = E1(x) − e(x) with E∗

1(1) = −nh(0). Lastly, from
(3.17), (3.18) and (α2)(ii); the solution (α2)(i) stands proved by de�ning an additive mapping E1 : R → R
as E1(x) = E1(x) + a(x) with E1(1) = −nmf(0).

4. Comments

In this section our objective is to discuss the signi�cance of the general solutions of functional equations
(A) and (B) in reference of information theory and diversity index.

In information theory the notion of entropy, which is referred as uncertainty was introduced by Shannon
[27]. The Shannon entropies Hn : Γn → R, n = 1, 2, . . . also known as additive entropies are de�ned as

Hn(p1, . . . , pn) = −
n∑

i=1

pi log2 pi (4.1)

for all (p1, . . . , pn) ∈ Γn and 0 log2 0 := 0. A generalization of Shannon entropies (4.1) are the entropies

Hβ
n : Γn → R, n = 1, 2, . . . of degree β (0 < β ∈ R, β ̸= 1), which are de�ned as

Hβ
n (p1, . . . , pn) = (1− 21−β)−1

[
1−

n∑
i=1

pβi

]
(4.2)

for all (p1, . . . , pn) ∈ Γn with 0β := 0 and 1β := 1. The entropies (4.2) are also referred as nonadditive
entropies of degree β (0 < β ∈ R, β ̸= 1) in the literature and were introduced by Havrda and Charvát [5].

Index of diversity also known as diversity index is a real valued mapping de�ned on a probability dis-
tribution that highlights upon the di�erences in its sample space. Indeed, it is a nonnegative quantitative
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measure which is evolving with an integrative approach. Interestingly, there is plethora of de�nitions on
diversity indices and several research papers re�ect upon its applications. However, we would suggest the
references [6], [7] and [26] to help the readers get an overview of this phenomenon and its areas of research.

For a probability distribution (p1, . . . , pn) ∈ Γn, Hill [6] de�ned diversity number as

Na (p1, . . . , pn) =

(
n∑

i=1

pai

)1/1−a

(4.3)

where `n' is referred as the richness; `a' as the order of diversity and the term within the parentheses on the
right hand side is called the basic sum. For a = 1, the expression (4.3) is unde�ned. However, its limit as `a'
approaches to 1 exists and is related to Shannon entropy given by (4.1) (see p. 431, Hill [6]). Infact diversity
indices corresponding to di�erent values of `a' have been discussed by Hill [6], Jost [7] and Tuomisto [30].
Moreover, Tuomisto has discussed the diversity index for a > 0, a < 0 and then mentioned that logically `a'
must be restricted to nonnegative values (see p. 5, [30]).

The general expression (4.3) is also called e�ective number or Hill number [7]. Clearly, the Hill number
(4.3) satis�es the following postulates:

(i) Na(p1, . . . , pn) ≥ 0.

(ii) Na attains maximum diversity for uniform distribution, i.e. when pi are equal.

(iii) Na attains minimum diversity for degenerate distribution, i.e. when pi = 1 and pj = 0 for i ̸= j.

We notice that from (4.2) and (4.3), it follows that

[Na (p1, . . . , pn)]
1−a = 1− (1− 21−a)Ha

n(p1, . . . , pn). (4.4)

With the aid of (4.4), we present that (1− a)th power of Hill number of order `a' is related to the entropy
of degree `a' corresponding to the same value of `a'. Furthermore, by using (4.4) along with (1.8) we would
be able to connect functional equations (A) and (B) with information theory and diversity index which is
demonstrated as follows:

We begin by discussing the relevance of solutions of functional equation (A). In view of the form of
entropies given by (1.8), it is desirable to choose the logarithmic mapping ℓ : I → R as

ℓ(p) =

{
δ log2 p for p ∈ ]0, 1]

0 for p = 0
(4.5)

where δ is an arbitrary real constant.

Now, on choosing the logarithmic mapping ℓ : I → R as mentioned by (4.5), the solution (α1) of (A)
gives

n∑
i=1

f(pi) = −δ21−βH(β,β)
n (p1, . . . , pn) + [g(1) + (m− 1)g(0) + h(1)

+(n− 1)h(0)][Nβ(p1, . . . , pn)]
1−β−n(m− 1)f(0)

n∑
i=1

g(pi) = −δ21−βH(β,β)
n (p1, . . . , pn) + [g(1) + (m− 1)g(0)]

× [Nβ(p1, . . . , pn)]
1−β + (n−m)g(0)

and
n∑

i=1

h(pi) = −δ21−βH(β,β)
n (p1, . . . , pn)

+ [h(1) + (n− 1)h(0)][Nβ(p1, . . . , pn)]
1−β.
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Hence it can be concluded that mappings f , g and h of solution (α1) are connected to entropies of type
(α, β) for α = β and Hill number of order β if δ ̸= 0. Moreover if δ = 0, then all three mappings f , g and h
are connected to Hill number of order β.

Next we compute the summands of the solution (α2) of (A).

n∑
i=1

f(pi) = d(21−α − 21−β)H(α,β)
n (p1, . . . , pn) + [g(1) + (m− 1)g(0)

+ h(1) + (n− 1)h(0)][Nβ(p1, . . . , pn)]
1−β

− n(m− 1)f(0)
n∑

i=1

g(pi) = d(21−α − 21−β)H(α,β)
n (p1, . . . , pn) + [g(1) + (m− 1)g(0)]

× [Nβ(p1, . . . , pn)]
1−β + (n−m)g(0)

and

n∑
i=1

h(pi) = {d− [g(1) + (m− 1)g(0)]}(21−α − 21−β)H(α,β)
n (p1, . . . , pn)

+ [h(1) + (n− 1)h(0)][Nβ(p1, . . . , pn)]
1−β.

It follows that if d ̸= 0, then mappings f , g and h of solution (α2) are connected to entropies of type (α, β)
for α ̸= β and Hill number of order β. Also if d = 0, then mappings f and g are connected to Hill number of
order β only, while mapping h is connected to entropies of type (α, β) for α ̸= β and Hill number of order β.

Thus, functional equation (A) is related to information theory and diversity index.
Similarly, we discuss the relevance of solutions of functional equation (B) with information theory and

diversity index. On computing the summands (3.1) and (3.2) of (B) and using (4.5), it follows that

n∑
i=1

G(pi) = −δ21−βH(β,β)
n (p1, . . . , pn) + (n−m)G(0)

and

n∑
i=1

G(pi) = d(21−α − 21−β)H(α,β)
n (p1, . . . , pn) + (n−m)G(0).

It can be concluded that if δ ̸= 0 and d ̸= 0, then solutions of functional equation (B) are connected to
entropies of type (α, β) for α = β and entropies of type (α, β) for α ̸= β respectively. The cases δ = 0 and

d = 0 are not of much relevance as
n∑

i=1
G(pi) do not represent any form of entropies. Thus the functional

equation (B) is also emerging from information theory.
This paper is not only of interest to the information theorist who are involved in discovering new measures

of information or entropy but also to the researchers who are working in the �eld of functional equations
and focussed on exploring new equations and their applications. In future, building upon the work of Light
and Margolin [12], Margolin and Light [15] we can re�ect upon the applications of sum form functional
equations for data analysis in various �elds. This paper will be indispensable to those researchers who opt
for an interdisciplinary research methodology that aims to not only add new dimensions to their �eld of
research but also includes e�orts to establish its connect with Functional Equations, Information Theory and
Statistics.
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