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Abstract 

Artificial intelligence (AI) has started to be used in many areas today. One of these areas is the accounting sector. Accounting 

companies may sometimes be inadequate especially in the face of intense invoicing transactions of large companies. This problem 

raised the need to process invoices by an Artificial Intelligence powered system. The goal of this work is to determine the best 

machine learning model to extract information such as invoice number, invoice date, due date, delivery date, total gross, total net, vat 

amount and IBAN from the invoice image files. Information obtained by the Tesseract Optical Character Recognition (OCR) system 

has been converted into n-gram format. A number of attributes of the n-gram are calculated such as the coordinates, the length, the 

width, the line number, the template information of n-grams, the Levenshtein and the Jaro-Winkler distances between the candidate n-

grams and the keywords in the control keywords list. The use of the Levenshtein distance between candidate n-grams and the control 

keywords has resulted in a sufficiently high predictive rate. The most appropriate model and features are determined for the training. 

Algorithms such as Random Forest, Gradient Boosting Machine, Extreme Gradient Boosting, K-Nearest Neighbors, AdaBoost and 

Decision Tree were compared as prediction models. A total of 9910 invoices were used by splitting 80% for training and 20% for 

testing. It was observed that the Random Forest model using the Levenshtein distance is the best model with an average F1 score of 

0.9137.  

Keywords: Machine learning, Information extraction, N-gram, Levenshtein distance, Jaro-Winkler distance.   

N-Gram Yaklaşımı Kullanılarak Fatura Görüntülerinden Bilgi 

Çıkarımında Farklı Sınıflandırma Algoritmalarının Karşılaştırılması 

Öz 

Yapay Zeka (AI) günümüzde birçok alanda kullanılmaya başlanmıştır. Bu alanlardan biri de muhasebe sektörüdür. Özellikle büyük 

firmaların yoğun faturalama işlemleri karşısında muhasebe firmaları bazen yetersiz kalabilmektedir. Bu sorun, faturaların Yapay Zeka 

destekli bir sistemle işlenmesi ihtiyacını ortaya çıkarmıştır. Bu çalışmanın amacı, fatura görüntü dosyalarından fatura numarası, fatura 

tarihi, vade bitiş tarihi, teslim tarihi, toplam brüt, toplam net, kdv tutarı ve IBAN gibi bilgileri çıkarmak için en iyi makine öğrenme 

modelini belirlemektir. Çalışmada, Tesseract Optik Karakter Tanıma sistemi ile elde edilen bilgiler n-gram formatına 

dönüştürülmüştür. N-gramların koordinatları, uzunluk, genişlik, satır numarası gibi şablon bilgileri, aday n-gramlar ile kontrol anahtar 

kelimeler listesindeki anahtar kelimeler arasındaki Levenshtein ve Jaro-Winkler mesafeleri gibi bir dizi öznitelikleri hesaplanmıştır. 

Aday n-gramlar ile kontrol anahtar kelimeler arasındaki Levenshtein mesafesinin kullanılması, yeterince yüksek bir tahmin oranıyla 

sonuçlanmıştır. Eğitim için en uygun model ve özellikler belirlenmiştir. Tahmin modelleri olarak Rassal Orman (Random Forest), 

Gradyan Yükseltme Makinesi (Gradient Boosting Machine), Aşırı Gradyan Yükseltme (Extreme Gradient Boosting), K-En Yakın 

Komşu (K-Nearest Neighbors), AdaBoost ve Karar Ağacı (Decision Tree) gibi algoritmalar karşılaştırılmıştır. Çeşitli firmalardan 

toplanan 9910 adet fatura, %80’i eğitim ve %20’si test olacak şekilde bölünerek kullanılmıştır. Levenshtein mesafesini kullanan 

Rassal Orman modelinin ortalama 0,9137 olan F1 puanı ile en iyi model olduğu görülmüştür.  

