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ABSTRACT 

The definition of search volume or kriging neighborhood in kriging estimators is an exercise in compromises. Deter-
mination of this neighborhood significantly influences the outcome of the kriging estimate. The main criteria used 
in the evaluation of a particular kriging neighborhood include the kriging variance, the number of non-estimated 
blocks, the cumulative sum of the kriging negative weights, and the slope of the regression of the real block grade 
to the estimated block grade. The performance of the above methodology is noticeably influenced by the radius of 
the search volume. This paper presents a new strategy to find the optimum value of the search radius. Using ex-
perimental data, we develop a neural simulator that would predict, accurately enough, the values of kriging varian-
ce, the number of non-estimated blocks and cumulative sum of kriging negative weights for a given search radius. 
The simulator is then used as the objective-evaluator in a numerical optimization code based on the Complex di-
rect search method which would find the search radius corresponding to the optimum values of the evaluation cri-
teria. Having generated multiple solution sets in multiple runs of the algorithm, the slope of the regression is then 
used to prioritize the solutions and to spot the most viable choice. The applicability and efficiency of the propo-
sed strategy is demonstrated using anomaly No.12A iron deposit, located in Bafgh in central Iran, as a case study.
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ÖZ

Kriglemede kestirim komşuluğunun ya da örnek tarama bölgesinin uygun bir şekilde tanımlanması gerekir.  Bu 
komşuluğun belirlenmesi kestirim değerini oldukça etkiler. Krigleme komşuluğunun belirlenmesinde kullanılan 
ana kriterler; krigleme varyansı, kestirilmeyen blokların sayısı, negatif ağırlıkların birikimli toplamı ve gerçek blok 
tenörünün kestirilen blok tenörüne karşı çizilen regresyonun eğimidir.  Bu yaklaşımın performansı örnek tarama 
bölgesinin çapından büyük ölçüde  etkilenir.  Bu yazı, örnek tarama çapının optimum bir şekilde belirlenmesine yöne-
lik olarak  yeni bir yaklaşım geliştiriyor. Deneysel veriler kullanılarak, örnek tarama çapına ilişkin krigleme varyansını, 
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INTRODUCTION

This paper presents a methodology for optimiz-
ing search radius using criteria by which a par-
ticular kriging neighborhood is evaluated. These 
criteria involve kriging variance, the number of 
non-estimated blocks, cumulative sum of krig-
ing negative weights, and the slope of the re-
gression of the true block grade on the estimat-
ed block grade. All mentioned criteria except 
the number of non-estimated block were intro-
duced by Vann et al. (2003). The authors intro-
duce ‘the number of non-estimated blocks’ as a 
new criterion and consider it to define the best 
search radius. If the shape of kriging neighbor-
hood is determined ellipsoid, the dimensions 
could be considered as search radius. De-Vitry 
(2003) used kriging variance, the slope of the 
regression and kriging negative weights and 
plotted their statistics found optimum search 
ellipse dimensions by determining where the 
dimensions of the search ellipse would not sig-
nificantly improve the estimate. This was where 
increasing the dimensions of the search ellipse 
would not significantly increase the slope of 
the regression between ‘actual’ and ‘estimated’ 
grades and also decrease the kriging variance 
and increase the number of negative kriging 
weights.

In this paper the values of above-mention cri-
teria were computed, for different dimensions 
of search ellipsoid. An Artificial neural network 
was used as a function approximation tool to 
find the relation between the ellipsoid dimen-
sions and the criteria. A multiobjective function 
that involves comparing and making decisions 
about different objectives with different order 
of magnitude was obtained. The function was 
optimized by complex direct search method to 
find the optimum ellipsoid dimensions, by using 
weighted sum method on normalized objects.

DEFINITION AND EVALUATION CRITERIA 

The criteria to consider when evaluating a par-
ticular ellipsoid dimensions are:

1.	 The kriging variance; 

2.	 The number of non-estimated blocks; 

3.	 The cumulative sum of kriging negative 
weights; and

4.	 The slope of the regression of ‘true’ block 
grade on the ‘estimated’ block grade.

Kriging Variance

Kriging is an estimation procedure that minimizes 
the estimation variance. The expression for the 
minimum estimation variance (Eq. 1) also called 
the kriging variance (KV), is (Vann et al., 2003):
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Where 2
OKσ  is kriging variance, iλ   is kriging 

weights, ),( Vxiγ  is the average values be-
tween a sample and the block to be estimat-
ed and ),( VVγ  is the  average gamma value 
within the block to be estimated. Here, KV was 
computed for each ellipsoid dimensions.

