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ABSTRACT

Glucose is the main energy source of the various types of cells and largely metabolized by either glycolysis or pentose phosphate pathway 
(PPP). Glucose-6-phosphate dehydrogenase (G6PD, glucose 6-phosphate (G6P): NADP (+) oxidoreductase, EC 1.1.1.49) is the first and rate 
limiting enzyme of the oxidative branch of the PPP. This enzyme found in many species from bacteria to humans and is found in all cell types. 
G6PD deficiency is the most common enzyme deficiency affecting 400 million people worldwide. However, moderate G6PD deficiency may 
not give symptoms but can lead to various neurological and neurodegenerative disorders including polyneuropathies. Both inflammation and 
oxidative stress play a major role in the formation of the neurological disorders, however, G6PD gives advantage to brain and nerve cells to fight 
against oxidative stress, neurodegeneration, neuronal survival and aging. In conclusion, G6PD plays vital role to maintain homeostasis of lipid, 
redox and energy metabolisms. Thus, impairment in the G6PD activity may cause elevated levels of oxidative stress involved in the formation 
of the neurodegeneration and may involve in the primary cause of idiopathic sensory-motor polyneuropathy.
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Cells, mainly neurons utilize glucose as the main energy source for 
instance brain is consuming 20% of glucose-derived energy in the 
body. Glucose metabolism provides energy for ATP production, 
neurotransmitter synthesis, maintenance of ion balance, 
generation of action potential, neuronal and non-neuronal cellular 
function, that all maintain together physiological and pathological 
functions of the brain (1–3). Metabolization of glucose occurs via 
either glycolysis or pentose phosphate pathway (PPP) depends on 
the requirement and the favor of the metabolic pathways in the 
brain. Major cellular ATP production occurs via glycolysis, where 
glucose is converted into pyruvate to produce ATP and provides a 
substrate for oxidative phosphorylation (OXPHOS). On the other 
hand, glucose is degraded into NADPH and 5-carbon sugars 
via glucose 6-phosphate dehydrogenase (G6PD) (D-glucose-6-
phosphate: NADP+ oxidoreductase, EC 1.1.1.49) in PPP, which has 
both oxidative and non-oxidative branches. PPP activity increases 
in cells with high rate of proliferation or in need of NADPH, thus 
PPP play vital role to maintain cellular redox balance in the all cells 
including nerve cells (2, 4–6) (Figure 1). Different cell types have 
different pathways to metabolize glucose, for instance neurons 
use mainly glycolysis to produce ATP, where oligodendrocytes 

and astrocytes metabolize glucose via PPP to maintain NADPH to 
produce cholesterol which is necessary in the myelin sheath (7–9).

G6PD enzyme is found in many species from bacteria to humans 
in all cell types (10). Also, G6PD deficiency is the most common 
enzyme deficiency affecting 400 million people worldwide (11, 
12). Since G6PD enzyme is the centre of the metabolism, its 
activity must be very tightly regulated. Previously, it is thought that 
NADPH/NADP ratio regulate G6PD, however according to many 
studies over past 25 years, G6PD is regulated at the transcription, 
translation, post-translation, and intracellular location levels. 
Positive regulators of G6PD can be categorized as Platelet-
derived growth factor (PDGF), epidermal growth factor (EGF), 
vascular endothelial growth factor (VEGF), hepatocyte growth 
factor (HGF), insulin, vitamin D, phosphoinositide 3-kinase 
(PI3K), phospholipase C-γ, RAS-GTPase, (cyclic guanosine 
monophosphate) cGMP-dependent protein kinase G (PKG), 
mTOR, S6 kinase, Src, TP53-inducible glycolysis and apoptosis 
regulator (TIGAR), heat shock protein 27 (Hsp27), ATM, SREBP, 
Nrf2, where negative regulators are aldosterone, cAMP, cAMP-
dependent PKA, CREM, arachidonic acid, p38 MAP kinase, 
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p53, TNF-α, AMP kinase. Thus there are multiple proteins and 
pathways involving in the regulation of G6PD activity, expression, 
location, interaction with other proteins from gene expression to 
its activity (13–20).

Since supplying metabolic energy to the nerve cells and metabolic 
activity in the brain must be constant at all times to maintain 
homeostasis, energy metabolism must be tightly controlled (4). In 
this concept, we aimed to explain the role of the G6PD in nervous 
system metabolism in relation with oxidative stress, energy and 
lipid metabolisms in our review.

