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ABSTRACT

Purpose: Cancer is one of the most complex phenomena in biology and medicine. Extensive attempts have been made to work around this 
complexity. In this study, we try to take a selective approach; not modeling each particular facet in detail but rather only the pertinent and 
essential parts of the tumor system are simulated and followed by optimization, revealing specific traits. This leads us to a pellucid personalized 
model which is noteworthy as it closely approximates existing experimental results.

Methods: In the present study, a hybrid modeling approach which consists of cellular automata for discrete cell state representation and 
diffusion equations to calculate distribution of relevant substances in the tumor microenvironment is favored. Moreover, naive Bayesian 
decision making with weighted stochastic equations and a Bayesian network to model the temporal order of mutations is presented. The 
model is personalized according to the evidence using Markov Chain Monte Carlo. To validate the tumor model, a data set belonging to the 
A549 cell line is used. The data represents the growth of a tumor for 30 days. We optimize the coefficients of the stochastic decision-making 
equations using the first half of the timeline.

Results: Simulation results of the developed model are promising with their low error margin (all correlation coefficients are over 0.8 under 
different microenvironment conditions) and simulated growth data is in line with laboratory results (r=0.97, p<0.01).

Conclusions: Our approach of using simulated annealing for parameter estimation and the subsequent validation of the prediction with in-
vitro tumor growth data are, to our knowledge, is novel.

Keywords: neoplasms, patient-specific modeling, adenocarcinoma of lung, precision medicine

Despite much progress in oncology, molecular biology, and 

related fields, cancer is still a condition for which the prognosis is 

generally a shortened lifespan or lowered quality of life, frequently 

dramatically so. The complex and individually particular behavior 

of cancer decreases success rates of cancer therapies. The usual 

steps of cancer therapy are: deciding on tumor’s pathological 

type, staging the cancer using clinical data and planning the 

therapy according to medical guidelines which are informed by 

bulk statistics. In this routine, there is little room to calculate and 

predict a patient’s therapy response in a bespoke way.

Mathematical models that use patient-specific data and up-to-

date scientific evidence has implications on the evidence-based 

practice of personalized medicine. Use of individually tuned 

mathematical models give clinicians the ability to compare 

alternative therapy plans and predict outcomes. These models 

have an important role in the early drug development and for 

development of therapy scheduling. However, this search for 

personalized therapy has not yet met success. In the present study 

we propose a hybrid tumor model for the Non-Small Cell Lung 

Cancer (NSCLC) and a personalization framework.

Different approaches exist to develop tumor models. Continuous 

tumor models simulate tumor growth within a set of differential 

equations, making them good options in modeling complex 

systems (1–6). Simulating attributes of a tumor at tissue scale 

is trivial with continuous models. However, it is a non-trivial 

challenge to use them for simulating individual cell dynamics 

or discrete events in a cell or in the cell’s microenvironment. 

Discrete models are a solution to this problem. Simulation of 
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the tumor system dynamics, which cannot be easily modeled 
by the continuous approach can be possible with the discrete 
modeling techniques such as the orientation mechanism of 
tumor according to nutrients (7), effects of the cell adhesion on 
tumor growth as well as effects of the proteolytic enzymes (8), 
competition between cell colonies (9), genetic parameters on the 
tumor movement (10). Hence, it could be concluded that discrete 
models provide sufficient flexibility in modeling cell-state scale 
tumor dynamics. Continuous and discrete modeling approaches 
could be thus combined into hybrid models (11). Most of the time 
a discrete model is created at cell scale to simulate behavior of the 
cells and a continuous model is used at tissue scale to simulate 
distribution of substances like oxygen or glucose in tumor micro 
environment in hybrid modeling (9, 12).

In this study, such a framework has been developed for 
personalized tumor modeling that includes tumor and tissue 
specific parameters gathered from the literature for A549 (13), 
which is a well-known cell line derived from lung adenocarcinoma. 
Cellular automata are used for discrete cell state representation. 
Substance distribution in the vascular tumor micro-environment 
is calculated by using partial differential equations. Mutations of 
cells are modeled with a probabilistic network. A Naive Bayes 
approach is chosen for the decision-making module of each cell. 
Weighted stochastic equations are created for modeling decisions 
of the tumor cells. Overall, this approach enables us to create a 
model which can easily be personalized through the optimization 
of individual parameters using simulated annealing. Simulation 
results of the developed model are promising with their low error 
margin (all correlation coefficients are over. 8 under different 
microenvironment conditions) and the simulated growth data 
fits well to xenograft model (experimental and simulation results 
were found to be positively correlated, r=0.97, p<0.01).

