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Abstract

This article aims to use Bohnenblust-Karlin's �xed point theorem to obtain new results for the impulsive
inclusions with in�nite delay in Banah space given by the form

(P )


cDα

t x(t)−Ax(t) ∈ F (t, xt), t ∈ J = [0, b], t 6= ti,

x(t) = Ψ(t), t ∈ (−∞, 0],

∆x(ti) = Ii(x(t−i )), i = 1, ...,m,

where cDα is the Caputo derivative. We examine the case when the multivalued function F is a Carathéodory
and the linear part is sectorial operator de�ned on Banach space. Also, we provide an example to elaborate
the outcomes.

Keywords: Fractional impulsive di�erential inclusions; �xed point theorems; mild solutions; fractional
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1. Introduction

Throughout the last two decades, the topic of equations and inclusions with fractional oreder has been
considered as an interesting aspect of investigation for many researchers. Not only because of many mathe-
matical branches involved in this topic but rather its increasing signi�cance in applications as modeling tool
in various disciplines; technology, physics, optimal control, etc. See, [11, 15, 19, 22] for more details.
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In particular, fractional equations and inclusions problems with undergoing impulses have gained a
tremendous attention. That is since such problems can e�ciently describe procedures which at particu-
lar moments change their state abruptly which cannot be modeled by classical di�erential schemes. One can
�nd some applications in [6, 17]. With regard to the background of general theory on the subject as well as
applied developments, we suggest Benchohra's book [7], the papers [8, 10] and within references.

Nevertheless, special concern has been dictated to those di�erential inclusions in which the past can
arbitrary a�ect the time progress of the state parameter. Such di�erential equations and inclusions, namely
di�erential equations and inclusions with delay, often occur in most signi�cant areas involving hereditary
phenomena like populations model, model of blood cell productions, electrodynamics models etc. For further
speci�cs and some recent work, one can see[9, 10, 14, 16, 17, 21, 23, 30, 31, 32]. For instance, Shu et al. [27]
introduced a di�erent concept of mild solutions for (P ) without delay when F is a completely continuous
single-valued function and A is a sectorial operator with {Sα(t) : t ≥ 0} and {Tα : t ≥ 0} are compact.
Thereafter, in [28], Shu et al. proved that the solutions obtained in [27] was not correct and presented
the right form of the solutions when 0 < α < 1 and 1 < α < 2. Agarwal et al. [1] proved the results of
(P ) with the absence of impulses and delay in case when the dimension of E is �nite and A is a sectorial
operator. They determined the dimension for mild solutions set. While Ouahab [25] investigate a version
of Fillippov's Theorem for (P ) in the case when A is an almost sectorial operator and with the absence of
impulses and delay. Alsarori et al. [3] proved the existence of solution for (P ) without delay when F is upper
semicontinuous and convex and A is not necessarily compact. Alsarori et al. [4] established new results
for (P ) without delay when F is lower semicontinuous, nonconvex and A is not compact. Shu et al. [29]
considered the mild solutions to a class of impulsive fractional evolution equations of order 0 < α < 1. They
proposed a more appropriate new de�nition of mild solutions for impulsive fractional evolution equations by
replacing the impulse term operator Tα(t − ti) with Tα(t)T −1

α (ti), where T −1
α (ti) denotes the inverse of the

fractional solution operator Tα(t) at t = ti, i = 1, · · · ,m.
Motivated by the previous papers and work, we study a case di�ers from aforementioned cases. We

examine the following system:

(P )


cDα

t x(t)−Ax(t) ∈ F (t, xt), t ∈ J = [0, b], t 6= ti, (0 < α < 1),

x(t) = Ψ(t), t ∈ (−∞, 0],

∆x(ti) = Ii(x(t−i )), i = 1, ...,m,

where cDα is the Caputo derivative , E is separable Banach space, A : D(A) ⊂ E → E is sectorial operator,
F : J × Θ → 2E is a Carathéodory multifunction, 0 = t0 < t1 < · · · < tm < tm+1 = b, for every
1 ≤ i ≤ m, Ii : E → E, ∆x(ti) = x(t+i ) − x(t−i ), x(t−i ) = lims→t−i

x(s), and x(t+i ) = lims→t+i
x(s). For

any t ∈ J , the element xt of Θ represents the history of the state from −∞ to the present time t de�ned by
xt(θ) = x(t+ θ), θ ∈ (−∞, 0], Ψ ∈ Θ. Θ will be speci�ed later.