The Number of Non-Estimated Blocks

A neighborhood that is too restrictive can result 
in serious conditional biases and some areas 
can not be estimated. In mining block estima-
tion it is important to estimate blocks as much 
as possible. Since different ellipsoid dimensions 
change the number of non-estimated blocks 
(NEB), this criterion is considered to determine 
the best dimensions of ellipsoid. Here the NEB 
was computed for each ellipsoid dimensions.

kestirilmeyen blokların sayısını ve krigleme negatif ağırlıklarının birikimli toplamını hassas bir şekilde kestiren bir sinir 
ağı simulatorü geliştirilmiştir. Simulatör daha sonra sayısal optimizasyon kodunda objektif bir değerlendirici olarak 
kullanılmıştır. Bu kod, değerlendirme kriterlerinin optimum değerlerine karşılık gelen örnek tarama çapını bulan 
karmaşık doğrudan tarama yöntemine dayanmaktadır. Algoritmanın bir çok kez çalıştırılması suretiyle  çok sayıda 
çözüm kümesi üretildikten sonra regresyonun eğimi en uygun çöüzümü bulmak amacıyla kullanılmıştır. Önerilen 
stratejinin uygulanabilirliği ve verimliliğini ortaya koymak amacıyla Orta İran’da Bafgh’de bulunan 12A nolu demir 
yatağında örnek bir inceleme sunulmuştur. 

Anahtar Kelimeler: Complex method, kriging, neutral networks, optimization, search ellipsoid dimensions.
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Kriging Negative Weights

Negative weights are a peculiarity of certain 
data geometries of kriging systems combined 
with a high degree of continuity (including a 
low to negligible nugget effect) in the variogram 
model. In these circumstances, a ‘screen effect’ 
can be expected and at some distance negative 
weights will be observed (Sinclair and Blackwell 
(2002)). The distance we need to search before 
negative weights are encountered progres-
sively increases as the effective nugget effect 
increases. In the case of ‘pure nugget’ every 
sample found gets equal weight (1/N) no matter 
how far we search (Vann et al., 2003).

Depending on the variogram and the amount 
of screening, the negative weights can be sig-
nificant. There is nothing in the OK algorithm 
that alerts the kriging system about the zero 
thresholds for weights. Also, negative weights 
when applied to high data values may lead to 
negative and nonphysical estimates (Deutsch, 
1996). Szidarovszky et al. (1987) considered an 
additional constrain in the kriging process and 
presented a numerical algorithm which gener-
ates optimal nonnegative weights from a set of 
sample points. Two other algorithms were pro-
posed by Froidevaux (1993) and Journel and 
Rao (1996)  for correcting negative weights. 
But Vann et al. (2003) advised against modified 
kriging algorithms that adjust negative weights 
or set them to zero. Since such approaches will 
assure conditional bias. If only a small propor-
tion of total samples in any one kriging array 
get negative weights and outliers are absent, 
the effect of negative weights is negligible (Sin-
clair and Blackwell (2002)). Here the number of 
negative weights was computed and then the 
Cumulative sum of negative weights (CSNW) 
was obtained for each ellipsoid dimensions.  

Slope of the Regression

Considering the assumptions that the variogram 
is valid and the regression is linear, it is possible 
to compute the main parameters of the regres-
sion between estimated and true block grades. 
Because we don’t know individual true block 
grades the covariance between estimated and 
true block grades can be computed.  Equation 
2 gives the slope in terms of this covariance and 
the variance of the estimated blocks:
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Where the slope of the regression is a , Vz is the 
true block grade. In a perfect estimate the slope 
of the regression a  should be very close to one. 
In these circumstances, the true grade of a set 
of blocks should be approximately equal to the 
grade obtained by the kriging estimation. 

A rewriting of the expression for the slope in terms 
of correlation coefficient ρ  is possible (Eq. 3):
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Where a  is the slope of the linear regression, 
ρ  is the linear (Pearson) correlation coefficient,

VZσ is the standard deviation of true block 
grades and 

VZ*σ is the standard deviation of 
estimated block grades.

From the above expression it can be seen that 
even for slope equaling one, the correlation 
may be less than one (because the smoothing 
effect of kriging necessitates that the variability 
of estimates is lower than that of true blocks) 
(Vann et al., 2003). The slope and its interpreta-
tion are discussed more completely by Krige 
(1994; 1996) and Rivoirard (1987). 