Comparison with the State of the Art
According to the best of our knowledge; 

• Our model is the first such model able to accurately regress 
the personalized growth of lung adenocarcinoma given data 
from the stages.

• Our approach of personalization uses simulated annealing 
and its validation with a xenograft model is novel.

• The model also incorporates a hierarchical Bayesian network 
of the tumor which is created from A549 mutation data and 
uses this model to predict the order of occurrence and timing 
of consecutive mutations during tumor progression. Although 
there are a few models (14,15) which use mutation data, 
our model uses temporal and hierarchical order of specific 
cancer driver genes which has, thus far, to our knowledge, has 
not been leveraged.

• We propose novel stochastic equations to obtain a 
personalized model and estimate the importance (weight) of 
each with optimization.

METHODS

Details of the Tumor Model

We base our model on the one proposed by Gerlee and Anderson 

(16). Figure 1 shows the components a comprehensive tumor 

model should have.

Our model is specific to lung cancer adenocarcinoma. The fixed 

parameters used in the model are gathered from in-vitro and 

in-vivo experiments from literature. The modules implemented 

in this study are shown in Figure 2, the modules which are not 

implemented in this study but planned for future studies are also 

showed in figure and coded in gray.

Figure 1. Example for a general tumor model.

Figure 2. Implemented modules in study with potential modules for 
future implementation

Cellular automata are used to make decisions based on substance 

distribution and mutation effects, since rule-based automata 

are well suited to simulating a system which depends on many 

variables. Decisions for migration, proliferation, apoptosis and 

substance consumption, are based on the state of each cellular 

automaton, which use a stochastic decision making process.

Each module will be discussed in the subsequent sections. In 

terms of the software infrastructure; Python (17) is used as the 

main platform of implementation for the model, FiPy (18) is 
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used to solve PDEs, and Cython (19) for increased efficiency of 
simulation. Finally, PyGame (20) was used for implementing the 
graphical user interface and for visualization.

Model Parameters
Most of the physical parameters used in our simulator are 
specific to lung cancer adenocarcinoma, while some are general 
parameters for tumors or tumor microenvironments. The A549 
cell line was selected as a basis, since it represents a very common 
lung tumor presentation. Table 1, below, shows the parameters, 
symbols, and values used, with references.

Diffusion of Substances in the Tumor Microenvironment
Tumor growth consists of the consumption, growth, production, 
migration, apoptosis and necrosis phases. Tumors need oxygen 
and glucose to grow and they also produce waste. If a tumor 
cannot find enough oxygen it goes into hypoxia, if the tumor 
cannot obtain enough nutrition (glucose), hypoglycemia begins. 
Producing waste (H+ ions) is another effect of the cell’s increased 
metabolism, however this also helps tumors create advantageous 
microenvironments for themselves, as low pH is favored by most 
tumors, giving them a competitive edge over normal cells.

Substance diffusion into the tissue is modeled as: 

  [1] 

Equation 1 calculates the substance diffusion within the tissue 
boundaries. We assume that there are capillaries spread throughout 

the tissue which supply fixed substance flow to the tissue and 

tumor cells. This equation is valid for consumed substances such 

as oxygen and glucose in our model (Figure 3). Waste substances 

Figure 3. An example of oxygen distribution in cell microenvironment. 
Transverse sections of randomly placed capillaries are shown as red dots. 
The X and Y axes are coordinates of tumor growth are and normalized 
between 0–1.