The article starts by addressing some preliminaries and notation with respect to topics of fractional
calculus and the set-valued analysis. Section 3 outlines the essential discussion of the paper, that is; the
proof of existence results for (P ). Finally, section 4 proceeds to interpret already proved results in the
previous section through giving practical example.

2. Preliminaries

In this section, we present some primary concepts, de�nitions and initial facts which are useful for the
development of this article.
Let (E, ‖ · ‖) be a Banach space, C(J,E) = {µ : J → E, µ is continuous }, L1(J,E) = {G : J →
E, G is Bochner integrable}, L(E) = {f : E → E, f is bounded and linear operator},
Pb(E) = {X : X ⊂ E, X 6= ∅, Xis bounded }, Pcl(E) = {X : X ⊂ E, X 6= ∅, Xis closed }, Pk(E) = {X :
X ⊂ E, X 6= ∅, Xis compact }, Pc(E) = {X : X ⊂ E, X 6= ∅, Xis convex } and Pck(E) = {X : X ⊂
E, X 6= ∅, Xis convex and compact }.
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Let Θ = {Ψ : (−∞, 0] → E} be a linear space of functions from (−∞, 0] into E endowed with a seminorm
‖ · ‖Θ and satis�es the following axioms:

1. If x : (−∞, b]→ E, such that x0 ∈ Θ, then ∀ t ∈ J, xt ∈ Θ, and

‖x(t)‖ ≤ a‖xt‖Θ,

where a is a positive constant.

2. There are two functions µ1, µ2 : R+ → R+ such that

‖xt‖Θ ≤ µ1(t) sup
s∈[0,t]

‖x(s)‖+ µ2(t)‖x0‖Θ, for each t ∈ [0, b],

where µ1 is continuous and µ2 is locally bounded.

3. The space Θ is complete.

Let J0 = [0, t1], Ji = (ti, ti+1], i = 1, · · · ,m, we de�ne the set of functions:

Λ = {x : (−∞, b]→ E : x|Ji
∈ C(Ji, E) and there exist x(t+i ) and x(t−i )

such that x(ti) = x(t−i ) , x0 = Ψ ∈ Θ, i = 1, · · · ,m},

endowed with the seminorm

‖x‖Λ = sup{|x(s)| : s ∈ [0, b]}+ ‖Ψ‖Θ, x ∈ Λ.

Now, let us recall some important de�nitions and lemmas on multivalued functions and fractional calculus.

De�nition 2.1. ([13], [18]). Let F : X → P (Y ), where X and Y are topological spaces. We say that

1. F is Upper semicontinuous (u.s.c) if F−1
+ (W ) = {x ∈ X : F (x) ⊂ W} is an open subset of X for

every open set W ⊂ Y .

2. F is Completely continuous if F (V ) is relatively compact for every bounded subset V of X.

3. F possess a �xed point if ∃ x ∈ X with x ∈ F (x).

Remark 2.2. For any closed subset U ⊂ X, if F (U) is compact and F (u) is closed for every u ∈ U , then
F is u.s.c. i� F is closed.

De�nition 2.3. Let G : J × E → P (E). We say that G is Carathéodory if

1. t→ G(t, u) is measurable for every u ∈ E.

2. u→ G(t, u) is u. s. c. for a.e. t ∈ J .

Lemma 2.4. ([20]). Let G : J × E → Pck(E) be Carathéodory multivalued map, for each u ∈ E the
set SG = S1

G,u = {f ∈ L1(J,E) : f(t) ∈ G(t, u(t)) a.e. t ∈ J} 6= ∅ and F : L1(J,E) → C(J,E) be a
continuous linear map. Then the operator

F ◦ SG : C(J,E)→ Pck(C(J,E)),

u→ (F ◦ SG)(u) = F(SG)

is a closed graph operator in C(J,E)× C(J,E).



