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Abstract  Keywords 

QUAVs have some shortcomings in terms of nonlinearities, coupled dynamics, 
unstable open–loop characteristics, and they are prone to internal and external 
disturbances. Therefore, control problem of the QUAVs is still an open issue. 
Designed controllers based on the linear dynamics have limited operating ranges. 
Therefore, nonlinear dynamics of the QUAVs must be derived and used in the 
control problem. Although some advanced controllers are presented for QUAV 
control, PID controllers are the most employed, well–known controllers with the 
simple structure, ease of implementation, solid functionality and robustness 
amongst the variations up to a degree. In this paper, PID based controllers are 
proposed for the nonlinear attitude dynamics to overcome the control problem of 
the QUAVs. However, since optimality and tuning of the PID controllers are fuzzy 
because of trial and error approaches, swarm intelligence based meta-heuristic 
algorithms (ABC, ACO and PSO) are employed to optimize the PID coefficients. 
Results are compared in terms of transient analysis and MC analysis to cover the 
rise time, settling time, percentage overshoot, steady–state error for the former 
and stochastic fitness evaluation for the latter, respectively. 
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1. Introduction 

1.1. Background 

PID controllers can treat both the transient and steady–
state responses of a plant. PID can be considered as the 
simplest yet the most efficient controller. As the name 
implies, it has just a three–parameter configuration 
space to fit the control specifications. First applications 
of the PID controllers date back to the beginning of the 
20th century, and they gain more popularity with the 
proposition of the ZN tuning method [1]. Although many 
novel and advanced controller designs have being 
proposed, PID controllers are still the most widely–used 
control method in industrial systems [2]. There are many 
advantages of the PID controllers such as low–
implementation efforts, wide operating range, simple 

structural design and robustness against disturbance 
sources [3, 4]. PID and its variants (PI, PD, etc.) are being 
employed as the standard controller at the lowest level 
of the process controllers and at the higher level of the 
engineering areas with over 90% ratio [5, 6]. 

1.2. Related Works 

There are so much research efforts that went into the 
modern extensions of the PID controllers. Among them, 
some recent high–level implementations of the PID 
controllers can be given as follows. PID control design 
for an inverted pendulum is given in [7]. A fuzzy self–
tuning PID algorithm for three–dimensional bio–
printing temperature control system is proposed in [8]. 
An adaptive PID control algorithm for the second order 
nonlinear systems is derived in [9]. Extremum seeking 
nonlinear PID based pressure control algorithm is given 
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in [10]. Fuzzy PID attitude control of a vehicle is 
considered in [11]. An adaptive PID controller is 
presented in [12] for controlling speed of a brushless DC 
motor. Another speed control application is proposed in 
[13] using intelligent PID control with applications to an 
ultrasonic motor. Z–axis position control of a servo 
system for laser processing is achieved via fuzzy PID 
control in [14]. PID control of a flexible manipulator is 
presented in [15] with an opposition based spiral 
dynamic method. A double fuzzy RBF-NN based PID 
control for 7-dof manipulator is proposed in [16]. 

Extensions and improvements of the PID controllers are 
also applied as the flight controllers because of 
aforementioned many advantages. A data driven PID 
controller implemented on a FPGA with applications to 
UAV is detailed in [17]. According to the work, the 
presented controllers can control the new generation of 
intelligent UAVs that can perform their assigned tasks 
with no human intervention. A fused PID control 
strategy is presented in [18] for a tilt–rotor VTOL 
aircraft. There are two different PID controllers that 
comprise fixed–wing and rotary–wing parts according to 
the mode of flight. According to the results, the 
proposed fused PID controllers make a smooth 
transition between the flight modes. A simple adaptive 
PID based fault–tolerant flight controller is proposed in 
[19]. The method is validated with a numerical example 
and a flight test. According to the results, performance 
of the system can be improved compared to the classical 
PID controllers. A PID speed controller is proposed in 
[20] for a small–scale turbojet engine where a 
modification is added to the classical controller scheme. 
A low–pass filter is added to the differential term to 
reduce the noise in case of high frequencies. Results 
show that the controller is effective for steady–state 
loading changes. An enhanced PID controller for fault 
tolerant control of a quadrotor is proposed in [21]. The 
controller is tested against the actuator faults of the 
quadrotor. Enhanced PD structure is based on the 
saturation of the integral term to overcome the anti 
wind–up. An attitude controller based on PD and KF is 
proposed in [22] for a quadrotor. The measurement and 
modelling errors are eliminated by KF and system states 
are controlled by the PD controller, respectively. Results 
show that the proposed method overcome the 
disturbances with a small residual error rate. 