Table 1. Parameters used in model

Parameter Symbol Value Specific to A549

Tumor Cell Doubling Time δ
t 22 h (21) Yes

Oxygen Background Concentration c
o 4:375 × 10−1 mM [calculated from (22)] Yes

Oxygen Diffusion Constant d
o 8:0 × 10−9 m−2 sec−1 (23) No

Oxygen Uptake Rate u
o 0:91 × 10−15 mol min−1 (22) Yes

Hypoxia Induced Apoptosis Threshold ho
a 0:015 × c

o
 (24) Yes

Hypoxia Induced Glycolysis Threshold (Upper Limit) ho
gu 0:05 × c

o
 (24) Yes

Hypoxia Induced Glycolysis Threshold (Lower Limit) ho
gl 0:01 × c

o
 (24) Yes

Hypoxia Induced Apoptosis Rate ho
ar % 55 (24) Yes

Oxygen Threshold Proliferative to Quiescence o
pq 1 mmHg (25) No

Glucose Background Concentration c
g 17 mM (23) No

Glucose Diffusion Constant d
g 1:35±0:13 × 10−5 cm2 sec−1 (26) Yes

Glucose Aerobic Uptake Rate u
ga 4:1 × 10−17 molcell−1 sec−1 (27) Yes

Glucose Anaerobic Uptake Rate u
gan 6 × 4:1 × 10−17 molcell−1 sec−1 [calculated from (27)] Yes

Hypoglycemia Induced Apoptosis Threshold h
ga 8 mM (28) No

Glucose Threshold Proliferative To Quiescence g
pq 12 mM (28) No

Hydrogen Ion Diffusion Constant d
h 1:4 × 10−6 cm2 sec−1 (29) No

Hydrogen Ion Production Rate p
h 1:5 × 10−18 molcell−1 sec−1 (16) No

Background p
H 

level c
ph 7.35 (30) Measured in Lung Tissue

H+ Background Concentration c
p 1:11 × 10−13 molcm2 [calculated from (30)] Measured in Lung Tissue

p
H 

Induced Apoptosis Threshold p
ha 5.5 (31) No

Optimal p
H
 for Tumor p

ho 6.8 (32) No
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such as H+ ions produced by tumor cells (and normal cells, alike) 
are, likewise, removed by capillaries. Accordingly, for waste, we 
modify our diffusion model as shown in Equation 2: 

  [2] 

In equations 1 and 2, S
cell

 stands for the consumption or production 
of substance by tumor cells and S

cap
 is the fixed term for the 

substance delivery or removal capacity of capillaries. Finally, H 
is a very large number which is used to dampen the effects of 
neighbors for the specific coordinate where the capillary exits. 
The particulars are elaborated on in Appendix B.

Once the conditions of tumors’ microenvironments are thus 
modeled, internal dynamics of tumor cells can be explored.

Intracellular Model

Throughout their life cycles, cells make several critical biochemical 
decisions. The first among these is about proliferation. Tumor cells 
decide whether they will proliferate, or not, based on genetic 
and microenvironment conditions. Another critical decision is to 
trigger apoptosis, if necessary. Furthermore, tumor cells can alter 
their energy production strategy: When oxygen concentration is 
below a specific threshold, they change their energy metabolism 
from aerobic to anaerobic.

During the simulation, at each time step, each simulated cell 
should decide what its biochemical state is. The cell should decide 
on many dimensions; such as whether it will die or not, how it will 
produce energy, its substance consumption budget. Moreover, 
whether any mutations will occur. This should be completed 
before other decisions are given, since nearly all other subsystems 
are affected by genetic variations.

After genetic changes occur, the cell starts to explore its 
environment to find if there are any other cells in the neighborhood 
and detect the amount of vital substances to use in the decision-
making process. Then the cell decides how it will produce energy, 
by using aerobic or anaerobic energy metabolisms. Finally, the cell 
decides on its status; either apoptosis, quiescence, proliferation or 
migration. The decision process is based on probabilistic functions. 
The parameters (i. e weights) are found using optimization, as 
explained in the results section. Details of functions used in 
subsystems are explained in the following subsections. Overview 
of the model can be seen in Figure 4. Details of the intracellular 
model can be found at Appendix A.

RESULTS

Consistency
A tumor model should be consistent with the basics of tumor 
biology. We first test this consistency using experimental data. 
Studies show that primary cell such as primary mouse embryonic 
fibroblasts (33) and tumor growth is accelerated under hypoxia 
which is observed both in-vitro for LNCaP prostate cancer cells 
(34) and tumor xenografts models with MDA-MB-231 breast 
cancer cells and LNCaP cells (35,36). Figure 5 shows our model is 

consistent with literature (35) for hypoxic growth dynamics. The 
Pearson correlation coefficient is calculated between model and 
previous studies for hypoxic and normoxic conditions. A strong 
correlation for both hypoxic (r=0.992) and normoxic (r=0.991) 
conditions is observed on tumor volume. Also as seen in Figure 
6, under hypoxia, which could be defined as 10% O

2
 of normoxia 

(37), the apoptotic region is considerably larger and tumor 
shows migratory behavior. This phenomenon can be observed in 
experimental studies (38, 39).