 

Anahtar Kelimeler: Makine öğrenimi, Bilgi çıkarımı, N-gram, Levenshtein uzaklığı, Jaro-Winkler uzaklığı. 
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1. Introduction 

Digitization of invoices, receipts and similar company 

documents has become very common with the rapid 

development in technology. It is a very labor intensive and 

expensive process to obtain and manage the information in these 

documents using traditional methods that depend on manpower 

(Klein et al., 2004). In addition, manual processing of these 

documents poses a serious timing problem. In particular, 

invoices are documents that need to be processed and managed 

continuously. As many companies use different types of 

invoices, we can see that the invoices have a very variable 

structure. Although we have strong estimation methods and 

techniques for specific templates, these methods do not work for 

uncertain documents. Therefore, these methods can only be 

applied to a small number of limited problems. 

The main goal of our study is to compare machine learning 

models to extract information from invoices without a specific 

template. First of all, text information is extracted from the 

invoice images. For this, Tesseract is used that is an optical 

character recognition (OCR) engine. After obtaining the text 

information, the stage of creating useful features is performed. 

The location of words is very important in structural documents 

such as invoices and receipts. Especially, other words that are 

around the target word can give us remarkable information 

abaout our target. These words are vectorized by using distance 

values from potential words that can be keywords determined 

according to frequency. 

Figure 1. Tesseract OCR Process Scheme (Zelic and Sable 

2020) 

Two distances such as the Levenshtein distance and the 

Jaro-Winkler distance are used for measuring of word 

similarities. Various machine learning models such as Random 

Forest, Gradient Boosting Machine, Extreme Gradient Boosting, 

K-Nearest Neighbors, AdaBoost and Decision Tree were 

compared as prediction models. There are eight fields that we 

want to predict on the invoice such as invoice number, invoice 

date, delivery date, due date, total gross, total net, vat amount 

and IBAN. Instead of using a general trained model for 

predicting of all fields, different models are used for each field. 

Thus, the attributes that best represent that field are used in the 

training of each field. A dataset containing total 9910 invoice 

images collected by authors from different firms is used in 

training and testing process by dividing 80% and 20% as 

appropriate. Since the invoices contain sensitive financial 

information, the dataset cannot be presented as an open source. 

The Random Forest model with Levenshtein distance is obtained 

as the best prediction model for all fields. 

 The rest of the article is organized as follows. Information 

about the tools, methods and models used in this work are given 

in chapter 2. Related work and the proposed approach are given 

in chapter 3. Chapter 4 provides information about the data set. 

Explanation and discussion of obtained results are also included 

in this chapter. Finally, the concluding remarks are given in 

chapter 5. 

2. Methodology 

2.1. Tesseract OCR 

The first tool we used in the document processing is an 

Optical Character Recognition (OCR) engine called Tesseract, 

which is supported by the Google, in order to convert documents 

in image format to text format (Smith, 2007). The scheme of the 

Tesseract OCR is given in Fig. 1. 

While the documents are converted to text via Tesseract, 

information of the words such as coordinate information, line 

number, height and width can also be obtained (Table 1). 

Line-based n-gram structure is created from the list of 

words generated by Tesseract OCR. While creating the n-gram 

structure, besides some features used in the study (Palm et al., 

2017), other effective features can be calculated (Table 2). The 

most suitable features are obtained by processing the attributes 

of n-grams in different combinations for training. 

Table 1. Attributes Obtained with Tesseract OCR. 

Attribute 

name 

Description Attribute 

name 

Description 

level Level of the detected unit left X coordinate of the upper-left corner of the detected unit 

page_num Page number of the detected unit top Y coordinate of the upper left corner of the detected unit 

block_num The block number of the detected 

unit 

width Width of the detected unit 

par_num Paragraph number of the detected 

unit in the block 

height  Height of the detected unit 

line_num Line number of the detected unit in 

the paragraph 

conf Recognition accuracy percentage of detected unit 

word_num The word number of the detected 

unit on the line 

text Text of the detected unit 

 

 

https://nanonets.com/blog/author/filip/?&utm_source=nanonets.com/blog/&utm_medium=blog&utm_content=%5BTutorial%5D%20OCR%20in%20Python%20with%20Tesseract,%20OpenCV%20and%20Pytesseract
file:///C:/Users/Efendi/Desktop/ResmiOgrenciler/Adem%20makale/Makale%20N-gram/%20Sable
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Table 2. Attributes Created for the N-gram Structure. 