PID and its variant controllers are prone to some 
shortcoming such as parameter tuning and uncertainty 
about it [23]. There are some works devoted to the 
tuning of the PID controllers. A PSO based PD flight 
control system is proposed in [24] for an aircraft. The 
results of the method are compared with that of P, PD, 
PI, and fuzzy controller. Analysis show that with the 
proposed method much better results can be obtained 
compared to classical approaches. Another application 
of PSO optimized PID flight controller is given in [25] for 
altitude control of a quadrotor. Better altitude control 
responses are achieved with implementing the PSO 
based PID controller. An improved BP based NN PID 

control is presented in [26] with application to flight 
tracking control of a UAV. Both the BP based NN and the 
PID controller are optimized with GA to obtain the ideal 
parameters. Results show that the proposed method 
handled the attitude tracking control with robustness. A 
DE based PID control is presented in [27] for hover 
position of a quadrotor. A hybrid performance index is 
proposed in the paper where the proposed method 
improved the performance index with faster rise time 
and minimum overshoot, respectively. 

Based on the above discussion, it can easily be said that 
the PID controllers have being employed for over 
decades in process control and they have being 
improved with the developing technology. Applications 
of PID controllers are also widely employed in aircraft 
and UAV control problems. However, because of 
complexity of the flight dynamics such as coupled 
translational and rotational motions on quadrotors, it is 
getting harder to tune the PID parameters by trial-and-
error approaches. There are some works devoted to this 
area. So, in this work, a comparative study that is based 
on the swarm intelligence methods, namely particle, bee 
and ant swarms, is conducted. Optimality, performance 
and analyses are validated for a nonlinear quadrotor UAV 
model. 

Organization of the paper as follows. The mathematical 
model of the quadrotor is derived in Section 2. The 
swarm intelligence and implemented algorithms (ant 
colony optimization, artificial bee colony and particle 
swarm optimization) are given in Section 3. PID 
controller structure is given in Section 4. Results and 
Discussions are covered in Section 5. Last, conclusions 
are given in Section 6. 

2. Mathematical Model 

Quadrotor UAVs have being employed in a wide range of 
applications from search and rescue, surveillance, aerial 
photography, to climate forecasting by military, 
industry, and also hobbyists, respectively. QUAV 
comprises four rotors that are placed on the corners of 
the rigid cross–type frame as seen in Figure 1.where 
{𝐹𝑖  | 𝑖 = 1,2,3,4} is the set of net forces that are produced 
by the each rotor, B is the body–fixed frame, E is the 
earth–fixed (inertial) frame, {𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏}  ∈  ℝ3 are the axis 
elements of the B, {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖}  ∈  ℝ3 are the axis elements 
of the E, {𝜃, 𝜙, 𝜓 } is the set Euler angles defined in E, and 
lastly 𝑚𝑔 is the weight of the QUAV, respectively.  

The curved arrows show the directions of the rotors. 
Two rotors are rotated at clockwise direction while 
others rotate at counter–clockwise direction, 
respectively. In a balanced flight, the rotor pairs rotate 
at the same speed. Since QUAVs do not have any servo 
based flight surface controllers, both translational and 
rotational motions are created with the difference 
between the rotors. However, it is worth to mention that 
since QUAVs are under-actuated vehicles because of 
inequality between inputs and outputs of the MIMO 
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system, translational motions of the {𝑋, 𝑌} states are 
achieved through employing the attitude angles. Roll 
angle 𝜙 is generated by the difference of rpm between 
the 2nd and 4th rotors, pitch angle 𝜃 is generated by the 
difference of rpm between the 1st and 3rd rotors, and 
lastly yaw angle 𝜓 is generated by the difference of rpm 
between the rotor pairs, respectively. The translational 
motion set {𝑋, 𝑌, 𝑍} is in [𝑚] and attitude angles {𝜃, 𝜙, 𝜓 } 
are in [𝑟𝑎𝑑].  

