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ABSTRACT

A new parameterization of the hyperbolic tangent function is suggested for easy control of the width of the transi-
tion region between the limiting values of -1 and 1. The hyperbolic tangent function approaches the signum func-
tion as the suggested half-width parameter approaches zero. This permits definition of the rectangular function as
the limiting case of a combination of two shifted hyperbolic tangent functions. Since all types of ideal frequency re-
ject filter are derived from the rectangular function, the hyperbolic tangent window can also be used for the same
purpose. The suggested filters are continuities in the whole space and provide an opportunity for easy control of
the width of the passband, transition band and stopband through adjustment of the half-width parameter. A vari-
ety of examples are provided to instruct the design and application of one- and two-dimensional frequency reject
filters. The formulation and examples are restricted to four types of filter, namely low-, band- and high-pass, and
band-stopping filters. However, the results can easily be generalized for any type of frequency reject filter.
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0z

Tanjant hiperbolik fonksiyonu icin -1 ve 1 limit degerleri arasinda degisen gecis bélgesi genisliginin kolay denetimi
amaci ile yeni bir parametrelestirme énerilmistir. Onerilen yari-genislik parametresi sifira yaklastiginda, tanjant hiper-
bolik fonksiyonu da isaret fonksiyonuna yaklasmaktadir. Bu ézellik, dikdértgen fonksiyonun, iki kaymis tanjant hiper-
bolik fonksiyonunun bilesiminin limit durumu olarak tanimlanmasina izin verir. Bltin ideal frekans secici stizgecler
dikdértgen fonksiyondan tiiretildiginden, hiperbolik tanjant fonksiyonu da ayni amac igin kullanilabilir. Onerilen
stizgecler tim uzayda sdrekli olup, gecirme-araligi, gecis-araligi ve durdurma-araliginin genisliklerinin denetlen-
mesini olanakli kilar. Bir- ve iki-boyutlu frekans secici stizgeclerin tasarimi ve uygulamasi icin érnekler verilmistir.
Bagintilar ve drnekler, alcak-gecisli, aralik-gecisli, yliksek-gecisli ve aralik-durdurucu stizgecler ile kisitl tutulmakla
birlikte, herhangi bir siizgec tiriine kolaylikla genellestirilebilir.

Anahtar Kelimeler: Sayisal siizge¢ tasanmi, alcak-gecisli slizgegler, aralik-gecisli stizgegler, yliksek-gegisli
stizgecler, aralik-durdurucu siizgecler.
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INTRODUCTION

Digital filters have specific importance to geo-
physical data processing because the signal/
noise ratio has to be increased before the ap-
plication of inversion and other types of data
interpretation. Linear filter theory is based on
the definition of a proper window function in
the frequency domain of a low-pass filter. Other
filter types such as band-pass, high-pass and
band-stopping can be derived from a basic
low-pass filter window through the use of al-
gebraic operations. Several window functions
have been suggested for the design of digital
filters, each with their own advantages and dis-
advantages. To this author’s knowledge, the
hyperbolic tangent (HT) window was first de-
fined by Johansen and Sorensen (1979) and is
used for the truncation of filter characteristics
at the Nyquist frequency in order to compute
a filter coefficient set for the estimation of the
Hankel transform of a discrete data set. This
window provides a well-behaved transition
within the frequency domain with which to trun-
cate the spectrum, thus yielding a less oscil-
lating interpolation function in the time domain
for discrete Hankel transform computations
(Christensen, 1990; Sorensen and Christensen,
1994). Basokur (1998) adapted the HT window
for the description of one-dimensional frequen-
cy reject filters, which have subsequently been
used in various applications. For example, Do-
maradzki and Carati (2007a, 2007b) were used
these frequency rejected filters in the analysis
of nonlinear interactions and energy transfer
in turbulence. In biology, Opalka et al (2010)
used the filter described by Basokur(1998) for
the enhancement of cryo-images of Eco RNA
polymerase particles. The HT filters were em-
bedded into SPARX software that is used to
process the images obtained from the cryo-
electron microscopy (see Baldwin and Penc-
zek, 2007). These applications in varied fields
indicate a need for the further development of
HT filters for easy control of the transition band.
This paper suggests new half-width parameters
for the direct solution of this problem. Addition-
ally, the basic expressions for the box-shaped
and radially-symmetric two-dimensional HT fil-
ters are derived both in the time and frequency
domains. The computer programs and related

supplementary material that can be requested
from the author enable both the processing of
field data and the production of artificial data
for testing the success of filter design. The lat-
ter is also useful for educational purposes.

ONE-DIMENSIONAL DIGITAL FILTERS

Low-pass filter design

An ideal low-pass filter should reject all fre-
quencies higher than a cutoff frequency of f .
The regions corresponding to frequencies lower
and higher than the cutoff frequency are called
passband and stopband, respectively. In prac-
tice however, a gradational attenuation of am-
plitudes is allowed around the cutoff frequency.
This transition band permits the frequency re-
sponse transition from passband to stopband.
One of the proper functions for this type of filter
construction is the P-function, derived in Ap-
pendix A from two shifted HT functions. Rewrit-
ing equation (A12) in the frequency domain gives
the frequency response of a low-pass filter:

Hy (f)=P(f)= ;{tanh{w}— tanh[m}} 0

L n

where 7 denotes the half-width of the tran-
sition band. Figure 1a provides examples of
frequency responses calculated for a variety
of transition bands that share the same cutoff
frequency. The use of the P-function as a fre-
quency response for low-pass filters provides
an efficient tool to control the width of the
transition band. The amplitude of frequency re-
sponse is equal to 0.5 at the cutoff frequency. It
almost equals to unity and zero at the frequen-
cies of ( f; —7.) and ( fi + 1), respectively.