Many studies have shown that glucose is an important factor in 
tumor growth. This fact was shown not only in-vitro experiments 
with healthy pulmonary microvascular endothelial cells (40), 
immortalized T lymphocytes ( Jurkat cell line) (41), tumor cell 
lines such as BT549, MDA-MB-468, MCF-7 for breast cancer (42, 
43), but also in vivo experiments by observation of SCCVII tumor 
growth in C3H/HeN mice and HCT-116 tumor growth in Rag2M 
mice (44). Our model is in line with these studies as shown in Figure 
7. The Pearson correlation coefficient calculated between model 
and in-vitro results (42) for normal and low glucose conditions. 
A strong correlation for both normal (r=0.998) and low glucose 
(r=0.898) conditions is observed on tumor cell number. Limitation 
of growth under low glucose can also be observed by comparing 
tumor morphology, as seen in Figure 8.

Figure 4. Overview of the model.



Unsal S et al. Personalized tumor growth predictionJ Basic Clin Health Sci 2020; 4:347-363

351

Chemotaxis is a fundamental mechanism that determines tumor 
morphology (45): defined as motility of cells towards resources 
like oxygen and glucose (46) which is observed in healthy cells 
such as vascular smooth muscle cells (47) and tumor cells (48). To 
ensure that cells in our model simulate chemotactic behavior we 
created a set of capillaries as shown in Figure 9. Subsequently, the 
growth of the simulated tumor was monitored. It was observed 
that, in simulation, the tumor cells tended to the capillaries 
as shown Figure 10 which is in line with in vitro studies which 
includes 3D assays for A549 cell line (48).

Tumor growth patterns fit a Gompertzian growth curve, i. e. a 
sigmoid function (49–54). Our simulations are also validated by 

the observation that the tumor growth process can be defined as 
a sigmoid curve that starts with a high exponential growth rate but 
eventually levels-off with saturation (see Figure 11). The Pearson 
correlation coefficient calculated between model and study for 
long term tumor growth. A strong correlation (r=0.8) for long term 
tumor growth is observed between experimental and simulation 
results (55).

Data from Figure 5, Figure 7, and Figure 11 were extracted using 
Web Plot Digitizer (56) and used in calculation of the Pearson 
correlation coefficients.

Figure 6. Tumor growth based on time for hypoxia and normoxia. Red cells have proliferative, green cells have quiescent, and white cells have 
migratory phenotypes while blue represents non-viable cells, whether apoptotic or necrotic.

Figure 5. a, b. (35) reports tumor growth under hypoxic conditions (10% 
O

2
) (a). Our in-silico experiment results (b).

A B
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Figure 9. Distribution of capillaries along a 
diagonal line with diffusion of oxygen and glucose 
shown. The X and Y axes are coordinates of tumor 
growth are and normalized between 0–1.

Figure 7. a, b. Previously reported (41) tumor growth under different glucose concentrations (a). Results of our in-silico results (b).

Figure 8. Tumor growth based on time for normal (17 mM) and low (5 mM) glucose levels.
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Mutations are the foundation for the genetic structure of tumors 
and these are also what determine the individual differences in 
different cancers. In the past, some mathematical tumor models 
have used this fact. Some models incorporate the effects of 
mutation on only one locus (57–59) while some have grouped 
several gene mutations according to their phenotypes (60–62). Yet, 
according to the best of our knowledge, none of them inspect the 
effects of multiple cancer driver genes and their temporal order 
together, in a multiscale model. We use the results of a temporally 
ordered inference model generated from a multi-patient study 
(63). For example, in the model, the occurrence of the KRAS 
mutation is a prerequisite for TP53 mutations and TP53 mutation 
is a prerequisite for the occurrence of CDK2NA mutations. In our 
simulations, as well, we have observed that TP53 mutations only 
occur after KRAS mutations and only in the cells which already 
have accumulated KRAS mutations. Likewise, we were able to 
recreate other dependencies, e.g. TP53 to CDK2NA. Figure 12 
shows how mutations occur in a temporal and hierarchical order, 

indicating that our modeling strategy is successful in simulating 
the actual mutation timelines in tumor progression. Using this 
system, a multi-clonal tumor model is created, allowing for the 
fact that different parts of a tumor may have different progressions 
of mutation.