The attribute 

of n-gram 

Description The attribute of 

n-gram 

Description 

RawText Text of n-gram Left Left margin of n-gram (X coordinate) 

TextPattern Template of n-gram Top Top margin of n-gram (Y coordinate) 

IsFirstStr Is the first character of n-gram 

an alphabetical one? 

LeftMargin Proportional left margin to the page width of n-gram 

IsFirstInt Is the first character of n-gram a 

digit? 

TopMargin Proportional right distance to the page width of n-gram 

IsFirstSpc Is the first character of n-gram a 

special character? 

HasDigit Whether there is a digit in the n-gram 

IsLastStr Is the last character of n-gram 

an alphabetical one? 

FirstQuarter The n-gram is in the first quarter of the page 

IsLastInt Is the last character of n-gram a 

digit? 

SecondQuarter The n-gram is in the second quarter of the page 

IsLastSpc Is the last character of n-gram a 

special character? 

ThirdQuarter The n-gram is in the third quarter of the page 

StrCount Total number of alphabetical 

characters in n-gram 

FourthQuarter The n-gram is in the fourth quarter of the page 

IntCount Total number of digits in n-

gram 

LineNo Number of the line of the n-gram 

SpcCount Total number of special 

characters in n-gram 

PageNo Number of the page of the n-gram 

WordCount Total number of words of n-

gram 

PageWidth Width of the page containing n-gram 

CharCount Total number of characters of n-

gram 

PageHeight Height of the page containing n-gram 

 

 

Figure 2. The Process of Recognizing Certain Fields from the Image File. 

 

 

 

  

Read an image file 

Convert the image file to 

the text file 

Construct the line based n-

grams model 

Compute attributes of n-

grams 

Recognize the labels using 

n-grams’ attributes 
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The process of recognizing certain labels on invoices is 

shown in Fig. 2. First of all, string expressions that are the result 

of the Tesseract OCR are converted into n-grams. Although 

some information such as invoice number and postal code on the 

invoice consists of one piece of string expression ("12345", 

"A1245"), other information such as address and IBAN number 

can have multiple string expressions ("TR 2600 1200 0000 0000 

0000", "110 St No: X Ankara”). When the field we are 

predicting has more than one string expression, the single string 

expressions that Tesseract OCR outputs are insufficient. In this 

case, we reach the word sequence that we are looking for by 

using multiple n-grams (Watanabe et al., 2009). 

 

2.2. The n-gram structure 

Let's examine the word sequence "Dokuz Eylul University". 

An example of the creation of n-grams is given in Table 3 

 

Table 3. Example N-gram Structure 

1-grams “Dokuz”,”Eylul”,” University” 

2-grams “Dokuz Eylul”,”Eylul University” 

3-grams “Dokuz Eylul University” 

 

As can be seen in the example in Table 3, 1-gram and 2-

gram sequences must be created in order to reach the 3-gram 

sequence. The following formula can be used to calculate the 

total number of n-grams that can be generated with maximum 

length 𝑤 from a sequence of 𝑘 numbers of words: 

𝐶𝑛−𝑔𝑟𝑎𝑚 =∑(𝑘 − (𝑖 − 1))

𝑤

𝑖=1

= 

= 𝑘 ∙ 𝑤 −
(𝑤−1)∙𝑤

2
=

2𝑘𝑤−𝑤2+𝑤

2
    (1) 

For example, the total number of n-grams is calculated as 6 

by applying the Eq. (1) for Table 3. When we want to apply the 

same method for invoices, every n-gram sequence is created 

starting from 1-gram up to the specified maximum n-gram value. 

Thus, the n-gram sequences are achieved like the invoice date 

(the n-gram value must be at least 3 to detect the date "20 June 

2022”).  The maximum n-gram value, 𝑛 was determined as 6 

considering the long expressions such as address and IBAN 

number. Let 𝐿 be the number of lines in the document and 𝑘  be 

the number of words in each line. The total number of n-grams 

in the document will be calculated as follows: 

∑ 𝐶𝑛−𝑔𝑟𝑎𝑚
𝑖 ≤ 𝐿

2𝑘𝑤−𝑤2+𝑤

2
𝐿
𝑖=1        (2) 

In Eq. (2), 𝐶𝑛−𝑔𝑟𝑎𝑚
𝑖 , shows the number of n-grams to be 

formed in the line i. Let 𝑘 be the number of words in the line. In 

the case where 𝑤 ≥ 𝑘, the constraint as 𝑤 = 𝑘 should be 

considered. 