If the filter process is applied to digital data it
is then necessary to multiply the frequency re-
sponse by a rectangular function whose height
and width are equal to the sampling rate (4t)
and its reciprocal, respectively (see for example
Ghosh, 1971; Basokur, 1983). Since the Nyquist
frequency ( fy) is defined as half of the recipro-
cal of the sampling rate, the filter spectrum is
given as follows:
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Figure 1. Low-pass filter responses in the frequency domain with varying transition-band widths of g’ =2.5 Hz (a),

" =10 Hz (b) and " =30 Hz (c) calculated for a cutoff frequency of 50 Hz (upper panel) and the corre-
sponding filter coefficients in the time domain (lower panel).
Sekil 1. Frekans bélgesinde degisen gecis-araliklari "L =2.5 Hz (a), g’ =10 Hz (b) ve "L =30 Hz (c) icin 50 Hz kes-
me frekansli alcak-gecisli stizgec¢ yanitlar (Ustte) ve bunlara karsilik gelen zaman bélgesi stizge¢ katsayila-
ri (altta).

By (f) = At rect(124¢) H (f) = At rect(fy) Hi(f) (2)

The Nyquist frequency is always greater than BL(f)=A;[{tanh{2(f:fL)}tanh[z(fr_fL)}}
the cutoff frequency and consequently, for a . b 3)
low-pass filter, the multiplication of frequency The first step of the filtering operation in the

response by the rectangular function can only
result in the multiplication of the frequency re-
sponse by the sampling rate:

frequency domain is to perform a discrete
Fourier transform of the sampled data. The
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transformed data is then multiplied by the filter
spectrum, and finally the inverse Fourier trans-
form applied to the outcome of this multiplica-
tion yields the filtered data in the time domain.

Since multiplication in the frequency domain
is equivalent to convolution in the time do-
main, as an alternative procedure digital filter-
ing can also be performed by a convolution of
the measured data with the inverse transform
of the filter spectrum. The time domain convo-
lution operator is known as a ‘filter coefficient’
that can be easily obtained from the transform
pair of (A15) by using the symmetry property of
the Fourier transform:

b ()= CTIID (g (1)

4f\ sinh(z 1 ¢/2) @)
where the double arrow denotes the Fourier
transform pair. B; (/") approaches the ideal low-
pass frequency response as the half-width of the
transition band approaches zero. Correspond-
ingly, b; (¢) approaches the sinc-response in the
time domain (see equation A17 in the Appendix)
since sinh(x) = x for small arguments:

lim L sm(zznsz) _ sin(27 f1 t) o lim B(f) = 4t rect(f;)
>0 4fN sinh(/r n t/2) Z”th >0

©)

For the above reason, ideal filters can be con-
sidered as a special case of HT filters, and it is
sufficient to supply an extremely small transi-
tion band for the construction of an ideal filter.
The filter coefficients defined in expression (4)
can be written in a more familiar form by using
the smoothness parameter of Johansen and
Sorensen (1979) (see (A16)):

afy, sin(2xfit)

(D= fx sinh(2za fy 1) ©)
where

ﬂi

Ay - )

The limits of (4), (6) and the sinc-response ap-
proach the same numerical value for time zero:

b (0) =L . ®)

As an anglogy to the term sinc-response, Jo-
hansen and Sorensen (1979) described a simi-
lar form of (6) as the sinsh-response. In prac-
tice, the use of a newly-derived parameter (7

) is more helpful in controlling the half-width of
the transition band compared with the smooth-
ness coefficient (« ) given by Johansen and So-
rensen (1979). Despite this difference, equation

(4) will hereupon be also referred to as the sin-
sh-response. Figure 1b shows sinsh-responses
obtained from equation (4) whose filter spectra
are shown in the upper panel of Figure 1. The
oscillations of the filter coefficients decrease
as the transition-band of the filters becomes
wider in the frequency domain. This property
provides an opportunity to design relatively
short filters in the time domain. Some exam-
ples of the application of the filtering operation
in the time and frequency domains will be pre-
sented in the application section.

Band-pass filter design

An ideal band-pass filter removes all informa-
tion except the frequency band between low-
and high-cutoff frequencies. Band-pass filters
can be obtained from the subtraction of two
low-pass filters with different cutoff frequen-
cies. Figure 2 describes the construction of a
band-pass filter. The half-width of transition-
bands around low- ( f1 ) and high-cutoff ( f;;)
frequencies can be freely selected, permitting
the independent adjustment of the slope in the
transition band. Rewriting (1) for two different
cutoff frequencies and transition-band widths,
and subtracting one from the other yields

2(f+fﬁ)}_tanh[2<f—fﬁ>}

tanh{
.
Hy(f) =~ ;

2 tanh{ﬂf%)}“anh{z(f—m} o

n n

st
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Figure 2. Construction of a band-pass filter by the subtraction of two low-pass filters. The half-width values are

T =20 Hz (a) and g’ =5 Hz (b), corresponding to the half-width of the transition-band at the high-end

and low-end frequency sides, respectively. The high and low cutoff frequencies are equal to 80 and 20
Hz. The final band-pass filter presented in (c) exhibits different slopes and widths in the low and high

transition-band frequencies.

Sekil 2. ki alcak-gecisli siizgecin birbirinden cikariimasi ile aralik-gecisli stizgecin olusturulmasi. Yari-genislik de-

gerleri "H =20 Hz (a) ve 'L =5 Hz (b), gecis bélgesinin sirasi ile yiiksek ve diisiik kesme bélgelerine karsilik
gelmektedir. Yiksek ve dislk kesme frekanslan 80 ve 20 Hz degerlerine esittir. Elde edilen aralik-gecisli
slizgecin, dlstik ve yliksek gecirme-araliklarinda farkli egim ve genisligi bulunmaktadir.

where 7 and r; correspond to the half-
widths of transition-bands at the low- and high-
cutoff frequencies. The filter spectrum can be
derived from the multiplication of the frequency
response (equation 9) by the rectangular func-
tion. This yields

By(f) = At rect(1240) Hy(f) = At Hy(f)  (10)

The inverse Fourier transform of the filter spec-
trum results in the following weight coefficients
in the time domain:

by () = T |y sin(27 fiyt) i sin(2rz f 1) 1)
4f | sinh(z2nyt/2)  sinh(z%rt/2)

by (6) = Su qH sin2zfyt) L o'zL sin(27 f1 1) (12)
fx sinhQroy fyt)  fy sinh(Qray fit)

bg(0) = (fu—JSL)/ N (13)
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The sample values of the above expression give
the desired filter coefficients. Other properties
of the band-pass filter are the same as those of Ho(f) = 1—1{tanh{2(f+fH)}—tanhF(f _fH)i|} (14)
the low-pass filter. 2