Personalization: Estimating Parameters per Individual
Different approaches are found in the literature for the 
personalization of mathematical tumor models. For example, 
Prokopiou et. al. calculates the proliferation saturation index by 
using the ratio of tumor volume to the carrying capacity of tumors 
(64). On the other hand, Saribudak et al. use gene expression 
values to personalize their model (65), and Kogan used PSA levels 
to individualize their model (66).

In our model, we used a stochastic decision approach on cellular 
automata. The decisions of each cell simulating automaton are 
based on the tumor microenvironment, e.g. oxygen and glucose 

Figure 10. Tumor growth based on time with the same diagonal axis with capillaries. Red cells have proliferative, green cells have quiescent, and white 
cells have migratory phenotypes while blue represents non-viable cells, whether apoptotic or necrotic.

Figure 11. a, b. Tumor growth function fits to a Gompertzian model. Experimental results (55) for long term tumor growth (a). Tumor growth function 
fits to a Gompertzian model. Results of simulation from our model (b).
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concentrations. Weights of these variables in terms of their effect on 
a particular individual’s tumor are determined by using optimization. 
We use simulated annealing as the optimization method.

The parameter optimization results can be seen in Figure 13. 
Results were obtained by optimizing parameters using the first 15 
days of tumor growth data gathered from the experimental results 
from a xenograft (67). Afterwards, the simulation was run with the 
optimized parameters. Predicted tumor growth after optimization 
is also shown Figure 13. The model’s prediction closely mirrors the 
growth trend of the xenograft.

DISCUSSION

The literature includes many studies on personalized medicine, but 
most of these are results of bulk biostatistics and bioinformatics 
analyses (68–70). Tumor models on the other hand, have potential 
in providing mechanistic and generative (in that future states 
can be simulated) personalized predictions. In this study, we 
demonstrate a tumor model based on empirical observations 
and biochemical properties from previous literature. This model 
is amenable to tuning and extension, and able to provide 
personalized predictions.

To the best of our knowledge, our model is novel in that it can 
predict personalized growth patterns of lung adenocarcinoma 
in a way that can be validated by xenograft model data. A 
hierarchical Bayesian network modeling the genotypes of tumor 
subpopulations was also created to predict ordering and timing of 
mutations during tumor progression.

The approach has a number of potential limitations. First and foremost, 
it is a two dimensional (or rather 2.5D) model of what is essentially 
a three dimensional phenomenon. We model the tissue as a single 
layer of cells. While this is not necessarily a high fidelity simulation 
of the real tissue, it is a computationally tractable approximation, 
especially for epithelial tissues. Likewise, the substance portfolio 
is limited and does not include a host of cellular signaling, most 
importantly hormones and cytokines, which significantly affect cell 
behavior. From a computation standpoint, the optimization method 
used (simulated annealing), while avoiding local minima is still subject 
to fixing on unrealistic solutions (minima with physically impossible 
parameter values). While this can be checked and the simulation 
discarded if it were the case, a more robust solution would be, in the 
future, to use a constrained stochastic optimization algorithm. Finally, 
the mutation subsystem (i. e. the hierarchical Bayesian network) is 
based on well-known and catalogued mutations and cannot possibly 
simulate the existence or effects of novel mutations. The simulation 
will not be able to accurately predict the growth of tumors with 
such mutations, should they occur in a patient. Doing so requires 
predicting phenotype solely from genotype and is an open research 
question.

We validated our model’s behavior with experimental data from 
literature (35,42,48,55,67). We observed that both under hypoxia 
and hypoglycemia our model’s growth pattern is in line with 
experimental results which is explained in detail at Results section. 
Furthermore, our model shows the expected Gompertzian curve 
in chemotactic behavior and in general growth pattern. Our 
personalization strategy is also promising. We have shown that if 
a model consistent with tumor biology can be developed, it can 
be personalized using a simple parameter optimization method 
like simulated annealing.

In the future we will extend our model by simulating effects of 
the immune system and integrate chemotherapy, radiotherapy 
and immunotherapy results to our model towards developing a 
clinical decision support tool.

Figure 13. Results of a tumor growth experiment (67) and simulation results.

Figure 12. KRAS, TP53 and CDK2NA mutant cells at t=100.
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Appendix A

Proliferation

Each simulated cell’s proliferation subsystem decides whether the cell is in a proliferating 
state or not. When the cell is quiescent, if there is free space for growth, if parameters such as 
nutrition and oxygen level are favorable, then the cell has a good chance of proliferating.