The Tesseract OCR, where we receive the necessary 

information for the n-gram design, also offers some features that 

would be useful in machine training. The information of each 

string expression can be obtained from Tesseract OCR such as 

width, height, number of lines, coordinate information of the 

expression, page number, page width, and page height. Then, the 

pattern of each n-gram sequence is extracted. The pattern of the 

text of the n-gram is formed via replacing all lowercases with 

“x”, all uppercases with “X”, all numbers with “0” and all 

special characters with “?”. The purpose of this pattern is to 

provide the model with the best learning of the structure of each 

field to predict. For example, it may be not every expression as 

an alpha numerical one in the invoice date. Although it usually 

has a special pattern (eg, 13.09.2018), in some cases only part of 

the sequence may be a string expression (eg, 8 October 1993). In 

our work, we used information such as total letters, total digits, 

total special characters, and the type of the first and last 

character of the pattern as an attribute. Although the pattern is 

used in this way in this work, the pattern can also be used by 

making One Hot Encoding, which means that categorical 

variables are represented using a binary vector. In One Hot 

Encoding firstly, we create vectors consisting of 0 or 1 values as 

much as the number of categorical values for this operation. 

Then we create a vector by assigning 1 to the value 

corresponding to its index and 0 to the others for each 

categorical data. For example, there are data in three categories 

as “blue”, “red” and “green”. When these fields are decomposed 

into binary, the value “red” is converted to the vector (0, 1, 0). 

In addition to the features mentioned above, we also used 

features such as the number of words in each n-gram, the 

number of characters in each n-gram, left margin, right margin, 

left alignment, right alignment, the closest 1-gram on the left, 

top, right and bottom. The nearest left and the nearest top n-

grams are most likely to be keywords. It is conceivable that 

these n-grams will increase the effectiveness of the training, 

considering that each field has different keywords. However, 

there are some problems that need to be solved at this point. 

There are many different types of invoices. For this reason, the 

keywords can be a variable structure rather than a fixed one. For 

example, the keywords can be “invoicenummer”, 

“belegnummer” or “rechnungnummer” on an invoice where the 

invoice number is to be predicted. Also another problem is that 

these keywords can be shortened in some invoices (for ex. 

“rech.num.“) or that may be misspelled due to human errors (for 

ex. “recnhugnummr”). At this point, the Levenshtein and the 

Jaro-Winkler methods of similarity (distance) can solve these 

problems instead of exact matching. These methods provide us 

calculation of the distances between the strings from two 

existing sequences (Schulz and Mihov 2002). The first sequence 

is potential keywords that we have already obtained from n-

gram. The second sequence is a specified keyword checklist. 

The frequencies of the potential keywords of all the invoices are 

calculated to create the specified keyword checklist. Keywords 

that exceed a specified threshold value of similarity are added to 

the result list. The distance between the keyword with the 

highest similarity is added as a feature. 

 

2.3. The Levenshtein distance  

There are three basic operations in calculating Levenshtein 

distance such as replace, insert and delete. The goal is to 

transform one string into another using the minimum number of 

basic operations (Haldar and Mukhopadhyay, 2011).  The 

Levenshtein distance between any strings 𝑎 and 𝑏  is calculated 

as a recursive function as follows: 
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𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{
 
 

 
 max

(𝑖, 𝑗)                                        , 𝑖𝑓 min(𝑖, 𝑗) = 0,

𝑚𝑖𝑛 {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
   (3) 

In Eq. (3), the Levenshtein distance is calculated between 

the first 𝑖 character of the sequence 𝑎 and the first 𝑗 character of 

the sequence 𝑏.  1(𝑎𝑖≠𝑏𝑗) is the token function, i.e. it equals 0 

when 𝑎𝑖 = 𝑏𝑗, otherwise equals to 1. The first row corresponds 

to the deletion, the second row to the insert, and the third row 

corresponds to match operations in section 𝑚𝑖𝑛 in the Eq. (3).  