Fig. 1: Coordinates and forces acted on a QUAV  

In order to transform a set of vector 𝑣 defined in one 
reference frame (𝑣 ∈ ℝ3)  to another reference frame 
(𝑣́ ∈ ℝ3), three sequential rotation is needed. A 
transformation between B and E frames via ( 𝜓, 𝜃, 𝜙 ) 
rotation sequence can be obtained by Eqs. (1-3). 

 

𝑅(𝜓) = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

]   (1) 

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]  

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]  (2) 

𝑅(𝜙) = [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

]  (3) 

 

where 𝑅 is the rotation. By multiplying the orthogonal 
rotation matrices given in equations. (1-3), the final 
rotation matrix is obtained in Eq. (4) as follows. 

𝑹 = [

𝑐𝜃𝑐𝜓 𝑠𝜃𝑠𝜙𝑐𝜓 − 𝑠𝜓𝑐𝜙  𝑠𝜃𝑐𝜙𝑐𝜓 + 𝑠𝜓𝑠𝜙
𝑐𝜃𝑠𝜓  𝑠𝜓𝑠𝜃𝑠𝜙 + 𝑐𝜓𝑐𝜙 𝑠𝜓𝑠𝜃𝑐𝜙 − 𝑐𝜓𝑠𝜙
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]  (4) 

where 𝑐 is the abbreviation of cosine and 𝑠 is the 
abbreviation of sine, respectively. The multiplication of 

orthogonal matrices is also an orthogonal matrix and 
reverse transformation can easily be obtained with the 
following equation. 
 

𝑹𝒊 = 𝑹−1 = 𝑹𝑡  (5) 
 

where subscript 𝑹𝒊 denotes the inverse rotation, 𝒕 is the 
transpose operator and (−1) is the inverse operation 
defined in matrices. Since body rates {𝑃, 𝑄, 𝑅} are 
measured at B but Euler rates {𝜙̇, 𝜃̇, 𝜓̇ } are defined in E, 
a coordinate transformation is needed and can be 
obtained by using Eq. (6) and reverse transformation can 
also be achieved with Eq. (7).   

 

[
𝑃
𝑄
𝑅
] = [

1 0 −𝑠𝜃
0 𝑐𝜙 𝑠𝜙𝑐𝜃
0 −𝑠𝜙 𝑐𝜙𝑐𝜃

] [

𝜙̇

𝜃̇
𝜓̇

]  (6) 

[

𝜙̇

𝜃̇
𝜓̇

] = [

1 𝑠𝜙𝑡𝑎𝑛𝜃 𝑐𝜙𝑡𝑎𝑛𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙𝑠𝑒𝑐𝜃 𝑐𝜙𝑠𝑒𝑐𝜃

] [
𝑃
𝑄
𝑅
]  (7) 

 

The angular acceleration equations can be obtained 
through the moment equation and given in Eq. (8). 

 

[
𝑃̇
𝑄̇

𝑅̇

] =

[
 
 
 
 
 
(𝐼𝑦−𝐼𝑧)

𝐼𝑥
𝑄𝑅

(𝐼𝑧−𝐼𝑥)

𝐼𝑦
𝑅𝑃

(𝐼𝑥−𝐼𝑦)

𝐼𝑧
𝑃𝑄]

 
 
 
 
 

+

[
 
 
 
 

𝑙(𝐹2−𝐹4)

𝐼𝑥
𝑙(𝐹1−𝐹3)

𝐼𝑦

𝑑

𝑏
(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4)]

 
 
 
 

  (8) 

 

where 𝐼𝑥, 𝐼𝑦 , 𝐼𝑧 are the moment of inertias of the QUAV, 𝑏 
is the thrust coefficient of the propellers and  𝑃̇, 𝑄̇, 𝑅̇ are 
angular accelerations. There are four inputs for the 
QUAVs comprise of roll, pitch, yaw and altitude control 
which are defined in Eqs. (9-12), respectively. 