Another rewriting of the expression for the 
slope which can be determined for each block 
estimate as follows in Eq.4 (Sinclair and Black-
well (2002); De-Vitry (2003)):
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Where V
2σ   is block variance, i.e. the variance 

of actual block values, K
2σ  is kriging variance, 

i.e. the error variance of the block estimate and 
μ   is the absolute value of the Lagrange mul-
tiplier for each parent cell. Here, SREG was 
computed for each ellipsoid dimensions.

ARTIFICIAL NEURAL NETWORKS

Neural networks are composed of simple ele-
ments operating in parallel. These elements 
are inspired by biological neural systems. As 
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in nature, the connections between elements 
largely determine the network function. A neural 
network can be trained to perform a particular 
function by adjusting the values of the connec-
tions (weights) between elements. Typically, neu-
ral networks are adjusted, or trained, so that a 
particular input leads to a specific target output. 
The network is adjusted, based on a compari-
son of the output and the target, until the net-
work output matches the target. Many such in-
put/target pairs are needed to train a network. 
Neural networks have been trained to perform 
complex functions in various fields, including 
pattern recognition, identification, classification, 
and speech, vision, and control systems. Neural 
networks can also be trained to solve problems 
that are difficult to approach by conventional 
computing or human beings (Demuth and Beale 
(2002)).

Feed-Forward Neural Networks

Neural networks can be classified into dynamic 
and static. Static (feed-forward) networks have 
no feedback elements and contain no delays; 
the output is calculated directly from the input 
through feed-forward connections. In dynamic 
networks, the output depends not only on the 
current input to the network, but also on previous 
inputs, outputs, or states of the network. Linear 
dynamic networks are used as Linear Filters. Dy-
namic networks can also be divided into two cat-
egories: those that have only feedforward con-
nections, and those that have feedback, or recur-
rent, connections (Demuth and Beale (2002)).

Feed-forward networks have no feedback el-
ements and contain no delays; the output 
is calculated directly from the input through 
feed-forward connections. The most common 
learning algorithm for feed-forward networks 
is called Back-propagation. Standard back-
propagation is a gradient descent algorithm, 
in which the network weights are moved along 
the negative of the gradient of the performance 
function. Input vectors and the corresponding 
target vectors are used to train a network until it 
can approximate a function. Feed-forward net-
works often have one or more hidden layers of 
non-linear neurons followed by an output layer 
of linear neurons (Demuth and Beale (2002)).

In the current problem a multi-layer NN is em-
ployed to map the input vector of search ellipsoid 
dimensions onto the output vector of character-
istic attributes of kriging, namely the kriging vari-
ance, the number of non-estimated blocks and 
the cumulative sum of negative weights. This is 
further elaborated in the following sections.

THE COMPLEX (BOX) OPTIMIZATION 
METHOD

The Box (Complex) method is an algorithm used 
to determine a set of decision variables to op-
timize an objective function developed by Box 
(1965). A complex is a flexible mathematical 
figure made up of at least n+ 1 point where n 
is the number of variables. The complex lies in 
n dimensional space. Each point consists of 
coordinates which corresponds to individual 
variables of the objective function (Box (1965)). 
The complex moves around the solution space 
by expanding in contracting in any direction as 
long as it is feasible.

The generation of the initial complex begins 
with determining a feasible initial point that sat-
isfies both explicit and implicit constraints. Im-
plicit constraints are those that limit the value 
of some group of variables (i.e. F(x) <0) and 
explicit constraints limit the values of an indi-
vidual variable (i.e. 0<Xi<100). Once this initial 
feasible point has been determined, a random 
number generator is used to obtain the remain-
ing points of the initial complex. The random 
number generator should be set up to return 
variables within the range of the explicit con-
straints. It is then necessary to check and see if 
the point satisfies the implicit constraints.

If an infeasible point is generated the follow-
ing process will move it back towards feasibil-
ity. First, determine the centroid of the feasible 
points already determined (including the initial 
point). Move the infeasible point halfway to-
wards this centroid. If the point is still infeasible 
continue moving it half the remaining distance 
towards the centroid until is becomes feasible. 
Continue this process until n+ 1 feasible point 
have been generated to form the initial complex. 