Let's look at the calculation of the Levenshtein distance 

between the words "PAIN" and “CHAIN" as an example. If we 

use the Eq. (3), the first thing to do to convert the word "PAIN" 

to "CHAIN" is to add the letter “C". Subsequently, the letter “P” 

is converted to the letter “H” by making a replacement 

operation. Since the remaining three letters are the same, no 

action is taken on them. Thus, the Levenshtein distance between 

these two words is equal to 2.  

 

2.4. The Jaro-Winkler distance 

Another method to measure the similarity between two 

strings is the Jaro-Winkler distance (Wang et al., 2017). In order 

to calculate this distance between two given strings 𝑠1  and 𝑠2, 

the Jaro similarity value must be found before as follows:  

𝑠𝑖𝑚𝑗 = {
0                                 , 𝑖𝑓 𝑚 = 0,

1

3
( 
𝑚

|𝑠1|
+

𝑚

|𝑠2|
+ 

𝑚−𝑡

𝑚
 )  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (4) 

where,  |𝑠| is the length of the string,  𝑚 is the number 

of matching characters and  𝑡 is half the number 

of transpositions. Two characters from 𝑠1  and 𝑠2  respectively, 

are considered matching only if they are the same and not farther 

than 

⌊
max(|𝑠1 |,|𝑠2|)

2
⌋ − 1      (5) 

positions, where ⌊. ⌋ denotes the lower bound integer value of the 

operand. For example, the matching range value of a 6-character 

word is 2. A match is accepted for the character "B" between the 

words “BXXXXX” and “XBXXXX”, while the match is not 

accepted between the words “BXXXXX” and “XXXXBX”. The 

number of matching (but different sequence order) characters 

divided by 2 defines the number of transpositions. For example, 

in comparing CRATE with TRACE, only 'R', 'A', 'E' are the 

matching characters, i.e. m=3. Although 'C', 'T' appears in both 

strings, they are farther apart than 1 (the result of  ⌊
5

2
⌋ − 1 ), so 

t=0. In “DwAyNE” versus “DuANE” the matching letters are 

already in the same order D-A-N-E, so no transpositions are 

needed (Jaro, 1989). So, the Jaro-Winkler similarity value (that 

is used for distance calculation) can be calculated as follows 

  𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝑙 ∙ 𝑝(1 − 𝑠𝑖𝑚𝑗).     (6) 

In Eq. (6), the 𝑠𝑖𝑚𝑗 is the Jaro similarity value (we got in 

Eq. (4)), 𝑙 is the length of common prefix at the start of the string 

up to maximum of 4 characters and 𝑝 is scaling factor (default 

value 0.1) should not exceed 0.25 (i.e., 1/4, with 4 being the 

maximum length of the prefix being considered), otherwise the 

similarity could become larger than 1. Then the Jaro-Winkler 

distance 𝑑𝑤 is defined as 

 𝑑𝑤 = 1 − 𝑠𝑖𝑚𝑤             (7) 

The rest of the calculation on the invoice data according to 

the Jaro-Winkler similarity is made similar to the Levenshtein 

calculation given in section 2.4 and the calculated Jaro-Winkler 

similarity values are added into attributes list. 

 

2.5. Prediction models  

The Random Forest model that was concluded as the best 

model in this work, is based on the Decision Tree approach 

(Quinlan, 1986). The idea in Decision Trees is to create the 

decision structure by using all available attribute values in the 

most efficient way (Mashat et al., 2012). In this way we can 

achieve high success rates very quickly. One of the most used 

decision tree algorithms is the C4.5 algorithm to create trees 

(Xiaoliang et al., 2009). 

The selection of attributes used in decision nodes is based 

on “information gain” in the C4.5 algorithm. The concept of 

entropy (uncertainty level) is used in determining the 

information gain. The following calculations to determine 

information gain of a given attribute 𝐴 must be performed: 

𝑖𝑛𝑓𝑜(𝐷) = −∑ 𝑝𝑖 log 𝑝𝑖
𝑚
𝑖=1  ,         (8) 

𝑖𝑛𝑓𝑜𝐴(𝐷) = ∑
|𝐷𝑗|

|𝐷|
𝑖𝑛𝑓𝑜(𝐷𝑗)

𝑣
𝑗=1 ,        (9) 