𝑢𝑧 = ∑ 𝐹i
4
𝑖=1   (9) 

𝑢𝜙 = 𝑙(𝐹4 − 𝐹2)  (10) 

𝑢𝜃 = 𝑙(𝐹3 − 𝐹1)  (11) 

𝑢𝜓 = 𝑑(𝐹1 − 𝐹2 + 𝐹3 − 𝐹4)  (12) 

 

where 𝑙 is distance between the center of the gravity of 
quadrotor and center of propeller, 𝑑 is the ratio between 
the drag and the thrust coefficients of the propeller,  𝑢𝑧 
is control input of the altitude 𝑢𝜙 is control input of the 
roll angle, 𝑢𝜃 is control input of the pitch angle, and lastly 
𝑢𝜓 is control input of the yaw angle, respectively.  

Nonlinear attitude dynamics of the QUAV regarding 
angular rates (without disturbances) are given in Eqs. 
(13–18).  
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𝑃̇ = [
(𝐼𝑦−𝐼𝑧)

𝐼𝑥
𝑄𝑅 +

1

𝐼𝑥
𝑢𝜙]  (13) 

𝑄̇ = [
(𝐼𝑧−𝐼𝑥)

𝐼𝑦
𝑅𝑃 +

1

𝐼𝑦
𝑢𝜃]  (14) 

𝑅̇ = [
(𝐼𝑥−𝐼𝑦)

𝐼𝑧
𝑃𝑄 +

1

𝐼𝑧
𝑢𝜓] (15) 

𝜙̇ = 𝑃 + 𝑄𝑠𝜙𝑡𝑎𝑛𝜃 + 𝑅𝑐𝜙𝑡𝑎𝑛𝜃  (16) 

𝜃̇ = 𝑄𝑐𝜙 − 𝑅𝑠𝜙  (17) 

𝜓̇ = 𝑄𝑠𝜙𝑠𝜃 + 𝑅𝑐𝜙𝑠𝑒𝑐𝜃  (18) 

  

3. Swarm Intelligence 

Swarm Intelligence is a concept that deals with the 
designing of algorithms or distributed problem solvers 
inspired by the collective behaviour of social insect and 
animal societies [28]. The swarm term is used not only 
for social insect species but also used in a common 
meaning that focus on any restrained population of 
interacting individuals [29]. Typical examples of swarms 
can be bee colonies, ant colonies, flock of birds, swarm 
of cells, and fish swarms. By inspiring from 
aforementioned colonies, researchers proposed many 
swarm intelligence methods to deal with the engineering 
problems. Some well–known swarm intelligence 
algorithms are PSO [30], ABC [31] and ACO [32]. 

According to the [29], necessary and sufficient 
properties for the swarm intelligence methods are self–
organization and division of labour. Self–organization 
property can be defined as the reflections of the 
interactions from the lowest–level to the global scale. 
The property must ensure that the interactions must be 
executed with local information with no governing 
relation from the global level. Self–organization property 
relies on the following properties [28]. 

• Positive feedback, 
• Negative feedback, 
• Fluctuations (random walks and errors), 
• Minimal density of mutually tolerant individuals. 

On the other hand, division of labour property is defined 
as the performing of different tasks simultaneously by 
the individuals that are experts on the related task. Thus, 
efficiency of the task performances is increased 
compared to the sequential tasks performed by the 
individuals that are not experts on the related task [33]. 

Ant Colony Optimization 

ACO is an optimization method models the swarm of 
ants that is based on the natural behaviours of the ant 
colonies and worker ants. When individual ants forage to 
find a profitable food source, they find an effective route 
between the nest and food source. These natural 
behaviours can be modelled to design an optimization 
algorithm to solve the engineering problems with an 
optimum solution. The interactions between the ants 
rely on the pheromone they release. When ants walk 

from the nest to a food source, they use different routes. 
They release pheromone while they walk. The 
pheromone is a scent that attracts the other ants and 
decays. The stronger the pheromone, the more ants are 
attracted. So, if any of the ants returns quicker than the 
others with a food, the route that the ant used has 
stronger pheromone trace behind it. Thus, other ants 
will instinctively follow this shorter route because of 
stronger pheromone properties.  When more ants used 
the route, the more pheromone is added, which leads 
attraction of more ants [34]. This effect is called as 
stigmergy that has two main distinct characteristics from 
other forms of communications as follows. 