N.A. Alsarori, K.P. Ghadle, Adv. Theory Nonlinear Anal. Appl. 5 (2021), 382�392. 385

De�nition 2.5. ([19]). Let f ∈ L1(J,E). Fractional integration of the order α > 0 with lower limit zero for
f is de�ned as

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds, t > 0.

provided that the right-hand side is point-wise de�ned on [0,∞).

De�nition 2.6. ([19]). Let f ∈ Cn([0,∞),R). The Caputo derivative of the order α > 0 for f is de�ned as

cDαf(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1fn(s)ds

= In−αfn(t), t > 0, n = [α] + 1,

where [α] is the integer part of the real number α.

For further details on fractional calculus, we refer to [19, 22, 24].

De�nition 2.7. Let A : D(A) ⊂ E → E be linear closed operator. We say that A is sectorial if ∃ ω ∈
R, θ ∈ [π2 , π] and M > 0, with

1. ρ(A) ⊂ Σ(θ,ω) = {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ}.

2. ‖R(λ,A)‖L(E) ≤
M

|λ− ω|
, λ ∈ Σ(θ,ω).

For more details on sectorial, we refer to [5, 12].

De�nition 2.8. ([5]). Let (P1) de�ne as

(P1)

{
cDα

t x(t) = Ax(t), α ∈ (0, 1),

x(0) = x0,

where A is closed and linear and D(A) is dense. Then, we call the family {Tα(t) : t ≥ 0} ⊂ L(E) is a
solution operator for (P1) i�

1. Tα(t) is strongly continuous ∀ t ≥ 0 and Tα(0) = I.

2. Tα(t)D(A) ⊂ D(A) and ATα(t)x = Tα(t)Ax ∀ x ∈ D(A), t ≥ 0.

3. Tα(t)x is solution for (P1) ∀ x ∈ D(A), t ≥ 0.

De�nition 2.9. ([5]). Let Tα(·) be the solution operator for (P1) such that ‖Tα(t)‖L(E) ≤ Meωt, then, we
say that the operator A is belong to eα(M,ω), where t ≥ 0, M ≥ 1 and ω ≥ 0.

Lemma 2.10. ([27]). Let (P2) de�ne as

(P2)

{
cDα

t x(t) = Ax(t) + h(t), α ∈ (0, 1),

x(0) = x0.

If A is sectorial operator and h satis�es the uniform Hölder condition with exponent σ ∈ (0, 1], then (P2) has
unique solution x(t) de�ned as:

x(t) = Tα(t)x0 +

∫ t

0
Sα(t− s)h(s)ds,

where Tα(t) = 1
2πi

∫
Υ e

λtλα−1 R(λα, A)dλ, Sα(t) = 1
2πi

∫
Υ e

λt R(λα, A)dλ, and Υ is a suitable path.
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Lemma 2.11. ([5]). Let α ∈ (0, 1) and A ∈ Aα(θ0, ω0) with ω0 ∈ R and θ0 ∈ (0, π2 ], then

‖Tα(t)‖L(E) ≤Meωt and ‖Sα(t)‖L(E) ≤ Ceωt(1 + tα−1) , for every t > 0, ω > ω0.
Let

MTα = sup
0≤t≤b

‖Tα(t)‖L(E), MSα = sup
0≤t≤b

Ceωt(1 + tα−1).

Then,
‖Tα(t)‖L(E) ≤MTα , ‖Sα(t)‖L(E) ≤ tα−1MSα ,

where Aα(θ0, ω0) = {A ∈ eα : A generates analytic solution operators Tα
of type (θ0, ω0)} and eα = ∪{eα(ω) : ω ≥ 0}.

De�nition 2.12. Let x : (−∞, b]→ E. The function x(t) is called solution for (P ) if

x(t) =


Ψ(t), t ∈ (−∞, 0]∫ t

0 Sα(t− s)f(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(x(t−k )) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,

(1)

where i = 1, · · · ,m and f ∈ S1
F .