H ™

High-Pass Filter Design where f;; and 5y correspond to the high-cut-

All frequencies higher than the cutoff frequency off frequency and the half-width of the frequen-
of f; should be passed by an ideal high-pass cy response at the transition-band (Figure 3c).
filter. The construction of a high-pass HT fre- The multiplication of the frequency response by
quency response and spectrum is illustrated the rectangular function yields the filter spec-
in Figure 3. The frequency response can be trum (Figure 3d):

derived from the subtraction of a low-pass fre-
quency response from unity:
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Figure 3. Development of the filter spectrum for a high-pass filter. A low-pass filter response (b) is subtracted from
unity (a) to obtain a high-pass frequency response function (c). A multiplication of the filter response by
the rectangular function, whose height and width are equal to the sampling rate, produces the final filter

spectrum (d). fH =20 Hz, fN =50 Hz, At _0.01 sec, T =5 Hz.

Sekil 3. Yliksek-gecisli stizgecin gelistiriimesi. Y(ksek-gegisli slizge¢ (c) elde etmek amaci ile algak-gegisli sliz-
gec yaniti (b), birim degerden (a) cikartilir. Siizge¢ yanitinin, yliksekligi ve genisligi érnekleme araligina esit

olan dikdértgen fonksiyon ile carpimi siizgeg izgesini (retir (d). Ju =20 Hz, T =50 Hz, At =0.01 sn, "n
=5 Hz.
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By (f) =4t rect(fn) Hy(f)

By(f)= At rect(fN)—%{tanh[z(f;fﬁ)}—tanhF(f};fH)H (15)

The inverse Fourier transform of the filter spec-
trum will result in the filter weights in the time
domain:

sin(2z fyt) 7#ry sin(27x fyt)
by (t) = - . 2 (16)
27 ft 4fN sinh(z“ryt/2)
If the filter coefficients are calculated for the
abscissa values ¢t = Fn.At, the numerical val-

ues of sin(27x fyt), except the origin, then be-
come zero:

by(t) = oy sinQRrfyt) _ afy sinQxfyt)

— 2 =- t=Fndt;n#0
4f\ sinh(7nyt/2) Sx sinhQ2za fiyt)

(17)

with o = 71y /4f . The weight coefficients at
the centre of the filter can be found by examin-
ing the limit of equation (16) as follows:

by(0)=1-fu//x- (18)
Band-stopping filters

An ideal band-stopping filter rejects frequen-
cies within a predefined frequency band. These
types of filter are obtained by a summation of
low-pass and high-pass filters whose cutoff
frequencies are f; and fy, respectively. The
sum of expressions (1) and (14) yields

Hs(f)= {tanh{z(erfL)}—tanh{z(f_fL)}}

U n

2(/+ fu) 2(/ - fw)
+1-— Z{tanh{ " H } tanh{ " H } (19)

The filter spectrum can be obtained by multi-
plying the frequency response by the rectan-
gular function:

mh[2(f'+fL)}tanh[z(f*.fL)}

U o

mﬂ{z<f+fH>}+lanh{u/’—fm}

" q

B(f) = At ect(fy) + 5
(20)

The inverse Fourier transform of the filter spec-
trum yields the desired filter coefficients in the
time domain:

b(1) = sm(27szt) 1 8in(2zf1t)  rysin(2z fyt)
2 fnt 4fN sinh(z? 1.t/2) sinh(z? 1yt/2) (21)

The first term in the above equation becomes
zero, except at the origin, if the filter coeffi-
cients are calculated for abscissa values equal
tot=Fn.Aar:

_ 7 | i sin@afit) rysinQz fyl) w0
bs(1) = 4fN sinh(z%r1/2)  sinh(z%ryt/2) t=FnAt; n# (22)

The limiting value for the zero abscissa point
can be derived from (21) as follows:

bS(0)=1+i—f—H=1 Ju—fu (23)

N N
An alternative form for expression (22) can be
given as

_fu _sin@zfit)
(N =ap -
Sy sinhQ2zey fi 1)

fu sin(27 fyt)
/N sinh(2zay fiit)

t=Fndt; n=0

(24)
with a; =7zr /4f; and ay = 7ry /4fy -
TWO-DIMENSIONAL FILTERS

Two-dimensional box-shaped filters

The measured data can be dependent on both
time and distance variables (t-x domain) as is the
case in seismic. The domain of Fourier trans-
formed data corresponding to distance is the
spatial frequency (wavenumber), which has a
dimension defined by the number of cycles per
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unit distance. The 2D Fourier transform of the
measured data provides a frequency-wavenum-
ber representation (-k domain). In such cases,
the cutoff wavenumber and cutoff frequency
are likely to differ from each other numerically
and as a consequence the frequency response
will resemble a box-shaped function that can be
expressed as the multiple of one frequency and
one wavenumber filter; each being a function of
either frequency or wavenumber:

Hy (f k) =Hy (f) Hy (k) (25)

where

HZL(f)z;{tanh{2(J:’JrfL)}—tanh{z(f_fL)}} (26)

if e

1 2(k+k) | 2(k—ky)
HzL(k)—z{tanh{ o }tanh{ - }} @7

Hy (f) and H,; (k) represent one directional
frequency and wavenumber filters, respective-
ly, and r ¢ and 7, are the half-widths of the

(a)

A —20

(b)

—an—29 @ ze

(c)

A —20

transition-bands corresponding to cutoff fre-
quency ( f; ) and cutoff wavenumber (k; ). Fig-
ures 4a and 4b show one directional frequency
and wavenumber filters that are perpendicular
to each other. The multiplication of these one
directional filters produces a box-shaped two-
dimensional filter as shown in Figure 4c. An-
other example of the frequency response of a
2D box-shaped low-pass filter is illustrated in
Figure 5a for comparison with the responses of
other types of 2D filter. The derived equations
also provide the possibility for one directional
filtering of a 2D data set. For example, the filter
operation can be carried out in only one direc-
tion by equating either (26) or (27) with the unity
in equation (25).