𝐺𝑎𝑖𝑛(𝐴) = 𝑖𝑛𝑓𝑜(𝐷) − 𝑖𝑛𝑓𝑜𝐴(𝐷),      (10) 

where  

𝑝𝑖  : The ratio of the number of labels with class 𝑖 to the total 

number of labels, 

𝐷𝑗  : Subset that contains only the 𝑗.th value of a given 

attribute 𝐴 in the dataset, 

𝑖𝑛𝑓𝑜(𝐷) : Total entropy value in the data set, 

𝑖𝑛𝑓𝑜𝐴(𝐷) : Total entropy value after splitting according to 

different values of the attribute A, 

𝐺𝑎𝑖𝑛(𝐴) : The information gain of the attribute A. 

The total entropy value of the system is calculated with the 

Eq. (8) to calculate the information gain with a certain attribute. 

The entropy value of each attribute in the system is calculated 

separately with the Eq. (9). Then, the information gain provided 

by the value of that attribute to the system is obtained with the 

Eq. (10). When the calculations are completed, the gain values 

calculated for each attribute are compared. The attribute that 

provides the highest value is determined as the decision node to 

the next split. These nodes are combined to create an optimal 

decision tree structure. 

Another method used to create decision trees is the Gini 

index method developed by IBM (Gelfand et al., 1991). In this 

method, calculations are made similar to the Eqs. (8) - (10). The 
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amount of information is calculated with the help of the Gini 

index determined in Eq. (11) instead of Eq. (8): 

𝑔𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2𝑚

𝑖=1  .        (11) 

One of the biggest problems in machine learning is 

overfitting. This problem is that the system loses its flexibility as 

a result of over-training. In the training of the decision tree 

model, the system creates a special structure that takes into 

account the details. Outlier observations may also be included in 

these details as a result of the model's over-training. For 

example, after the required eliminations are made in the decision 

tree, 99.990 of 100.000 data return True and the remaining 10 

return False value. A separate branch can be created for these 10 

data, which is inconsistent observation with the system's 

overfitting. This negatively affects the optimum number of 

branches in the system. 

The Random Forest model is the solution to the above-

mentioned overfitting problem of decision trees. The random 

forest model consists of a random combination of multiple 

decision trees (Aydın, 2018). This method was developed by Leo 

Breiman in 2001 (Breiman, 2001). The chosen decision trees 

should be as different as possible. The low correlation between 

decision trees will allow the system to yield more accurate 

results by lowering the amount of deviation in the overall 

prediction mechanism. The Model does not give equal weight to 

each tree that makes up itself. The model uses out-of-Bag (OOB) 

error rate to determine the weight of these trees. The data set is 

divided into 2/3 of the training and 1/3 of the test. As a result of 

this process, the tree with the lowest error is given the highest 

weight, while the tree with the highest error is given the lowest 

weight. In the classification problem, each tree in the forest 

makes a prediction. The prediction value with the majority is 

determined as the overall prediction value of the model.  

2.6. Evaluation metrics  

For the evaluation of binary classification models, various 

metrics are used based on confusion matrix using TP (True 

Positive), FP (False Positive), TN (True Negative), and FN 

(False Negative) values (Yıldız and Karadeniz, 2019):  

𝑇𝑃 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑜𝑚𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠, 

𝑇𝑁 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠, 

𝐹𝑃 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑜𝑚𝑓𝑖𝑟𝑚𝑒𝑑 𝑐𝑎𝑠𝑒𝑠, 

𝐹𝑁 = 𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑟𝑜𝑛𝑔𝑙𝑦 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒𝑠. 

The most used model evaluation metrics are precision, 

recall and F1-score values, where the precision is the number of 

correctly identified positive results divided by the number of all 

positive results, including those not identified correctly, and the 

recall is the number of correctly identified positive results 

divided by the number of all samples that should have been 

identified as positive: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ,    (12) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  .    (13) 

The F1-score value is a more accurate evaluation metric, 

especially in cases where the number of positive and negative 

data in the training set is unbalanced. The F1-score is calculated 

from the precision and recall as their harmonic mean as follows:  

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 .    (14) 

In our study, precision, recall and F1-score metrics were 

also used to evaluate the models. 