Theorem 2.13. ([20]). Let E be Banach space and D ∈ Pcl,c(E). If G : D → Pcl,c(D) is upper semicon-
tinuous and G(D) is relatively compact in E, then G has �xed point in D.

3. Main Results

This section aims to prove the existence results for the problem (P ).

Theorem 3.1. Let A ∈ Aα(θ0, ω0) such that θ0 ∈ (0, π2 ] and ω0 ∈ R.
We assume the following conditions:

(H1) The semigroup {Sα(t) : t > 0} is compact.

(H2) The multivalued function F : J × Θ → Pck(E) is Carathéodory and for every x ∈ Θ, the set
S1
F,x = {f ∈ L1(J,E) : f(t) ∈ F (t, xt) a.e. t ∈ J} is nonempty.

(H3) There is ϑ ∈ L1(J,R+) with

‖F (t, x)‖ = sup{|u| : u ∈ F (t, x)} ≤ ϑ(t)(1 + ‖x‖Θ), t ∈ J, x ∈ Θ.

(H4) Ii : E → E is continuous, compact and ‖Ii(x)‖ ≤ hi‖x‖ ∀x ∈ E, where hi > 0, i = 1, · · · ,m.

Then (P) has a mild solution on (−∞, b] provided that there is r > 0 such that

MTαhr +MSα(1 + δ2‖Ψ‖+ δ1r)
bα

α

∫ t

0
ϑ(s)ds < r,

where δ1 = supt∈J µ1(t), δ2 = supt∈J µ2(t), and h =
∑m

i=1 hi.

Proof. We will turn problem (P) into �xed point problem. De�ne the multivalued function Π : Λ → P (Λ)
such that Π(y) = {y ∈ Λ} with

y(t) =


Ψ(t), t ∈ (−∞, 0]∫ t

0 Sα(t− s)f(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(x(t−k )) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,
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where i = 1, · · · ,m and f ∈ S1
F . Clearly, mild solutions of (P ) are just �xed points of Π. Let Ω : (−∞, b]→ E

such that

Ω(t) =

{
Ψ(t), t ∈ (−∞, 0];

0, t ∈ J.

This means, Ω0 = Ψ. For all v ∈ C(J,E) with v(0) = 0, let us de�ne the function v as

v(t) =

{
0, t ∈ (−∞, 0];

v(t), t ∈ J.
.

Let xt = Ωt + vt, t ∈ (−∞, b]. Then, x(·) satis�es (1) i� v0 = 0, and for each t ∈ J we have

v(t) =

{∫ t
0 Sα(t− s)f(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(Ω(t−k ) + v(t−k )) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,

where i = 1, · · · ,m and f ∈ S1
F (·,Ω+v). Let Λ = {v ∈ Λ : v0 = 0}, for each v ∈ Λ we have

‖v‖Λ = sup
t∈J
‖v(t)‖+ ‖v0‖Θ = sup

t∈J
‖v(t)‖.

Therefore, (Λ, ‖ · ‖Λ) is Banach space.
Now, let G : Λ→ P (Λ) be an operator de�ne as follows: G(v) = {y ∈ Λ} such that

y(t) =

{∫ t
0 Sα(t− s)f(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(Ω(t−k ) + v(t−k )) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,

(2)

where i = 1, · · · ,m and f ∈ S1
F (·,Ω+v). Clearly, Π has �xed point i� G has �xed point. So, we show that

G has �xed point by using Theorem 2.13. For better readability, we break the proof into a sequence of steps.
Step 1. G(v) ⊂ Λ is convex for each v ∈ Λ.
Let v ∈ Λ, y1, y2 ∈ G(v), and λ ∈ (0, 1). If t ∈ J0 from (2), we have

λy1(t) + (1− λ)y2(t) =

∫ t

0
Sα(t− s)[λf1(s) + (1− λ)f2(s)]ds.

where f1, f2 ∈ S1
F (·,Ω+v). Since F has convex values, S1

F (·,Ω+v) is convex. Then, [λf1 + (1−λ)f2] ∈ S1
F (·,Ω+v).