• Stigmergy is an indirect form of communication 
that its media is environment, 

• Stigmergy is a local form of communication that 
only the nearby insects can access. 

Stigmergic communication in the ant colonies depends 
on the concentration of the pheromone. If ants perceive 
higher concentration of pheromone, they follow this 
path thus ant colony can transport food sources into the 
nest efficiently [35]. 

Another important property that ACO simulate from real 
ant swarms is autocatalysis. Since the pheromone 
deposited by the ants is decayed over time, if the path 
between the nest and food source is shorter than more 
pheromone is deposited, which leads more ants to use 
the shorter path [36]. This behaviour belongs to the 
exploitation of positive feedback, in which more ants will 
produce higher pheromone concentration results with 
more ants in that shortest or optimal path.  

The pheromone updating rules of ACO for the TSP 
problem can be given in Eqs. (19-21) [37]. 
 

𝜏𝑖𝑗(𝑡 + 𝑑) = (1 − 𝜌) ∗ 𝜏𝑖𝑗(𝑡) +  𝜌 ∗ ∆𝜏𝑖𝑗
+ (19) 

∆𝜏𝑖𝑗
+ = 

1

𝐿+ (20) 

𝜏𝑖𝑗(𝑡 + 1) =  𝜉 ∗ 𝜏𝑖𝑗(𝑡) (21) 
 

where 𝜌 ∈ (0,1) is the persistence of pheromone trails, 
(1 − 𝜌) is the evaporation rate, 𝑑 is the number of 
variables, ∆𝜏𝑖𝑗

+ is the amount of pheromone increase of 
elitist ant, 𝐿+ is the length of the solution of the elitist 
ant, and 𝜉 is an adjustable parameter where  0 < 𝜉 < 1.  

The flowchart of the ACO algorithm is given in Figure 2. 
Algorithm starts with initialization of the parameters, 
constraint definition etc. Ants are randomly located in 
the search space. Then ants look for food sources. Their 
pheromone is updated and evaporated according to the 
time and length of the path. If conditions are satisfied 
(such as minimum objective function value) or exceeded 
(such as maximum number of iterations), the ACO 
algorithm is terminated. The results are stored, and the 
algorithm is finished. 
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Fig. 2: Flowchart of the ACO algorithm.  

 

Fig. 3: Flowchart of the PSO algorithm.  

Particle Swarm Optimization 

PSO is a nature–inspired meta-heuristic optimization 
algorithm to solve the continuous nonlinear problems 
related to engineering. PSO is inspired by cognitive and 
social behaviours of the flock of birds or school of fish 
that are the swarm of animals hunt for food. PSO is a 
computationally efficient algorithm since its 
mathematical operators are primitive [30].  

The individuals of the population are called particle. 
Particles are described as collision-proof birds in the 
initial formulation [34]. PSO algorithm performs the 
search for the solution through the particles whose 
trajectories are updated by both stochastic and 
deterministic rules. Every particle inside the swarm is 
influenced by the 𝑝best and 𝑔best in its random walk, 
where 𝑝best is the personal best position of the particle 
and 𝑔best  is the global best position of the swarm  [38]. 
Position and velocity update equations of particles are 
given in Eqs. (22-23).  

 

𝑣𝑘+1 = 𝑤 ∗ 𝑣𝑘 + 𝑐1 ∗ 𝑢1 ∗ (𝑝best − 𝑥𝑘) + 𝑐2 ∗ 𝑢2 ∗
(𝑔best − 𝑥𝑘)  (22) 

𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘+1  (23) 

 

where 𝑣 is the velocity of the particle, 𝑤 is the inertia 
weight, 𝑢1 and 𝑢2 are uniform distributed numbers 
between [0 1], 𝑐1 is the coefficient of cognitive behaviour, 
𝑐2 is the coefficient of social behaviour, 𝑥 is the position 
and lastly, subscript 𝑘 is indexes of generations, 
respectively.  