Glucose-6-phosphate dehydrogenase and anti-oxidant defence
Glucose-6-phosphate dehydrogenase is the rate limiting enzyme 
in the PPP involved in the production of the reduced nicotinamide 
adenine dinucleotide phosphate (20, 21). Glucose 6-phosphate 
(G6P) is converted to ribulose‐5‐phosphate (R5P), where NADP+ 
is reduced to NADPH through G6PD and 6‐phosphogluconate 
dehydrogenase (6PGD) enzymes. NADPH is major cellular 
reductant involving in the balance between oxidized glutathione 
(GSSG) and reduced glutathione (GSH) as redox couple system 
(Figure 1). GSH is a major antioxidant molecule involving in the 
various cellular processes such as detoxification, anti-oxidant 
defence mechanism and cell proliferation through maintaining 
the intracellular redox homeostasis. Detoxification of xenobiotics, 
drugs, toxins or heavy metals occurs via glutathione metabolism. 
GSH is oxidized to GSSG under oxidative stress conditions via 
glutathione peroxidase (GPx) enzyme and reduced back to GSH 
by glutathione reductase (GR) enzyme to maintain GSH/GSSG 
balance by NADPH-dependent mechanism in both cytosol and 
mitochondria (22–28). Intracellular GSH concentration and GSH/

GSSG ratio play a major role in the defence mechanism against 
oxidative stress that is regulated by glutathione dependent 
enzymes including GR and GPx (26–30). NADPH is the limiting 
substrate for GR activity catalysing the reaction of converting 
GSSG to GSH, therefore cells exposed to elevated levels of 
oxidative stress need high PPP activity (2, 26, 31–35).

In this concept, impairment in the G6PD metabolism disrupts the 
balance between the reduced and oxidized forms of nicotinamide 
adenine dinucleotide phosphate ratio leading to the imbalance 
in the redox homeostasis. That causes dysfunctional cell growth 
and signalling, abnormal embryonic development, and altered 
susceptibility to various types of infection (28, 36–38). On 
the other hand, G6PD has a neuroprotective role in the brain 
ischemia through promoting pentose phosphate pathway and 
G6PD protects brain against neurodegeneration and oxidative 
stress-induced DNA damage (39, 40). Abnormal G6PD activity in 
the brain leads to elevated levels of oxidative stress which may 
impair calcium mobilization, apoptosis in neurons, astrocytes and 
microglia, ion transport and excitotoxicity, thus brain homeostasis. 
Neuronal death occurs via either apoptosis or excitotoxicity and 
imbalance in both pathways is mainly contributed to diseases 
including Alzheimer, Parkinson, Huntington and amyotrophic 
lateral sclerosis (ALS) (41–43).

Role of G6PD in the brain disorders and nervous system
G6PD is the rate limiting enzyme in the PPP responsible for 
NADPH production that is involved in both lipid and oxidative 
stress metabolisms. Glucose is metabolized by either glycolysis 
or PPP in the cells dependent on the requirement and favour of 
the metabolic processes. So, G6PD is main enzyme responsible 

Figure 1. The role of glucose-6-phosphate dehydrogenase on the oxidative stress metabolism via pentose phosphate pathway.
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for cellular redox homeostasis, NADPH/NADP balance, 
inflammation, oxidative stress, lipid and fatty acid metabolism. 
On the other hand, glucose metabolism involved in the cell death 
pathways by glucose-metabolizing enzymes, thus responsible for 
the regulation of the cell death as well (20, 12, 43).

Both inflammation and oxidative stress play a major role in the 
formation of the neurological disorders, however PPP pathway 
gives advantage to brain to fight against oxidative stress, 
neurodegeneration, neuronal survival and aging. For instance, 
decreased glucose consumption in the brain is tightly associated 
with the aging and neurodegeneration (12, 20, 43). Oxidative 
stress can be described as the imbalance between antioxidant 
defences and reactive oxygen species (ROS) also known as free 
radicals as well. Compared to the other organs, brain is the 
most susceptible one against oxidative stress, since high oxygen 
consumption, higher levels of iron in some brain areas, PUFA 
as target for lipid peroxidation and low activity of antioxidant 
enzyme activities compared to the other organs including liver 
and kidney (44–46). Also, it is suggested, that neuron loss in 
neurological disorders are mainly resulted from ROS-induced 
neuron loss including ALS, Parkinson Disease, ischemia and 
Alzheimer’s Diseases (47–50).