A two-dimensional box-shaped band-pass fre-
quency filter can be produced by the subtrac-
tion of two low-pass filters whose cut-off fre-
quencies and wavenumbers are ( fi;; k) and
(fL; k), respectively:

HZB(f’k) :HzL(fak,stkH)*H2L(f=k,fL7kL) (28)

which can also be written as

>0 as

>0 as

Figure 4. Development of a two-dimensional box-shaped filter by the multiplication of two one-directional filters.

Sekil 4. iki-boyutlu kutu-bigimli siizgecin iki adet tek-yénlii siizgecin carpimindan elde edilmesi.
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Figure 5. Frequency responses of two-dimensional box-shaped (left panel, a, b, ¢ and d) and radially symmetric
filters (right panel, e, f, g and h). The low and high cutoff frequencies are 13 and 35 Hz, with correspond-
ing half-widths equal to 2 and 3 Hz, respectively.

Sekil 5. [ki-boyutlu kutu-bicimli (sol panel, a, b, ¢ ve d) ve isinsal bakisimli (sag panel, e, f, g ve h) siizge¢ yanitlari.
13 ve 35 Hz alcak ve yliksek kesme frekanslari degerlerine, sirasi ile 2 ve 3 Hz yari-genislik degerleri karsi-
Ik gelmektedir.

Hog(f k)= Hyp (f s fa) Hop (ko) = Hop (/1) Ho(kuk) (29)

where
_1 20k+ky) | 2(k—ky)
HZL(k,kL)—Z{tanh[ o } tanh{ . }} (33)
_ In the above expressions, r denotes the half-
HZL(f,fH)=;{tanh{z(fr-:fﬂ)}—tanh{z(j;_ffﬂ)} (30) width of the corresponding transition-band.
H H i

Figure 5b shows a 2D box-shaped band-pass
filter. The low-end frequency of the filter pass-
7 band and half-width of the transition band on
H2L(k’kH)Z%{tanh{%}mm{w } (31) the low-end frequency side are 13 and 2 Hz,
respectively, while the high-end frequency and

corresponding half-width are 35 and 3 Hz. The
2(f+fL)}_tanh{2(f—fL)_} (32) same numerical values are used for the wave-
i number filter so that multiplication of the filters
produces a square-shaped 2D band-pass filter.

Tk

H2L<f,fL)=§{tanh{

if U
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A 2D high-pass frequency response can be
constructed by the subtraction from unity of a
low-pass frequency response whose cutoff fre-
quency and wavenumber are equal to f}; and
kyy , respectively:

Hoy (f k) =1=Hyy (f) Hay () (34)

where

o) = o 20 [ 200 (35

Mar g

@< ] 2 k) [ 26|

Tk Tk

e and 7y are the half-widths of transition-
bands corresponding to a cutoff frequency of
Jfu and a wavenumber of ky; . Figure 5¢ shows
a box-shaped high-pass filter obtained from
the subtraction of a low-pass filter from unity.
The cutoff frequencies and half-width values in
both directions are equal to 35 and 3 Hz, re-
spectively.

Any other type of filter can be developed by us-
ing two or more of the above-mentioned three
basic low-, band- and high-pass filters. For ex-
ample, a band-stopping filter can be produced
from the sum of low- and high-pass filters. Fig-
ure 5d shows a band-stopping filter obtained
from the sum of the low- and high-pass filters
illustrated in Figures 5a and 5c, respectively.

The filter spectra of the above-mentioned fil-
ters can be calculated via the multiplication
of the frequency response by two 2D rectan-
gular functions whose widths are equal to the
Nyquist frequency and wavenumber, respec-
tively. The heights of the rectangular functions
should be equal to half the reciprocal of the
Nyquist frequency and wavenumber, respec-
tively. The spectrum of any specific filter can
then be obtained as follows:

1 1
B(f.,k)= %rect(fN)%rect(kN) H(f.k),

_ RS 1
B(f,k)= At rect{zm}Ax rect{ZAx}H(f,k) 37)

Since the cutoff values of all low-pass filters
are always less than the Nyquist frequency and
wavenumber, the multiplication in equation (37)
reduces to

By (k) = At Ax Hoyp (f)Hyp (k) (38)

The equation for a band-pass filter can be de-
rived as follows:

Byp(f,k)= At Ax {HZL(kasfHJ‘H)7H2L(f=k7fL=kL)} (39)

However, the rectangular function remains in
the high-pass filter equation derived from (34)
and (37):

By (f k) = At rect( fyy ) Ax rect(ky ) = At Ax Hoy(f)Hou (k) (40)

2D box-shaped filters can also be designed in
the time domain. The inverse Fourier transforms
of the filter spectra provide the desired filter co-
efficients in the t-x domain. The low-pass filter
coefficients can then be calculated from the in-
verse Fourier transform of equation (38):

[ an sn@zhn | ak sn@egx) ] - o
[’ZL(I’X){D" IR sinh(ZIIaL/i_zJ[ ko sinh(Z/raxk,_xJ 1=Fna, x=rmax (41)

where o, =zr ¢ /4fL and a, =7, /4k; .

The limiting values of filter coefficients for zero
values of time and spatial variables can be writ-
ten as

fu oogky  sin(2rky x)

by (0,x)= ke Sh(rak ) t=0, x=Fm.Ax (42)
=g L SmCThY) ko o -
by (1,0)= o, 7 Sinh(2re [L1) t=FnAt, x=0 43)
k
by (0,0) =L )

k
N, AN
The filter coefficients for the band-pass filter

can be derived using the subtraction of two
low-pass filters, namely

by (t,x) = byy (t,X, fi1,kyy) = byy (1, x, f1 .,k )(45)

where
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b2L(t,x,f;{,kH):[am fu_sinQ@rfyt) Ml . sinQzkyx) } (46)

i sinhQrag fut) | ky sinh(2za ik x)

szu,x,fL,kL){a‘LL i@ /1) Mx by sin@rkyx) } 47)