Thus, λy1(t) + (1− λ)y2(t) ∈ G(v), ∀t ∈ J0.
Similarly, we can prove that λy1(t) + (1− λ)y2(t) ∈ G(v) for all t ∈ Ji, i = 1, · · · ,m. This means that G(v)
is convex for each v ∈ Λ.
Step 2. Let D = {v ∈ Λ : v(0) = 0, ‖v‖Λ ≤ r}. Obviously, D is bounded, convex and closed set in Λ. We
show that G(D) ⊂ D. Let y ∈ G(v) , v ∈ D, by using Lemma (3.5) in [2], Lemma 2.11 with H3, for t ∈ J0,
we get

‖y(t)‖ ≤ ‖
∫ t

0
Sα(t− s)f(s)ds‖ ≤MSα

∫ t

0
(t− s)α−1ϑ(s)(1 + ‖Ω + v‖Θ)ds

≤MSα(1 + δ2‖Ψ‖+ δ1r)

∫ t

0
(t− s)α−1ϑ(s)ds

≤MSα(1 + δ2‖Ψ‖+ δ1r)
bα

α

∫ t

0
ϑ(s)ds < r.
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Similarly, if t ∈ Ji, i = 1, 2, · · · ,m by using H4 in addition we get

‖y(t)‖ ≤ ‖
k=i∑
k=1

Tα(t− tk)Ik(Ω(t−k ) + v(t−k )‖+ ‖
∫ t

0
Sα(t− s)f(s)ds‖

≤MTαhr +MSα

∫ t

0
(t− s)α−1ϑ(s)(1 + ‖Ω + v‖Θ)ds

≤MTαhr +MSα(1 + δ2‖Ψ‖+ δ1r)
bα

α

∫ t

0
ϑ(s)ds < r.

Which follows that y ∈ D. Then, G(D) ⊂ D.
Step 3. G maps bounded sets into equicontinuous sets in Λ. Let v ∈ D with y ∈ G(v), from the de�nition
of G, there is f ∈ F (·,Ω + v) such that

y(t) =

{∫ t
0 Sα(t− s)f(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(Ω(t−k ) + v(t−k )) +

∫ t
0 Sα(t− s)f(s)ds, t ∈ Ji,

If t ∈ J0. Let ι > 0 with t+ ι ∈ J0. Then

‖y(t+ ι)− y(t)‖ ≤ ‖
∫ t+ι

0
Sα(t+ ι− s)f(s)ds−

∫ t

0
Sα(t− s)f(s)ds‖

≤
∫ t

0
‖Sα(t+ ι− s)f(s)− Sα(t− s)f(s)‖ds

+

∫ t+ι

t
‖Sα(t+ ι− s)‖‖f(s)‖ds

≤ R1 +R2,

where

R1 =

∫ t

0
‖Sα(t+ ι− s)f(s)− Sα(t− s)f(s)‖ds,

R2 =

∫ t+ι

t
‖Sα(t+ ι− s)‖‖f(s)‖ds.

Since f ∈ F (·,Ω + v), hence f dependant of Ω + v, so by the de�nition of Sα and Theorem of Lebesgue
Dominated Convergence, we get

lim
ι→0

R1 ≤ lim
ι→0

∫ t

0
‖Sα(t+ ι− s)f(s)− Sα(t− s)f(s)‖ds

≤
∫ t

0
lim
ι→0
‖Sα(t+ ι− s)f(s)− Sα(t− s)f(s)‖ds = 0.

For R2 we have

lim
ι→0

R2 ≤ lim
ι→0

MSα
ια

α
(1 + δ2‖Ψ‖+ δ1r)

∫ t+ι

t
ϑ(s)ds = 0.

If t ∈ Ji = (ti, ti+1], i = 1, · · · ,m. Let t, t+ ι ∈ Ji, we have

‖y(t+ ι)− y(t)‖

≤
k=i∑
k=1

‖Tα(t+ ι− tk)Ik(Ω(t−k ) + v(t−k ))− Tα(t− tk)Ik(Ω(t−k ) + v(t−k ))‖

+ ‖
∫ t+ι

0
Sα(t+ ι− s)f(s)ds−

∫ t

0
Sα(t− s)f(s)ds‖.
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Similar discussion as before with consider that Tα is strongly continuous, we get

lim
ι→0
‖y(t+ ι)− y(t)‖ = 0.