It is assumed that the maximum rate of proliferation will take place at optimal conditions. When 
a cell’s microenvironment is closer to optimal conditions the proliferation probability increases; 
otherwise it decreases. Inputs used for the proliferation decision are oxygen concentration, 
glucose concentration and pH. Genetic effects are also used in the probability distribution 
function. The equation A1 is used to decide the proliferation state of the cell: 

   (A. 1) 

In equation A. 1, P
r
 represents the weighted proliferation probability, P

o
 is the probability 

coefficient for oxygen. P
o
 is calculated based on oxygen concentration at the coordinates of cell 

which represented with mo and given by: 

   (A. 2) 

In equation A. 2, ho
a
 is hypoxia induced apoptosis threshold which is the minimum oxygen 

concentration for proliferation and c
o
 is background oxygen concentration which is the 

maximum oxygen concentration for cell’s microenvironment as given in Table 1. Probability 
coefficient for glucose Pg, represents glucose concentration at the coordinates of the cell: 

   (A. 3)

Calculation of the probability coefficient for pH, represented by P
h
, is more complex than P

o
 

and P
g
, because for oxygen and glucose higher concentration correlates with higher probability 

for proliferation, but for pH, the cell needs an optimal pH level to have the highest chance of 
proliferation. Thus, P

h
 is calculated as a piecewise function: 

   (A. 4)

where min
ph

, max
ph

 are minimum and maximum values of pH that a tumor cell can live under; 
ph

o
 is the optimal pH level for proliferation as given in table 1 and m

ph
 is pH level at the 

coordinates of cell. Finally, P
d
 represents effects of the cell’s accumulation of mutations on the 

proliferation probability and will be explained in the “Genetic Effects on Tumor” subsection.

Invasion

When a cell decides on proliferation or migration, the next question is about finding the most 
convenient place to do so. The invasion system models this decision based on microenvironment 
conditions. The invasion system uses oxygen, glucose and H+ concentration as input parameters. 
When scanning neighbour cells with traditional methods for invasion, a strange effect occurs, as 
mentioned by Gerlee and Anderson (16). The tumor tends to grow in a tree-like way, sprouting 
branches. Although we could not explain this effect, we overcome this issue by scanning cells 
orthogonally and diagonally at consecutive time steps, in interleaved fashion, as explained in 
Gerlee and Anderson.

To find optimal invasion coordinates, the cell prefers the direction where oxygen and glucose 
concentration is maximum. For H+ concentration the cell should look for optimal pH level or 
nearest level to optimal, given as ph

o 
in Table 1. The invasion propensity score sinv can then be 

calculated as: 
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   (A. 5)

An error margin (e
inv

) should be determined which simulates the transient insensitivity of cells to 
proliferative opportunities. When maximum s

inv
 is determined, each cell’s s

inv
 is compared to the 

maximum s
inv

. If the difference between them is not more than e
inv

 then this cell is a candidate 
for invasion. After all candidates are determined, one candidate is selected randomly and a new 
tumor cell appears at coordinates of the chosen cell.

Migration

Cell migration is an important factor in the morphology of the tumor. Tumor cells may decide 
to migrate if conditions are not suitable to survive or proliferate. In the migration subsystem, 
each simulated tumor cell decides whether to manifest a migratory phenotype or not. Then, it 
finds a suitable place for invasion by using invasion subsystem and finally it invades the location 
directly or by using the cell movement subsystem. The migration subsystem decides to manifest 
the most likely phenotype with a naive Bayes approach similar to the proliferation subsystem. 
There are three types of environmental parameters that force a cell to migrate. The first one is 
the oxygen level. When oxygen level decreases below ho

a
 then the cell’s possibility of choosing 

a migratory phenotype is calculated with equation A.6

   (A. 6)

where P
hom

 stands for hypoxia based migration probability in percent, h
om

 is hypoxia induced 
migration threshold which is determined based on simulation results as 5 x ho

gl
 (see table 1) 

and m
o
 is oxygen concentration at the cell’s coordinates. In a similar way migration probability 

based on glucose level can be calculated with A. 7: 

 
  (A. 7)

where P
hgm

 stands for hypoglycemia based migration probability in percent, hg
m

 is hypoglycemia 
induced migration threshold which is determined based on simulation results as 5 x hg

a
 (see 

Table 1) and m
g
 is glucose concentration at the cell’s coordinates.