S sinhQrag fi0) || ky sinh(27ag k; x)
The subscripts of thea coefficients indicate
the relevant variables and cutoff values. The
limiting values of the above expressions can be
obtained by assigning zero values to the cor-
responding variables:

fu opky  sin2rkyx) fL agky  sin(Qzkx)
by (0,%) = _
(0 = ) fy kS k) (48)

el SnQzfud) ke aufi snQafn k
b = ) oy fa by i) Ky D)

ky — fLk
by(0,0) = fHH—kaL (50)
In a similar way, I’E]heNfiIter coefficients of a high-

pass filter can be derived from the inverse
transform of (40) that gives

byn (#,x) = by (8, %, fn-kn) —boL (4, fr, k) - (B1)

where

sin(27 ft) sin(27wkyx)
2 fyt 27hkyx)

bZL(t’xﬂfN’kN): (52)

) apfu  sinQrfyt)  agyk sin(2 7wk x)
by (1%, fir, k) = 28/ H H xHH H
21 (% fu- k) A sinhQrag fyut)  ky  sinh(2zakyx) (53)

Equation (52) is always zero, except at points
where t=0; x=0 and it becomes equal to unity.
Accordingly, the filter coefficients of a high-
pass filter can be computed from the following
equations:

_apfy  sinQafyt)  agyky  sinQakyx)
ban(t:2)= fx o sinhQQray fut)  ky  sinh(Qzor kg x) 170,620 (54)
I k in(2 7k
b2H(0,x):—f—H aqky  sin(2rkyx) 1=0,x%0  (55)

N ky  sinh(2rayghyx)

by (1,0) = — G ST Ky g0 (56)
Sy sinhQrag fut) ky

by (0,0) =1 -1 % (57)
The band—stopplilng I\1£ilters can be produced

from the sum of the low- and high-pass filters,
but are not given here for the sake of brevity.

Two-dimensional radially symmetric filters

In many geological and geophysical investi-
gation techniques (for example of gravity and
magnetic methods), data are only dependent
on spatial coordinates, with the two orthogonal
coordinates such as the x-axis and y-axis in dis-
tance defining the space domain. The domain
of Fourier transformed data is spatial frequency
(wavenumber) (&, —ky or u-v) and has a dimen-
sion defined by the number of cycles per unit
distance. Such filters are usually designed as
radially symmetric, so that the cutoff wavenum-
ber becomes independent of direction. The
wavenumber response of a 2D radially symmet-
ric low-pass filter can be derived from the cor-
responding 1D filter (equation 1) by substituting

frequenc with the variable :
auency () k= \Jky +k;

R e e S el N

n L
where k; and 7 denote the cutoff wavenum-
ber and the half-width of the transition-band
(see Figure 5e). Using equation (2), the filter
spectrum can be written as follows:

By (k) = Ax;y {tanh[z(k +kL)}—tanh{2(k_kL)}} (59)

Us Us
In a similar way, the other 2D symmetric wav-
enumber responses can be derived from their
1D counterparts via the same operation through
equations (9), (14) and (19), respectively. In the
wavenumber domain, the filtering operation is
carried out via the multiplication of the filter
spectrum by the Fourier transform of the data.
The inverse Fourier transform then yields the
filtered data in the distance domain.
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The following Hankel transform pair connects
the low-pass wavenumber response function
to the corresponding impulse response func-
tion and vice-versa:

H(k)= 27ro_|9h(r)J0 (27kr) v dr (60)
0

h(r)=2x { H(k)J,(27ckr) k dk 1)

where J, is the zero-or;:ler_Bessel function
of the first kind and r =+/x’ -I-y2 . The above
pair is derived from the properties of the two-
dimensional Fourier transform of radially sym-
metric functions (e.g. Buttkus, 2000). Accord-

ingly, the filter coefficient in the distance do-
main can be calculated as

b(r) = ZnTB(k)JO(Zﬂkr) k dk 62)

where

1 1
B(k) = B(ky,ky) = Ax rect[E} Ay rec{m}H(I{) =Ax Ay H(k) (63)

that yields

b,w:,,Axﬁy}“‘{tanh[M}_mnh[M}}Wmkdk
0 n n

(64)

The value of the first HT function is always unity
for positive values of the wavenumber, and ac-
cordingly equation (64) reduces to

by (r) = ﬂAxAyT {1 - tanhr(k_m}}%(znkr) k dk
0 U

(6%)

Finally, via the application of the rectangle rule
of integration, the above integral can be substi-
tuted by the following sum:

2(jAk —ky)

by (r) = mAxAy Ak Y. j{] —tanh{
U

=

}J(;(ZWJZ%) (66)

Since J,(0) =1, the numerical value of the co-
efficient at the centre of the filter (where r=0)
can be given as follows:

- 11 ann| 26=A)
bRL(O)—ﬁAxAy-([ {1 tanh{ . }}kdk 67)

If the half-width of the transition zone (71 ) ap-
proaches zero, then the limit of the HT window
yields a rectangular function whose size is
equal to 2k , as shown in the Appendix (A11):

hm1{1_tanh[m}}:rw<h)_

VL—)02 l"L

This result leads to the easy determination of
the desired value as follows:

bey (0) = 27Ax Ay [ rect (ky ) k dk

0
ky 7k?
bre (0) =27AxAy | k dk = nAxAy ki =——
0 dhnckny (68)

where ky,and ky, are the values of Nyquist
wavenumbers corresponding to the x and y
variables, respectively. After determining the
filter spectrum of a low-pass filter in the wav-
enumber domain, a band-pass filter spectrum
(see Figure 5f) can be derived from the subtrac-
tion of two low-pass filters from each other:

BRB(k):AXAy[HL(kakH)_HL(kakL)] (69)

Substitution of equation (65) into (69) for the
high- (k,,;) and low-end (k,) wavenumbers of
the filter pass-band, respectively, yields

PRI S

H us

Consequently, the filter coefficients can be cal-
culated from the following integral equation:

brg(r) = /rAxAy]?{tanh{z(k - k”)} tanh[z(k ’k‘-)}}Jﬂ Qrkrykdk
0 Ul L (71




Basokur 81

The numerical value of the filter coefficients at
the centre of the filter can be determined with
the help of (68) in the same way:

w(kf — kD)

brp(0) = ZAxAy (ki — ki) =
" - 4kkaNy (72)

The wavenumber response of a high-pass filter
(see Figure 5g) and spectrum can be derived in
the conventional way used for one-dimensional
cases:

Hyy (k) = 1= Hpgy (k. kyy) (73)

Byyg (k) = Ax rect (kyy ) Ay rect (kyy )[1 - Hyy (k. k)] (74)

After algebraic manipulation, the wavenumber
response of the high-pass filter becomes

By (k) = Ax rect(kyy ) Ay rect(kNy )

—AxAy% {tanh{z(k+kH)}—tanh{2(k_kH)}} (75)
H H 75

In order to derive an expression for the filter
coefficients in the distance domain, the two-di-
mensional Fourier transform has to be applied
to the above equation. The transform of the first
term produces the following pair:

x sin(2zky, x) Ay sin(27kyy )
X Ty
The second term can be evaluated by the Han-
kel transformation, accordingly the filter coef-
ficients in the distance domain can be given as:

> Ax rect(kyy ) Ay rect (kNy ) (76)

Sin(2 7k, x) Sin27kyy y)
2k X 27hyyy

- EAXA}’I {lanh {M} —tanh {M}} Jo(2rkr) k dk
0 " 4

bru(r) =

(77)

Since the first term is always zero, except for
x=0; y=0, and the first HT in the integral is al-
ways equal to one for positive values of the

variable k, the above equation can be simpli-
fied to

gy (1) = —AxA yof{1 - tanh[m}}haﬂla’) kdk (78)
0 T

The filter coefficients at particular points are

by (x=0,y) = sin(2myy)) -;mmyf 1= tanh| 265D U0y & ak (79)
27rkNy y ) i

bry(x,y=0)= SInQ k) nAxAy]E{l —tanh {M}}Jﬂ(bﬂcr) k dk (80)
2k X ) Ty

ky 2

7k
bryz(0,0)=1-27Ax.Ay | k dk =1-rAxAy kf, =1- H
{ thyokyy,  (81)

Any band-stopping filter (see Figure 5h) can
be constructed by the summation of low-and
high-pass filters. The summation of equations
(63) and (77) yields, after some simplification
taking into account the properties of the HT
function, the following expression:

Brs (k) = Ax rect (ky, ) Ay rect(kNy)+%{mnh {M}—tanh {M}}

i L (82)
The inverse Fourier transformation of the above
equation provides the time domain expression
that serves in the calculation of filter coeffi-
cients:

sin(2 kg x) SIN27kyy p) N

I (83)
2 whng X

r

brs(r) =
where

27y y

I.= ﬁAxAyT{tanh{z(k_kH)}—tanh{z(k_kL)}}Jo(Zﬁkr) kdk .
0 Lt n

Some points require special care and hence
the following equations should be applied in
the calculation of the filter coefficients:

brs(r)=1, x#0,y#0 (84)
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sin(2zk
bRS(x:O’y):M_{_[r (85)
27y y
bRS(x’yZO):w_l'lr (86)

2k x

The value of the filter coefficient at the centre
can be obtained by the summation of (68) and
(81):

a(kiy = ki) _

1-zAxAy(k% - k%) (87)
Heyckngy mAxAy(kiy ~hi)

bRS(O’O) =1-

APPLICATION EXAMPLES

The computer programs that are used to pro-
duce the examples given here as well as sup-
plementary materials consisting of several ex-
amples, data files and an instruction file can
be requested from the author. The programs
are written in PV-WAVE (see http:/www.vni.
com/). Both measured and test data sets can
be processed, and these make them useful
both in professional and educational applica-
tions, respectively. The 1D computer programs
fr1D and tm1D perform filtering operations in
the frequency and time domains, respectively.
The user can generate a test data set by us-
ing some signals, namely; a sum of sinusoidal
functions, a serial combination of individual si-
nusoidal functions, a set of chirp signals and a
vibroseis sweep. The frequency varies with time
in the latter two signals. The filtering operation
begins with the fast Fourier transform (FFT) of
the data. The transformed data is multiplied by
the filter spectrum in the frequency domain and
then transformed back to the time domain by
the inverse Fourier transform. The FFT algo-
rithms use positive index numbers for the data
points and thus compute the spectrum in the
frequency range of zero to twice the Nyquist
frequency. This is not problematic, since the
calculated spectrum is periodic, with a period
defined by the number of data points and sam-
pling interval. However, the transformed data
is shifted in the range of —f, to f, . Instead

of this procedure, the computer program fr1D
calculates the filter spectrum in the range 0 to
2fN and directly multiplies it by the output of
the FFT algorithm before proceeding with the
inverse Fourier transform. The shifted filter
spectrum of a low-pass 1D filter resembles a
high-pass filter (see Figure 6a). Accordingly,
it can be obtained from the subtraction from
unity of a HT window whose cutoff frequencies
equal f, and 2f, — f, (see equation (14) for
comparison):

1 2(/-/0) 20/ -2+ /1)
H (f)=1—7{tanh[7}—tanh{7}
L 2 i (88)

L L

Figure 6b illustrates an example of a band-pass
filter whose spectrum can be obtained by the
subtraction of two low-pass filters as follows:

mh[2(f—fL)}tanh[2(f—2fﬁ +.fL>}
1 us U
Hy(f)=3

™

—tan 2(f - fu) anl 2(/ -2+ /n)

; h{ }H h{ i } &)
The shifted spectrum of a high-pass filter (Fig-
ure 6¢) is similar to the spectrum of a low-pass
filter with cutoff frequencies f,, and 2f, — f:

) :%{tanh 2= -y [MH
(0)

H U

Finally, the shifted spectrum of a band-stop-
ping filter (Figure 6d) can be obtained from the
combination of the shifted low- and high-pass
filters. Some examples demonstrating the ap-
plication of the above-mentioned filters with
the help of test data produced from the sum-
mation and combination of sinusoidal functions,
chip signal and vibroseis sweep, are provided
in the supplementary material. The computer
program tm1D performs equivalent operations
in the time domain. Since multiplication in the
frequency domain is equivalent to convolution
in the space or time domain, convolution of the
input data by filter coefficients produces the
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Figure 6. Shifted frequency responses of one-dimensional low- (a), band- (b), high-pass (c) and band-stopping

filters. The frequency axis is limited to between zero and twice the Nyquist frequency.