Therefore, G(D) is equicontinuous.
Step 4. (GD)(t) = {y(t) : y ∈ G(D)} is relatively compact in E for each t ∈ J .
For t ∈ J0 = [0, t1], let 0 < t ≤ s ≤ t1 and ε ∈ (0, t). For v ∈ D we de�ne

yε(t) =

∫ t−ε

0
Sα(t− s)f(s)ds,

where f ∈ F (·,Ω + v). Since Sα(t) is compact for t > 0 , the set Yε = {yε(t) : yε ∈ G(D)} is relatively
compact in E. Moreover,

‖y(t)− yε(t)‖ ≤ ‖
∫ t

t−ε
Sα(t− s)f(s)ds‖ (3)

Similarly, for t ∈ Ji = (ti, ti+1], i = 1, · · · ,m. Let ti < t ≤ s ≤ ti+1 and ε ∈ (0, t). For v ∈ D, we de�ne

yε(t) =
k=i∑
k=1

Tα(t− tk)Ik(Ω(t−k ) + v(t−k )) +

∫ t−ε

0
Sα(t− s)f(s)ds,

where f ∈ F (·,Ω + v). Since Sα(t) is compact for t > 0 and the functions Ik, k = 1, · · · ,m are compact, the
set Yε = {yε(t) : yε ∈ G(D)} is relatively compact in E. Furthermore,

‖y(t)− yε(t)‖ ≤ ‖
∫ t

t−ε
Sα(t− s)f(s)ds‖. (4)

Obviously, the right hand side of (3) and (4) tend to zero as ε→ 0. Hence, there exists a relatively compact
set that can arbitrary close to (GD)(t) = {y(t) : y ∈ G(D)} for t ∈ J . Therefore, (GD)(t) is relatively
compact in E for t ∈ J .
As a consequence of Step 2 to 4 together with the Arzela-Ascoli theorem we conclude that G is completely
continuous.
Step 5. G has closed graph. Let vn → v∗, yn ∈ G(vn), yn → y∗, as n → ∞. We claim that y∗ ∈ G(v∗).
Because, yn ∈ G(vn), n ≥ 1, from the the de�nition of G, there exists fn ∈ S1

F (·,Ωn+vn) with

yn(t) =

{∫ t
0 Sα(t− s)fn(s)ds, t ∈ J0,∑k=i
k=1 Tα(t− tk)Ik(Ωn(t−k ) + vn(t−k )) +

∫ t
0 Sα(t− s)fn(s)ds, t ∈ Ji.

For t ∈ J0, we prove that there is f
∗ ∈ S1

F (·,Ω∗+v∗) with

y∗(t) =

∫ t

0
Sα(t− s)f∗(s)ds.

Let F : L1(J0, E)→ C(J0, E) de�ned by

F(f)(t) =

∫ t

0
Sα(t− s)f(s)ds.

Obviously, F is continuous linear operator. From Lemma 2.4, F ◦ S1
F is closed graph operator. Also, for all

t ∈ J0, we get
yn(t) ∈ F(S1

F (·,Ωn+vn)).

Since vn → v∗ and yn → y∗, ∀t ∈ J0 we have

y∗(t) =

∫ t

0
Sα(t− s)f∗(s)ds,
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for some f∗ ∈ S1
F (·,Ω∗+v∗).

Similarly, for any t ∈ Ji, i = 1, · · · ,m, we have

yn(t) =

k=i∑
k=1

Tα(t− tk)Ik(Ωn(t−k ) + vn(t−k )) +

∫ t

0
Sα(t− s)fn(s)ds.

We prove that for t ∈ Ji, there is f∗ ∈ S1
F (·,Ω∗+v∗) with

y∗(t) =
k=i∑
k=1

Tα(t− tk)Ik(Ω∗(t−k ) + v∗(t−k )) +

∫ t

0
Sα(t− s)f∗(s)ds.

For each t ∈ Ji, i = 1, 2, · · · ,m, we have

‖[yn(t)−
k=i∑
k=1

Tα(t− tk)Ik(Ωn(t−k ) + vn(t−k ))]

−[y∗(t)−
k=i∑
k=1

Tα(t− tk)Ik(Ω∗(t−k ) + v∗(t−k ))]‖ → 0 as n→∞.