The flowchart of the PSO algorithm is given in Figure 3. 
Algorithm starts with initialization of the parameters and 
continues with fitness function evaluation. According to 
the fitness values of the particles, 𝑝best and 𝑔best are 
updated. Then, velocity and positions are calculated 
according to Eqs. (22-23). Algorithm continues until the 
pre-defined conditions are satisfied. Then, solutions are 
returned and algorithm ends. 

Artificial Bee Colony 

ABC algorithm can be considered as an extension to the 
bee swarm algorithm that uses the foraging behaviour. 
Leading modes of the algorithm are recruitment to a 
nectar source and abandonment of a source. Bees in the 
swarm are separated by their expertise areas such as 
onlooker bees, employed foragers, and scouts. Food 
source depends on many factors including distance to 
the nest, richness of source, and ease of extracting this 
energy [29]. Scout bees exhibit a random exploration 
search. Onlooker bees wait in the nest to gather 
information from the employed bees. Each onlooker bee 
then selects an appropriate food source depending on 
the calculated probability. The calculated probability 
mimics the waggle dance of the real bees performed by 
employed foragers. The more amount of nectar leads to 
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longer dance duration [39]. Search process of the 
employed bees are same with the onlooker bees. Each 
employed bee maintains a unique nectar source [40].  

The flowchart of the ABC algorithm is given in Figure 4. 
At first, initial bee swarm is randomly produced in the 
feasible search space. Bees are sent for food source 
exploration. After initial searching, employed foragers 
share the gathered information with the onlooker bees 
in the nest. Then, onlooker bees choose an appropriate 
food source depend on the following probability given in 
Eq. (24).  

 

𝑝𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑆𝑁
𝑗=1

  (24) 

 

where 𝑝 is the calculated probability with subscript 𝑖 
denotes the 𝑖𝑡ℎ. food source, 𝑓 is the value of the 
objective function, 𝑆𝑁 is the size of the swarm. The 
modification of the position of the bees to explore better 
food sources is given in Eq. (25). 

 

𝑣𝑖𝑗 =  𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)  (25) 

 

where −1 ≤ 𝜙𝑖𝑗 ≤ 1 is a random number, 𝑣𝑖𝑗  is the recent 
generated position, 𝑥𝑖𝑗  is previous solution, 𝑘 ∈

{1,2, … , 𝐸} where E is the number of employed bees, 
respectively. After memorizing the best food source 
algorithm terminates if the predefined conditions are 
met. Best solution is returned and lastly algorithm ends.  

4. PID Controller 

PID controllers are one of the most preferred controllers 
in the areas of process control, motion control, 
hydraulics, pneumatics thanks to their simplicity, low 
maintenance costs and ease of implementation [41]. PID 
controllers deliver a good efficiency in terms of cost per 
benefit ratio where other controllers may fail [42]. Usage 
area of the PID controllers are not limited with just low–
level control applications but PID controller are also 
employed in modern applications such as self–driving 
cars, autonomous robots, and UAVs [43]. 

PID controllers have three distinct terms as 
Proportional, Integral and Derivative that each term has 
one coefficient to adjust the performance and 
specifications of the controller.  In the classical parallel 
form of the PID structure, time domain formula is given 
as follows. 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
 + 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (26) 

 

 

Fig. 4: Flowchart of the ABC algorithm 

 

where 𝑢(𝑡) is input of the system, 𝑒(𝑡) is the error 
between the reference and feedback, 𝐾𝑝 is the 
coefficient of proportional term, 𝐾𝑖 is the coefficient of 
integral term and lastly 𝐾𝑑 is the coefficient of derivative 
term, respectively. A block diagram representation of the 
classical PID controller scheme is given in Figure 5. 

In the Figure 5, 𝑥𝑟𝑒𝑓(𝑡) denotes the reference signal, 𝑥̃ 
denotes the measured signal, 𝑒(𝑡) is the difference 
between the observation and reference signals, 𝐾𝑝𝑒(𝑡) is 

the proportional term, 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
 is the integral term, 

 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 is the derivative term, 𝑢(𝑡) is the input of the 

system, and 𝑦(𝑡) is the output of the plant dynamics, 
respectively. 