Sekil 6. Bir-boyutlu alcak- (a), aralik- (b), yliksek-gecisli (c) ve aralik-durdurucu siizgegler icin kaymis frekans bél-
gesi yanitlari. Frekans ekseni sifir ile Nyquist frekansinin iki kati arasinda sinirlandirilmisgtir.

desired output. Any 1D filter must exist in both
the positive and negative time direction and
the number of filter coefficients must be odd to
satisfy the symmetry condition, or a time shift
will occur in the output data. Moreover, in order
not to cause amplitude distortion, the sum of
the filter coefficients should be equal to (or at
least be very close to) unity for the low-pass
and band-stopping filters, and it should be
equal to zero for the band- and high-pass fil-
ters. The value of this sum is established via the
use of an input function consisting of a series
of equally spaced samples representing a con-
stant, which has a zero frequency component
in the frequency domain. In this case, the low-
pass and band-stopping filters should pass
these constants without any change, while the
output of the band- and high-pass filters must
be equal to zero. The individual values of each
filter coefficient versus time can be computed
using the corresponding time domain expres-
sions of (6), (12), (17) and (24). The limiting val-
ues of the filter coefficients at the centre of the
filters are given in equations (8), (13), (18) and
(23), respectively. The amount of output data
will be less than that of input data in the time
domain filtering. The digital filtering operation

commences with the matching of the filter and
input data at the initial abscissa values. The
sum of the products of the corresponding sam-
ple values of the filter and input data produces
the first output sample value. The abscissa
value of the first output sample is equal to the
abscissa value of the input datum multiplied
by the central filter coefficient. Consequently,
the length of the output data will be shortened
with filter length, namely by half of the length
between the beginning and end parts of the in-
put data. For this reason, the filtering operation
should preferably be performed in the frequen-
cy domain - except in those cases where com-
putational cost becomes a significant factor.

Four computer programs; b2d-fr, b2d-tm, r2d-
fr and r2d-tm employ two-dimensional box-
shaped (first character b) and radially symmet-
ric filters (first character r) in both the frequency
and time domains (ending with fr and tm, re-
spectively). The frequency responses of these
filters have already been illustrated in Figure
5. These programs read measured data in the
three column xyz file format, as well as being
used to create test data sets. There is also
the option of saving both the original and fil-
tered data in spreadsheet format. The following
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expressions were used for the production of
test data sets:

z(r)y=e " [acos(f;r)+bsin( f,r)] (91)

z(r)=e " [acos(f;x)+bsin(f>y)] (92)

z(r)y=e “ [acos(f;x) bsin( f5)] (93)
where

r=+x"+y>. f,,f, and a, b are the fre-

quencies and amplitudes of cosine and sinus
functions, respectively. The first function de-
fines the sum of two circular sinusoidal func-
tions. In the second and third expressions, the
cosine and sinus functions are dependent on
either variable x or y, defining a sum or multi-
plication of two perpendicular sinusoidal func-
tions, respectively. The amplitude of a sinusoi-
dal function is attenuated depending on the
coefficient («) of the radially symmetric expo-
nential function. Zero values result in no attenu-
ation. The direction of the sinusoidal function
with respect to coordinate axis can be rotated
in (92) and (93), but this is not necessary for
equation (91) since it produces a radially sym-
metric data set.

Figure 7 illustrates an example of the 2D dig-
ital filtering operation. The test data were pro-
duced by the use of (92). Two perpendicular
sinusoidal functions oscillating at frequencies
of 5 and 15 Hz were combined to construct
a test data set (see Figure 7a). In order to ap-
ply a slight attenuation, the coefficient of the
exponential function was chosen to be equal
to unity. A low-pass box-shaped filter whose
cutoff frequency and half-width were equal to 7
and 2 Hz, respectively, was applied to this data
set in the frequency domain. The correspond-
ing output in the time domain was obtained by
the inverse Fourier transform, and is illustrated
in Figure 7b. The directional sinusoidal function
oscillating at 15 Hz is completely suppressed
while the 5 Hz sinusoidal function perpendicu-
lar to the former remains in the data set.

CONCLUSIONS

It has been shown that the signum and unit
step functions, and consequently the rectan-
gular function, can be defined by a combina-
tion of HT functions. These definitions lead to
frequency response functions that are analyti-
cal in whole space from -00 to + oo without
any discontinuity. The suggested HT windows
provide an opportunity to precisely adjust the
transition band of the frequency response
function. In view of the definitions provided in
this paper, any ideal filter can be considered as
a limiting case of the corresponding HT filter.
The related filter function in the time domain
can be derived analytically from the frequency
domain expressions, except radially symmetric
two-dimensional filters. Since the time domain
filter parameters are directly related to the fre-
quency domain (for example, the half-width of
the transition band), the user can easily adjust
the filter coefficients in the time domain by im-
agining the frequency response function. The
suggested filters permit the construction of a
relatively short filter in the time domain, since
the ripples of the response function can be
suppressed by controlling the value of the half-
width of the transition band.

Other types of filter can also be potentially de-
signed by using the basic filters provided here.
For example, a notch filter that removes noise
at a particular frequency instead of a frequency
band, can be constructed by narrowing the
stopband of a band-stopping filter. This can
be realized in such a way that the terminating
frequency of the low passband is made equal
to the starting frequency of the high passband.
Consequently, the terminating frequency of the
filter passband becomes equal to the low-end
frequency plus the half-width of the transition
band. Similarly, the starting frequency of the
succeeding passband becomes equal to the
high-end frequency of the filter stopband mi-
nus the half-width of the subsequent transition
band.

APPENDIX A. BASIC DEFINITIONS

The frequency reject filters are constructed us-
ing appropriate window functions that acts as
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(a)

Figure 7. Low-pass filtering of a test data set (upper panel) consisting of two perpendicular sinusoidal functions (5
and 15 Hz). The high frequency sinusoidal is suppressed as a result of frequency domain filtering carried
by a box-shaped frequency response function. The cutoff frequency and half-width are equal to 7 and 2

Hz, respectively.