Now, let us de�ne the linear continuous operator F : L1(Ji, E)→ C(Ji, E) such that

F(f)(t) =

∫ t

0
Sα(t− s)f(s)ds.

By Lemma 2.4 and de�nition of F we have F ◦ S1
F is a closed graph operator. Moreover, for every t ∈ Ji,

[yn(t)−
k=i∑
k=1

Tα(t− tk)Ik(Ωn(t−k ) + vn(t−k ))] ∈ F(S1
F (·,Ωn+vn)).

Since vn → v∗, for some f∗ ∈ S1
F (·,Ω∗+v∗) , it follows that, for each t ∈ Ji, i = 1, · · · ,m, we have

y∗(t) =
k=i∑
k=1

Tα(t− tk)Ik(Ω∗(t−k ) + v∗(t−k )) +

∫ t

0
Sα(t− s)f∗(s)ds.

Then, G is closed. By Remark 2.2, G is u. s. c.. Hence, by Theorem 2.13, G has �xed point v ∈ Λ which is
mild solution for the problem (P ).

4. Example

For all z ∈ [0, π], and i = 1, 2, · · · ,m, consider the problem:

∂αt u(t, z)− ∂2
zu(t, z) ∈ R(t, u(v, z)), t ∈ [0, 1], t 6= ti,

u(t, 0) = 0,

u(t, π) = 0,

∆u(ti)(z) =
∫ ti
−∞ βi(ti − µ)dµ cos(u(ti)(z)),

u(t, z) = u0(v, z), −∞ < v ≤ 0,

(5)

where ∂αt is the Caputo fractional partial derivative (0 < α < 1), t ∈ [0, 1], z ∈ [0, π] and βi : R → R,
i = 1, · · · ,m. Put E = L2([0, π]]), and let A : D(A) ⊂ E → E de�ned by Ay = y

′′
, such that D(A) = {y ∈

E : y, y′ are absolutely continuous, y′′ ∈ E, y(0) = y(π) = 0}.
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Then,

Ay =
∞∑
n=1

n2(y, yn)yn, y ∈ D(A),

where yn(s) =
√

2 sin(ns), n ∈ N, is the orthogonal set of eigenvectors of A. From [26], A generates analytic
semigroup {T (t) : t ≥ 0} in E given by

T (t)y =
∞∑
n=1

e−n
2t(y, yn)yn, ∀ y ∈ E,∀ t > 0.

So, {T (t) : t > 0} is uniformly bounded compact. Therefore, R(λ,A) = (λ−A)−1 is a compact operator
for each λ ∈ ρ(A). This means A ∈ Aα(θ0, ω0).

Set

Ii(x(t−i ))(z) =

∫ 0

−∞
βi(ti − µ)dµ cos(u(ti)(z)), i = 1, · · · ,m.

Also, we de�ne Ψ : (−∞, 0]→ E by

Ψ(t) = u0(v, z), −∞ < v ≤ 0, z ∈ [0, π].

If F (t, xt)(z) = R(t, u(t, z)), z ∈ [0, π]. Then, we can rewrite (5) as:
cDαx(t)−Ax(t) ∈ F (t, xt), t ∈ J = [0, 1], t 6= ti, i = 1, ...,m,

x(t) = Ψ(t), −∞ < t ≤ 0,

∆x(ti) = Ii(x(t−i )), i = 1, ...,m.

If we put stable conditions on F as in Theorem 3.1, the system (5) has a mild solution on (−∞, 1].

Conclusion

The present article succeeded to capture su�cient conditions with which the given system (P ) has mild
solutions. Beside various techniques and methods, we mainly relied on Bohnenblust-Karlin's �xed point
theorem. In essence, the results drawn by this paper extended and improved some previous related studies.
To enhance our �ndings, we manage to provide a numerical example in the last section.
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