3. Proposed Method 

3.1. Related work 

There are some studies in the literature to predict invoice 

fields from image files. Although some of them resemble our 

work in terms of ideas, there are differences with some critical 

points. The following are some of these works identified as a 

result of the literature review. An automatic indexing approach 

was used in the study (Esser et al., 2012). The desired inputs 

must be in precisely determined positions in this approach. 

Results are obtained by making index assignments to the 

information in this position. Although correct results can be 

obtained, changing the positions of the information on the 

invoices negatively affects the results. Therefore, only invoices 

in allowed templates can give good results. The Intellix is 

another work with similarities to the automatic indexing 

approach (Schuster et al., 2013). In the Intellix method proposed 

in the work, the classification process is performed first. Then, 

according to the rules, the information is extracted from the 

invoice. The positions in the invoice information must always be 

the same and precise to make the results accurate. It is necessary 

to use templates to get the correct results. The approach in the 

study (Liu et al., 2019) is to ensure that the 2-dimensional 

structures of the documents are preserved. It is aimed to transfer 

information without the need for any template. Each text has 

been converted into graph format and the position information of 

the words that they represent has been assigned to the vertexes in 

this graph. Thus, each word has become a vector whose 

coordinates are determined in space. The training was carried 

out with BiLSTM - CRF model. The main purpose of the work 

(Katti et al., 2018) is to create the model that best represents the 

2-dimensional structure in the documents as in the work (Liu et 

al., 2019). The information is used to describe each letter in the 

words and their position on the document. The model consists of 

two main parts as encoder and decoder. As a result of the 

training, they achieved good results in sections such as invoice 

number and invoice date, unlike in sections such as seller name 

and address. The CloudScan approach presented in the study 

(Palm et al., 2017) does not require a template, unlike automatic 

indexing and Intellix. The working principle is based on the n-

gram system. Each sentence is evaluated based on the sequence 

of words. The information that matches the correct format has 

been transferred to the system. In addition to the Logistic 

Regression model used as baseline, LSTM (Long Short-Term 

Memory) model was also used. The CloudScan approach is the 

most related work to the appoach proposed in this work.  

 

3.2. Proposed Approach 

The proposed in this study approach does not require any 

invoice document template, unlike automatic indexing and 

https://en.wikipedia.org/wiki/Precision_(information_retrieval)
https://en.wikipedia.org/wiki/Recall_(information_retrieval)
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Intellix. The working principle is also based on the n-gram 

analysis as in the CloudScan approach. Nevertheless, there are 

some important differences between CloudScan and the 

proposed approach. Both the training models and vectorization 

techniques used are different. The main difference of the 

proposed approach is using of the word distance measurement 

methods such as Levenshtein and Jaro-Winkler for vectorization 

technics. CloudScan uses Logistic Regression and LSTM 

models while the Random Forest model as the main training 

model is used in this work. Contrary to these differences, N-

gram creation and feature calculation methods are similar to 

those in the CloudScan aproach.  

 

def calc_levenshtein(i,j): 

     rows = len(i) + 1 

     cols = len(j) + 1 

     dist = create_zeros_matrix(i,j) 

     for col in range(1,cols): 

          for row in range(1,rows): 

               if i[row-1] == j[col-1]: 

                    cost = 0 

               else: 

                    cost = 1 

               dist[row][col] = min(dist[row-1][col]+1, 

                                        dist[row][col-1]+1, 

                                        dist[row-1][col-1] + cost) 

     ratio = ((len(i)+len(j) – dist[row][col])/ (len(i) + len(j)) 

     return ratio 

pot_keys = list of potential keys 

control_keys=list of control keys 

result_list = [] 

for pot_key in pot_keys: 

     ratio_list = [] 

          for control_key in control_keys: 

               ratio = calc_levenshtein(pot_key, control_key) 

               ratio_list.append(ratio) 

          result_list.append(max(ratio_list))  

 

Figure 3. Pseudocode of the algorithm using the Levenshtein 

Distance 

In the proposed approach, firstly Levenshtein distances are 

calculated between potential keywords and members in the 

control keywords list. In order the method to work properly, the 

keyword checklist, which are compared with the potential 

keywords, should be carefully selected. When the number of 

elements in this list is more than one, the distance of the 

keyword closest to the potential keyword is taken and processed 

in the system. The pseudocode of the algorithm is used is given 

in Fig. 3. 