Glutathione is a major redox agent in the cell and involved in 
the balance between GSSG and GSH as redox couple system. 
GSH metabolism is responsible for the various cellular processes 
such as detoxification, antioxidant defence mechanism and 
cell proliferation through maintaining the intracellular redox 

homeostasis. Xenobiotics, drugs, toxins or heavy metals are 
detoxicated by glutathione metabolism enzymes. GSH is oxidized 
to GSSG during oxidative stress metabolism via GPx enzyme and 
reduced to back GSH by GR enzyme to maintain GSH/GSSG 
balance by NADPH-dependent mechanism in both cytosol and 
mitochondria (22–28, 30). Both Intracellular GSH levels and GSH/
GSSG ratio are key players of the defence mechanism against 
oxidative stress regulated by glutathione dependent enzymes 
including GR, GPx and glutathione S– transferase (GST) (28–30). 
NADPH is produced by G6PD via PPP and the limiting substrate 
for glutathione reductase activity catalysing the reaction of 
converting GSSG to GSH, therefore cells exposed to elevated levels 
of oxidative stress need high PPP activity (2, 26). Mitochondria 
is the organelle where oxidative phosphorylation takes place 
resulting in the ROS formation, therefore both mitochondrial 
dysfunction and oxidative stress contribute to the formation of 
various neurological disorders including schizophrenia, anxiety 
related disorders, Huntington, Alzheimer, Parkinson, depression 
and multiple sclerosis (MS) (45, 51–55).

Overall, G6PD plays vital in the NADPH production, redox 
homeostasis, lipid and glucose metabolism, thus it maintains 
homeostasis and defence mechanism against diseases in the 
brain. Thus, impairment in the G6PD activity is directly involved 
in the imbalance of oxidative stress metabolism that leads to 
neurodegeneration, since the brain is the most vulnerable organ 
against oxidative stress compared to the other organs including 
liver and kidney.

Figure 2. Possible contribution of pre-diabetes, diabetes and G6PD deficiency on the neurodegeneration via elevated levels of oxidative stress.
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G6PD deficiency and Polyneuropathies
There may be several disorders that the main causative is unknown 
cause or mechanism but G6PD deficiency may have a key role in 
these idiopathic diseases. Neuropathy is not caused by a single 
disease and there may be lot underlying reasons such as diabetes, 
autoimmune disorders, medications, xenobiotics, poisons and no 
known cause (56). G6PD is the most common enzymopathy and 
the severe form the best described red blood cell worldwide if 
the patient has acute haemolysis from G6PD deficiency. However, 
moderate form of G6PD deficient persons are asymptomatic 
(57). Combination of two diseases, diabetes and G6PD deficiency 
potential causes idiopathic sensory-motor polyneuropathy 
because both of these diseases are directly increase oxidative 
stress and change the redox potential of glutathione (26, 58, 59). 
G6PD enzyme deficiency contributes to the elevated levels of 
oxidative stress as a result of decreased G6PD activity that may 
cause neuron degeneration. On the other hand, high glucose 
concentrations inhibit G6PD that, leading to increased oxidative 
stress and β-cell apoptosis leading to the nerve damage. As a 
result, both increased levels of glucose and decreased G6PD 
activity contribute to the elevated levels of oxidative stress 
leading to the neurodegeneration causing even different types 
polyneuropathies (Figure 2) (6, 58, 60, 61).

Contribution of oxidative stress on the different types of 
polyneuropathies have been reported previously, for instance 
chronic idiopathic axonal polyneuropathy, chronic inflammatory 
demyelinating polyneuropathy (CIDP) and familial amyloid 
polyneuropathy (62). On the other hand, G6PD deficiency is tightly 
associated with nonarteritic anterior ischemic optic neuropathy 
in (63, 64). Although G6PD deficiency may be tightly associated 
with different types of neuropathies, there are no published data 
explaining possible mechanisms and correlation between G6PD 
deficiency and polyneuropathies.

CONCLUSION

Since G6PD enzyme is the centre of the many dynamic motions, 
different biological and pathophysiological processes, it is 
regulated at transcriptional, translational and post-translational 
levels. This enzyme has enormous roles in all types of cells, 
especially important in the nervous system. The brain is highly 
susceptible to oxidative injury, changes in total brain lipids, 
energy depletion. The protective effect of G6PD deficiency 
against malaria is well known, but the mechanism(s) of protection 
from various multifactorial disorders and NCS diseases such as 
cancer, AD and PD remain unclear. Understanding the molecular 
properties and G6PD activity of brain tissue metabolism, can 
provide new insights into the pathophysiology of various diseases 
and may lead to the discovery of new diagnostic biomarkers and 
therapeutic molecules for decreasing the rate of damage then 
slowing aging and improving health span.
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