Apoptosis

Beyond natural apoptosis, three cases are considered for apoptosis in our model: Hypoxia, 
hypoglycemia and extremely low pH level can cause apoptosis.

When the oxygen level decreases below% 1.5, hypoxia starts until oxygen runs out (% 0). It has 
been shown that% 55 of NSCLC Adenocarcinoma (A549) cells die when oxygen level reaches% 
0. Also, it is known that the natural apoptosis rate is% 10 for A549 cells (24).

Since , for each% 0.1 change at oxygen level, apoptosis survival probability increases% 
3. Based on this assumption, hypoxia based apoptosis probability can be calculated as: 

   (A. 8)

where oxygen concentration at the coordinates of the cell are represented with m
po

 and 
probability of as genetic effects decreases apoptosis chance and is represented by p

da
.

Cells can live without oxygen but not without glucose. Hypoglycemia induced apoptosis 
probability (P

ha
) can be calculated when m

g
 <hg

a
 as follows: 

   (A. 9)

The last factor which causes apoptosis is pH level. An acidic microenvironment is favorable for 
the tumor because cancerous cells are more resistant to acidic environment than parenchyma. 
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But, when pH level decreases to severely low levels all kinds of cells start to die. When this effect 
is modeled, pH level at the coordinates of the cell is represented by m

h
 and min

ph
 stands for the 

minimum pH level of cell microenvironment. Thus, we can calculate P
ha

 (apoptosis probability 
based on pH) as: 

   (A. 10)

Apoptosis probability is calculated using oxygen, glucose and pH level. However, even as the 
cell decides to start apoptosis it will wait for a period. This delay acts as a low-pass filter and 
prevents the cell from being affected by noise and momentary oscillations of microenvironment 
signals. There are more complicated methods that can be found in literature to model delayed 
systems (71).

Energy Metabolism

Tumor cells can produce energy by using two different metabolisms; aerobic and anaerobic. In 
aerobic metabolism, oxygen and glucose are used to produce energy: 

   (A. 11)

In the anaerobic metabolism, only glucose is used to produce energy: 

   (A. 12)

In our model, the energy metabolism shift is only based on oxygen concentration; genetic 
effects are ignored for the sake of simplicity.

Metabolism shift starts at% 5 oxygen concentration with  20% probability and reaches % 100 
probability at  1% oxygen concentration (24). If the concentration is over 5% then the cell always 
chooses aerobic metabolism. Oxygen concentration at coordinates of cell as percentage (m

po
) 

is obtained from: 

   (A. 13)

and the probability of a cell’s metabolism change from aerobic to anaerobic is calculated by: 

   (A. 14)

There is also a delay introduced before the decision for a metabolism shift, with the same 
rationale as for the delay for the apoptosis decision, explained above.

Oxygen – Glucose Consumption and Acid Production

Tumor cells have a baseline oxygen consumption rate, represented by u
o
 as seen in Table 1, but 

this rate changes based on cellular conditions. For example, a cell will not use oxygen when 
under anaerobic metabolism. Also, the cell’s state will affect oxygen consumption. We assume 
that the cell consumes% 50 more oxygen in a proliferative state than in the quiescent state.

Glucose consumption (u
g
) is calculated in a similar way. Glucose consumption in aerobic and 

anaerobic states are calculated based on the stoichiometry of the respective metabolisms. 
Proliferative cells are assumed to use% 50 more glucose, similar to oxygen.

Acid production is observed in the anaerobic metabolism, due to glycolysis. Hydronium 
production rate (ph) is taken from literature (16). In a proliferative state, hydronium production 
is assumed to increase by% 50, since glucose consumption increases with the same ratio.
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Cell Stress and Movement

Physical simulations on tumors show us that there is a proliferative belt on tumor mass. This 
belt is caused due to various reasons, e.g. cell-cell adhesion and cell-ECM adhesion (4). In 
our model, instead of treating each physical effect one by one in detail, we use a stress score 
variable.

The stress score for each cell is calculated proportional to the cell’s distance from tumor’s edge. 
Pressure on cells located in deeper parts of tumor will be higher than cells which are located 
at the edge of the tumor because of cell-cell adhesion and cell-ECM adhesion. Edge cells’ 
tendency of migration is thus higher than deep cells.

Genetic Effects on Tumor

When modeling cancer, simulating genetic effects, taking into account all variations is 
intractable. Since the aim of this study is only creating a simple proof of concept model, just a 
few important mutations of A549 are included, based on literature (63).