Sekil 7. Birbirine dik iki sinizoidalin (5 ve 15 Hz) toplamindan olusturulan deneme verisine (listte) alcak-gecisli stiz-
gec uygulamasi. Kutu-bicimli frekans yanit fonksiyonu ile gerceklestirilen frekans bélgesi siizgecleme so-
nucunda yliksek frekansli sinlizoidal bastirilmistir. Kesme frekansi ve yari-genislik degerleri 7 ve 2 Hz de-

gerlerine esittir.

substitutes for the role of the rectangular func-
tion in the ideal filters. The rectangular function
can be derived either from a self combination
of signum or unit step functions. For this rea-
son, definitions and Fourier transforms of the
signum and unit step functions will be intro-
duced using certain properties of the HT func-
tion. This permits the definition of the rectan-
gular function as the summation of two shifted
HT functions.

A1. Definition and Fourier transform of the
signum function

The following form of the HT function is used in
this paper:

tanh [&} (A1)

r
where x is an independent variable that may

represent time, distance, frequency etc. The
HT function becomes equal to zero and
unity when its argument is zero and greater
than 5, respectively. In connection with this
behaviour, r denotes the approximate length of
the transition from zero to unity, with the total
transition from -1 to 1 about 2r. f is a constant

that defines the degree of approximation to
unity at the point x=r. The percent relative error
in the approximation can then be estimated as

follows [1—tanh(/3)]100% . (A2)

For example, the percent relative errors for [

=2 and f =3 are % 3.6 and % 0.5, respectively.
Although the latter seems a better approxima-
tion, the selection of [ =2 is a compromise
between a good approximation to unity and
the exhibition of well behaviour around x=r in
view of the linear filter theory. The width of the
transition becomes narrower as the value of
r decreases. Hence the limit of the HT func-
tion approaches the signum function as r ap-
proaches zero:

-1, x<0
lim tanh [&} =signum(x)=4 0, x=0
r—0 r
1, x>0 (A3)

The Fourier transform of the signum function
can also be obtained from the above property.
The Fourier transform of definition (A1) can be
derived from the following transform pair given
by Bracewell (1965, page 366):
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tanh(7zx) < _—1
sinh(7 f) (A4)

with the application of the scaling property
yielding

tanh[&} < iz ’;
r ﬂ Sinh(ﬂ' l’f/ﬂ) , (A5)

where i=x/j, f denotes frequency and the
symbol <> represents a Fourier transform
pair. Since the limit of the left-hand side of the
transform pair approaches the signum function
as r approaches zero, the limit of the right-hand
side in the frequency domain, by the applica-
tion of LUHépital’s rule, then provides the Fou-
rier transform of the signum function:

- Bxi_g mor_
}gr(l]tanh‘: ”:l s1gnum(x)<—>}£r(1J B shr 1) 7 (AB)
A2. Definition and Fourier transform of the
unit step function

The unit step function can be defined in terms
of signum and HT functions as a result of defi-
nition (A3):

0, x<0
U(x):l+lsignum(x):l+llimtanh bx|_ l x=0
2 2 2 2,50 r 2
Do (A7)

x>0

In this case, the Fourier transform of the unit
step function can be easily derived from (A6)
as follows:

i

1 1. 1
U(x) —E+551gnum(x) <—>55(f)— 7S (A8)
since
1 o(f).

It is also possible to define the signum function
in terms of unit step function:

signum(x) =U(x)-U(-x) =2U(x)-1 (a9

where U(-x) denotes the negative unit step
function defined in the range (—oo; O). These
results indicate that the unit step function can
be defined, at first, from the HT function by us-
ing equation (A7), with the signum function then
defined in terms of the unit step function. For
this reason, both functions have equal impor-
tance in digital filter theory.

AS3. Definition and Fourier transform of the
rectangular function

The rectangular function can be obtained from
either two shifted signum or unit step functions:

sct(L) = %[signum(x +L)-signum(x—L)|=U(x+L)-U(x—L) (A1 0)

where L is the half width of the rectangu-
lar function. The amplitude of the rectangular
function equals 0.5 at abscissa points x=-L and
x=L. Furthermore, as a result of definitions (A3)
and (A7), the rectangular function can be de-
fined as the limiting case of the combination of
two shifted HT functions where [ =2:

0, |x[>L
lim P(x) =rect(L) = l, x| =L (A11)
r—0 2

1, |x| <L

where

P(x)= %{tanh ‘:M} —tanh [M}}
r r (A12)

The r constant gives a good approximation to
the half-width of the transition of the P(x) func-
tion. However, the above form differs in param-
eterization from the previous window applied to
frequency reject filters by Basokur (1998):
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P(x)= %{tanh [7r(2x—+14)} —tanh [n(x——L)}}
al 2alL (A13)

where the constant (« ) is known as the ‘smooth-
ness parameter’, since it controls the slope of
the transition. The window given by (A13) is a
modified version of Johansen and Sorensen’s
(1979) P-function. It should be noted that the
width of the transition could not be directly es-
timated in advance by using the smoothness
parameter of Johansen and Sorensen (1979).

The Fourier transform of (A12) can be derived
from the application of the shift theorem to the
Fourier transform pair given in equation (A5):

l tanh {
2

2(x+L):|(_)—iiz exp(27LS) ,

p
4 sinh(zrf /2)

r

1 2(x—L) —iz r 3

2tanh{ . }(—) 1 7sinh(7z2rf/2) exp(-2zLf)
since
f(xFL)yo F(f)exp(F2rLf). (A14)

The summation of both sides of the above
equations and the use of the Euler definition
produce the following result:

zr sin(2zLf)
2 sinh(7%r f12) . (A15)

Since the shape of the P-function resembles a
box-car function for small values of r, the cor-
responding function in the frequency domain
thus resembles a sinc function. This can be
shown by substituting »=4alL/x into (A15),
yielding

P(x) e

sin(2zLf)

P(x)o 2al—
sinh(2zaLf) . (A16)

The right-hand side of the above transform was
referred to as the ‘sinsh’ function by Johansen
and Sorensen (1979). Since sinh(x)=x for

small arguments, if « (and consequently r) is
sufficiently small then the Fourier transform of
the rectangular function can be derived as fol-
lows:

sin(2zLf")
T . (A17)

lim P(x) =rect(L) <>
a—0
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