The individual effects of PID terms can be given as 
follows [1]. 
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Fig. 5: Block diagram representation of the classical PID control scheme 

 
• P provides an overall control action proportional to 

the error, 
• I reduces the steady–state error by low–frequency 

compensation, 
• D improves the transient response by high – 

frequency compensation, respectively.  

Although 𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 are mutually dependent in tuning, 
their individual closed–loop performance effects can be 
described in Table 1. 

Table 1: Independent effects of 𝐾𝑝, 𝐾𝑖 , 𝐾𝑑. Source: [1] 

Closed–loop 
response 𝑡𝑟 % 𝑡𝑠 𝑒𝑠𝑠 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝐾𝑝  ↑ (increasing) D ↓ I  ↑ SI  −↑ D ↓ Dg ↓ 
𝐾𝑖   ↑ (increasing) SD −↓ I  ↑ I ↑ LD ↓↓ Dg ↓ 
𝐾𝑑  ↑ (increasing) SD −↓ D ↓ D ↓ MC − Im ↑ 

 

where  𝑡𝑟 is rise time, 𝑡𝑠 is settling time, % is overshoot, 
𝑒𝑠𝑠 is steady – state error, D is decrease, SD is small 
decrease, I is increase, SI is small increase, LD is large 
decrease, MC is minor change, Dg is degrade and lastly 
Im is improve.  

5. Results and Discussion 

In order to assess the performance and efficiencies of 
the proposed methods, transient response analysis is 
conducted. Reference trajectories for the attitude angles 
are set as 𝜋

18
 [𝑟𝑎𝑑]. Simulation time is 1.5 [s] with time 

step of 0.01 [s], respectively. Parameters of transient 
response analysis are rise time 𝑡𝑟, settling time 𝑡𝑠, 
maximum percentage overshoot % 𝑝 and steady–state 
error 𝑒𝑠𝑠. Rise time is the time duration that the response 
of the controller to rise from 10% to 90%. Settling time 
is the time duration that the error between the proposed 
controllers and the final reference value falls within the 
2% of the final reference. Maximum percentage 

overshoot, as the name suggests, is the ratio of the 
overshoot with respect to final reference value. Steady–
state error is the difference between the final value of 
the controller and the final value of the reference 
trajectory. Rise time and settling time are in [s], steady–
state error is in [rad] and overshoot is given as [%]. 

The comparison results of the swarm intelligence based 
PID attitude controllers are given in Table 2 where 
boldfaces show the best response. According to the 
Table 2., it is seen that all the algorithms achieved 0 
steady–state error, which shows that all the swarm 
intelligence based PID controllers can control the 
attitude states. However, there are some differences 
among the methods. For 𝜙 angle, ACO algorithm is the 
best compared to ABC and PSO with a rise time of 0.15 
[s], settling time of 0.32 [s], and maximum percentage of 
0.5%. For 𝜃 angle, both the ABC and ACO algorithms 
perform well and better than the PSO algorithm. While 
rise time of the ABC is the best, settling time and 
percentage overshoot of the ACO is better than the 
others. Lastly, for 𝜓 angle, PSO algorithm has the best 
rise time and settling time responses. However, PSO has 
percentage overshoot of 0.06% while others have 0% 
overshoot.  

Figures 6–8 show the attitude responses of the proposed 
controllers for 𝜙, 𝜃 and 𝜓 angles, respectively. According 
to the Figure 6 and 7, both the ACO and ABC algorithms 
perform similar and better than the PSO since PSO 
algorithm has overshoot and higher rise time 
characteristics for the given 𝜙 and 𝜃 trajectories. 
According to the Figure 8, PSO algorithm exhibits better 
convergence characteristics regarding ABC and ACO 
with a negligible amount of overshoot. 

The algorithms are repeated for 30 MC trials to define 
the performance of the stochastic behavior of the swarm 
intelligence based methods. Also, maximum iteration of 
the meta-heuristics is set as 30, too. The fitness function 
of the swarm based meta-heuristics is given in Eq. (27). 
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. Fig. 6: Phi Response 

Fig. 7: Theta Response.  