Expansion and contraction of the complex 
may now take place. Compute the value of the 
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objective function at each point in the complex. 
Determine the point that produces the worst 
results ( worstP ) (worst is defined as opposite 
the goal of the objective function). A new point 
( newP ) is then determined (Eq. 5) by going a 
specific distance away from worstP  in the direc-
tion of the centroid of the remaining feasible 
points, centroidP .

(1 )new centroid worstP P Pα α= + −                 (5)

The value α is an expansion coefficient and Box 
recommended a value of 1.3. Evaluate the ob-
jective function at newP  and determine if it is 
better than worstP  .If  newP  is better, worstP is dis-
regarded and newP  becomes part of the com-
plex. If newP  is worse than worstP , then a new 
point 2newP  is contracted back towards the 
centroid at another specified distance based 
on the contraction coefficient (Eq. 6).

2 (1 )new new centriodP P Pω ω= + +               (6)

A value of 0.5 is recommended as this contrac-
tion coefficient (Tufail and Ormsbee (2007)). 
This continues until a newP is obtained that pro-
duces a better value of the objective function 
than worstP . This process shifts the complex to-
wards better values of the objective function.

Eventually this process of expansion and con-
traction will shrink the complex near the opti-
mal values of the objective function. It will ter-
minate after consecutive objective functions 
give the same result, indicating that the com-
plex has converged on the centroid (Ormsbee 
(1981)). For a more in depth description of the 
Box-Complex method, please see Box (1965), 
Tufail and Ormsbee (2007).

Complex is method in which only one objec-
tive function needed to be optimized, in this 
study we wanted to optimize three objective 
functions simultaneously. Here we used the 
weighted sum method to optimize a multiob-
jective function with complex method.

Treating Multiple Objectives

The most common way to transform a multi-
objective problem to a single-objective one is 
the well-known Weighted Sum method which 

uses the following transformation (Eq. 7): 

w∑
k

i i
i = 1

U = f ( x )                              (7)

Here, w  is a vector of weights typically set by 

the decision maker such that 1 1k
i iw= =∑ and

0w > . If objectives are not normalized, iw
’s 

need not add to 1. As with most methods that in-
volve objective function weights, setting one or 
more of the weights to zero can result in weakly 
Pareto optimal points. The relative value of the 
weights generally reflects the relative impor-
tance of the objectives. This is another common 
characteristic of weighted methods. We wanted 
all objectives to be treated equally; so all the 
weights were set to 1.0. However, since the ob-
jective values have different units and different 
orders of magnitude, making comparisons is 
somewhat difficult. Therefore we normalized the 
objective functions such that they all have simi-
lar orders of magnitude (Arora (2004)). The most 
reliable approach to do this is to use the Eq. 8:

min
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i i

f x ff
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−
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−                                (8)

APPLICATION FOR ANOMALY NO.12A IRON 
DEPOSIT

The study was performed on anomaly No.12A 
iron deposit located in Bafgh block in Cen-
tral Iran. The study area was approximately 
500*200 in plan. In order to estimate data ob-
tained from 19 boreholes with 60 and 100 m 
spacing were studied. The block size used for 
the model built for the deposit was 25*25*15 m 
that resulting in a model with 616 blocks. 

Generation of Variograms and Variogram 
Fitting

Two experimental variograms of percent iron 
grade in horizontal and vertical directions (vario-
grams are calculated as half the average squared 
difference between the paired data values) were 
calculated with a 50 m lag using all the 60*100 m 
drillholes data. These experimental variograms 
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were fitted using the spherical models and it was 
found that deposit has geometric anisotropy. 
The optimum sill and range were chosen for vari-
ograms by cross validation method. Table1 illus-
trates the variogram models. 

Data Acquisition

In order to optimize the ellipsoid dimensions 
for 155 ellipsoids with different dimensions, 
the value of kriging variance, the slope of the 
regression, Cumulative sum of kriging nega-
tive weights and the number of non-estimated 
blocks were computed. Domain variation of 
each criterion and the dimensions of ellipsoids 
are listed in Table 2. Since the deposit is iso-
tropic in horizontal direction (Table 1) the di-
mensions of ellipsoid was considered the same 
in this direction.

Network Architecture

Data vectors were divided into three sets using 
random indices, 60% for training, 20% for vali-
dation, and 20% for testing. The validation set 
is used to prevent networks over fit. At the end, 
the best network architecture was found. The 
network has three hidden layers with 9, 6, and 4 
neurons, as shown in Figure 1. In order to build 
an ANN one needs to specify the number of 
processing units, the activation function used 
by these units and a training algorithm to find 
the synaptic weights (weights of the links that 
connect the neurons in various network layers.) 