Our model uses an inheritance mechanism. When a simulated cell proliferates, it copies the DNA 
of its ancestor, so mutations are transferred between generations. As a first step, the relationship 
between mutations determined. After this step, probabilities of mutations calculated. Finally, 
effects of the mutations are added to the model. In the model, only two types of mutation 
effects are considered: mutations’ effects on probabilities of proliferation and apoptosis.

For both, if any mutation occurs in a cell, each driver mutation provides only a small selective 
growth advantage to the cell, on the order of a 0.4% increase in the difference between cell birth 
and cell death (72). Since only 5% -10% of these are driver mutations, we calculate each driver 
will have an effect of 8%. Thus, if any mutation occurs in a cell, it is assumed that proliferation 
probability increases 8% or apoptosis probability decreases 8% based on mutation type. These 
relationships and effects are shown in Table A1 with minimum and maximum probabilities of 
observing said mutations in the population.

The model for the mutations is based on a Bayesian network. At each time step, a simulated cell 
triggers its own mutation system. For each mutation, preconditions are checked. For example, 
for A549, EGFR mutation almost never occurs in tumors with KRAS mutation or TP53 mutation 
occurs if KRAS gene has a mutation. For the sake of simplicity, we assume that these mutations 
are all pathogenic.

After ancestors of the mutation are validated, a mutation probability is determined for each 
viable mutation. Finally, if a mutation occurs, effects of said mutations, whether on proliferation 
or apoptosis, are applied to the cell in question, and will affect its future decision equations.

Table A1. Mutations of A549 used in model

Mutation Minimum 
Probability

Maximum 
Probability

Ancestors Effect Type

EGFR (73) 10 35 None Proliferation

KRAS (74) 33 - None Proliferation

NTRK3 (75) 3 - None Proliferation

TP53 (75) 30 50 KRAS Apoptosis

ATM (75) 10 20 KRAS Proliferation

STK11 (75) 18 - TP53, NTRK3 Apoptosis

CDK2NA (75) 5 - TP53 Apoptosis
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Appendix B

m (c→, t) means concentration of substance at coordinates c→ at time t. D is diffusion constant of 
substance. Since our model is 2D, 

   (B. 1)

we could know the concentration of substance at specified coordinates at time t. To solve 
equation it could also be written as below: 

   (B. 2)

A detailed explanation for this equation could be found in literature (76). Physical representation 
of diffusion phenomenon which is represented as equation B. 2 could be seen in figure: 

Figure 14. Diffusion as a physical phenomenon.

After the basic equation of diffusion is formed, only a source term is needed which represents 
consumption or production of the substance for a coordinate at a specific time (75): 

   (B. 3)

Oxygen and glucose which are consumed by cells are subtracted from equation B. 2: 

   (B. 4)

and source term for hydrogen ions (H+) which are produced at the end of glycolysis is added: 

   (B. 5)

Now effects of capillaries should be added to the equation. We accomplish this by using an 
implicit source term which is a product of a fixed value with diffusion term (m). We also multiply 
it with a huge value (H) to winnow effects of neighbors out. We write the final equation for 
consumed substances as: 

   (B. 6)
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for produced substances it will be: 

   (B. 7)

Finally, initial and boundary conditions for equations B. 4 – B. 5 will be determined (77). We 
assume that boundaries of grid with L×L size, concentration equals 0. Initial conditions could 
be defined as

   (B. 8)

with Dirichlet boundary conditions

   (B. 9)

Non-dimensionalization

Non-dimensionalization can be done by dividing each term of an homogeneous equation to 
parameters which have the same units (78). In this study, diffusion constants and consumption/
production rates were non-dimensionalized with the following equations: 

 (B. 10)

 (B. 11)

These are generalized forms of non-dimensionalization equations. In equation B. 10, d* is a non-
dimensional diffusion constant. Tumor cell doubling time (δt) multiplied by 3600 to convert 
hour to second. Original diffusion constant is represented with d. Area (a) is the total area (in 
cm2) of the grid. In equation B. 11, r* represents non-dimensional consumption/production rate. 
Original rate is represented by r. Maximum number of tumor cells (which equals to number of 
grid’s cells) is represented by n. Finally background concentrations are represented by c

b
. Using 

these equations B. 10 – B. 11, u
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, u

ga
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 were non-dimensionalized.
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