Fig. 8: Psi Response.  
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Fig. 9: MC analysis of the ABC algorithm 

Fig. 10: MC analysis of the ACOR algorithm. 

Fig. 11: MC analysis of the PSO algorithm.  
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Table 2: Transient response analysis of the proposed 
controllers 

  ABC ACO PSO 

𝝓 

𝑡𝑟 0.1511 0.1498 0.1733 

𝑡𝑠 0.3260 0.3233 0.4977 

𝑒𝑠𝑠 0.0000 0.0000 0.0000 

% 0.6215 0.4965 2.6892 

𝜽 

𝑡𝑟 0.1632 0.1662 0.1720 

𝑡𝑠 0.3307 0.3002 0.4671 

𝑒𝑠𝑠 0.0000 0.0000 0.0000 

% 2.7012 1.4619 3.7248 

𝝍 

𝑡𝑟 0.2222 0.2140 0.2084 

𝑡𝑠 0.5293 0.5198 0.4467 

𝑒𝑠𝑠 0.0000 0.0000 0.0000 

% 0.0000 0.0000 0.0604 

 

𝐽 =  ∫ 𝑒2𝑡2
𝑡1

𝑑𝑡  (27) 

 

where J is the fitness function, 𝑒2 is the square of the 
error, 𝑡1 and 𝑡2 are the time limits of sampling frequency. 
J function is also known as ISE metric: integral squared 
error. Performances of the swarm intelligence methods 
for 30 MC run regarding iterations are given in Figures 9 
to 11 for ABC, ACO and PSO, respectively. According to 
the figures, all the 30 MC runs of the ACO algorithm are 
converged to the sub–optimal region in first 10 iterations 
of the algorithm. The lowest fitness value of the ACO 
algorithm is 6.15. Convergence of the ABC algorithm to a 
sub–optimal point is around first 15 iterations. However, 
the lowest fitness value of the ABC algorithm is better 
than the others. MC results of the PSO algorithm are 
worse than that of both ABC and ACO, respectively. 

6 Conclusion 

In this work, a comparison of PID controllers based on 
swarm intelligence methods is conducted for attitude 
control problem of the nonlinear QUAV dynamics. Three 
well–known meta-heuristics (ABC, ACO and PSO) are 
implemented to tune the gains of the attitude 
controllers. ISE metric is employed as the fitness 
function. Transient analysis covering rise time, settling 
time, percentage overshoot and steady–state error is 
conducted. Also, convergence study of the proposed 
swarm algorithms based on MC is analysed. 

According to the results, all the algorithms have 
achieved to control and track the given reference 
attitude trajectories with 0 steady–state error. However, 
ACO has better characteristics than the others in terms 
of transient response. MC analysis showed that all the 
meta-heuristic based methods have good convergence 
rate into the sub–optimal solution space within 15 

iterations for 30 MC runs. So, the proposed controllers 
can optimize, control and track the pre-determined 
attitude trajectories within the limited time frame. 

The future directions for the manuscript would cover 
both the employment of novel meta-heuristic algorithms 
and also the expansion of the full quadrotor states.  

Nomenclature 

ABC : Artificial Bee Colony 
ACO : Ant Colony Optimization 
B : Body – fixed frame 
BP : Back Propagation 
DC : Direct Current 
DE : Differential Evolution 
E : Earth – fixed frame 
DOF : Degree – of - freedom 
FPGA : Field Programmable Gate Array 
GA : Genetic Algorithm 
ISE : Integral Squared Error 
KF : Kalman Filter 
NN : Neural Network 
MC : Monte Carlo 
MIMO : Multi Input - Multi Output 
P : Proportional Controller 
PI : Proportional Integral Controller 
PD : Proportional Derivative Controller 
PID : Proportional Integral Derivative Controller 
PSO : Particle Swarm Optimization 
RBF : Radial Basis Function 
RPM : Rotation per minute 
TSP : Traveling Salesman Problem 
QUAV : Quadrotor Unmanned Aerial Vehicle 
UAV : Unmanned Aerial Vehicle 
VTOL : Vertical Take – Off and Landing 
ZN : Ziegler – Nichols 
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