We need a set of input-output data pairs, called 
training set, and an optimization algorithm to fit 
the outputs to the given inputs by minimizing 
the deviation of the approximated outputs from 
the ideal ones. The deviation is usually repre-
sented by the mean square error of the output 
neurons over the entire training set. Various 
optimization algorithms have been employed in 
the training of the network. Our extensive ex-
periments with a number of widely used algo-
rithms revealed that in this case the Conjugate 
Gradients Method (CGM) has the best conver-
gence rate, especially when it is augmented 
with scaled restarts.

OPTIMIZATION RESULTS

The multiobjective function obtained from the 
neural network using weighted sum method 
was optimized. 1000 efficient point has been 
calculated from restarting mathematics pro-
gram. The results are listed in Table 3.

The results of this method showed that 10 opti-
mum points could be found with minimum krig-
ing variance (KV), the number of non-estimated 
blocks (NEB) and the cumulative sum of negative 
weights (CSNW). Then slope of the regression 
was used as a factor to validate the perform-
ance of the system and also select the best di-
mensions among the others. Applying the slope 
of the regression (SREG) and according to table 
3 in which ellipsoid No.7 has the most number of 
reiteration (92%), this ellipsoid was selected as 
the best one with optimum dimensions.

Table 1.	 Parameters for the spherical variogram models.

Variogram model Azimuth Dip Range(m) Sill(%2) Nugget(%2)

1 Spherical - 90 30 171 46

2 Spherical - 0 250 171 46

Table 2.	 Domain variation of criteria used for selection the best dimensions of ellipsoid.

criteria Domain variation

Kriging variance 26.77-51.53

The number of non-estimated blocks 0-582

Cumulative sum of negative weights 0-1.787

Slope of the regression 0.712-0.9

The dimensions of ellipsoid in horizontal direction 3-45 (m)

The dimensions of ellipsoid in vertical direction 20-360 (m)
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SUMMARY AND CONCLUSIONS

The definition of the search volume or kriging 
neighborhood significantly influences the out-
come of the kriging estimate. Of the multiple 
criteria used to define the search volume, per-
haps the search radius could be considered 
the most important one. A new hybrid strategy 
was proposed to find the optimal value of the 
search radius.

The proposed strategy uses experimental data 
to develop a neural simulator that would predict 

the values of kriging variance, the number of 
non-estimated blocks and cumulative sum of 
kriging negative weights for a given search ra-
dius. The neural simulator is then used to pre-
dict the value of the objective function in a Box-
Complex optimization algorithm which would 
find the search radius corresponding to the 
optimum values of the evaluated criteria. 

Application of this strategy to a real-world 
problem, the case of anomaly No.12A iron de-
posit in Bafgh in central Iran, resulted in 10 

Figure 1.	Our proposed network with two hidden layers. The input layer has 3 nodes, the next three hidden layers 
(intermediate layers) have 9, 6, and 4 nodes respectively, and the output layer have 3 node.

Table 3.	 The results obtained from restarting mathematics program of optimizing ellipsoid 
dimensions 

No.
Horizontal 
dimensions

Vertical 
dimensions

KV NEB CSNW SREG
Percentage of 
reiteration

1 130 24 35.35 0 0.87 0.871 1.4

2 142 23 34.99 0 1.19 0.875 1.1

3 155 26 34.55 0 1.29 0.882 0.85

4 164 23 34.5 0 1.36 0.883 0.71

5 178 22 34.42 0 1.49 0.884 1.3

6 182 23 34.36 0 1.5 0.885 0.85

7 190 24 34.25 0 1.48 0.887 92

8 200 26 34.16 0 1.53 0.889 0.42

9 220 24 34.10 0 1.59 0.89 0.71

10 250 22 34.14 0 1.66 0.89 0.71
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optimum points with minimum kriging vari-
ance, number of non-estimated blocks and 
the cumulative sum of negative weights. The 
slope of the regression was then used as a 
measure to validate the performance of the 
system and to choose the best dimensions 
from multiple choices. An ellipsoid of dimen-
sions 190×190×24m was identified as the best 
solution for the case study through numerous 
runs of the computer code that was generated 
to implement the proposed strategy. 

Compared to kriging estimation techniques, 
the hybrid strategy presented here could 
produce similar, if not more accurate, results 
much faster and at a considerably lower com-
putational cost. 
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