Since the invoices used in this work are in German, it was 

sufficient to use 1-gram to identify potential keywords. It would 

be better to use 2-gram in case of working on a Turkish or 

English invoice. Because potential keywords consist of 2 words 

in these languages such as “Fatura Numarası”, “Fatura Tarihi” or 

“Invoice Number”, “Invoice Date”. However, these structures 

can be expressed in a single word in German, such as 

"Rechnungsnummer", "Rechnungsdatum", “Belegdatum". After 

the 1-gram structure of the words on the invoice is created, 

Levenshtein distances are calculated by comparing them with 

each element in the keyword checklist. Additional attributes used 

in the proposed approach reflecting Levenshtein distances of the 

n-gram to the potential keywords used for training are given in 

Table 4. 

Table 4. Additional Levenshtein Distance Attributes Used in 

Training 

Attribute Description 

InvoiceDateLevDistance Levenshtein Distance value used 

for Invoice Date 

DeliveryDateLevDistance Levenshtein Distance value used 

for Delivery Date 

DueDateLevDistance Levenshtein Distance value used 

for Due Date 

InvoiceNoLevDistance Levenshtein Distance value used 

for Invoice No 

TotalGrossLevDistance Levenshtein Distance value used 

for Total Gross 

TotalNetLevDistance Levenshtein Distance value used 

for Total Net 

VatAmountLevDistance Levenshtein Distance value used 

for Vat Amount 

IbanLevDistance Levenshtein Distance value used 

for IBAN 

 

4. Computational Results 

4.1. Dataset 

A dataset containing of 9910 invoice images collected by 

authors from different firms is divided into 80% training and 

20% test sets. Since the invoices contain sensitive financial 

information, the dataset cannot be presented as an open source. 

A total of 34 features were used given in Tables 2 and 4. There 

are 26 features in Table 2 and 8 features in Table 4. An example 

of invoice image that is used in training is shown in Fig. 4. The 

invoice can be seen in Table 5, where all processes are 

completed and ready for training. The labeling process was done 

by two experts. While one expert performed the labeling, the 

other one checked the labelled fields. 

The machine learning models are used such as Random 

Forest, Gradient Boosting Machine, Extreme Gradient Boosting, 

K-Nearest Neighbors, AdaBoost and Decision Tree to predict the 

labels for all fields. There is an imbalance between labeled and 

unlabeled data used in training. Although there is single field 

(for example, invoice number) on a single invoice, there is an 

average of 1500 to 2000 unclassified data (n-grams). This 

situation causes unbalanced data problem (Chawla et al., 2002). 

If the unbalanced data problem is not solved, the model may 

qualify very few classes of observations as completely outlier. 

For this reason, whole data in the minor class (labeled) is taken, 

while only a certain part of the data in the major class 

(unlabeled) is taken. As a result of the training, the best ratio of 

the number of unlabeled data to the number of labeled data was 

determined as 15. Its effect on training may be different each 

time since the unlabeled data will be chosen randomly. Apart 

from these, the overfitting problem has been prevented by 

limiting the number of invoices of the same type.  The training 

has been repeated 500 times because of this randomness. 
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4.2. Results and Discussion 

Computational experiments were performed on the computer 

with 2.3 Ghz 8-core 9th-generation Intel Core i9 processor, 

AMD Radeon Pro 5500M with 4GB of GDDR6 memory and 

16GB of 2666 MHz DDR4 memory. The training process took 

164 minutes for all invoices. Python was used as the 

programming language, numpy and pandas were used as a 

library in this work. The scores for labeled data such as "invoice 

date", "invoice number", "due date", "delivery date", "total 

gross", "total net", "vat amount" and "IBAN" are given in tables 

6-13. The models generally using the F1-scores because of the 

unbalanced data are compared. The bold numbers represent the 

best F1-scores in the tables. In the Random Forest, which is 

concluded as the best prediction model, we achieve F1 scores as 

0.97 for the “invoice number”, 0.97 for the “invoice date”, 0.88 

for the “due date”, 0.76 for the “delivery date”, 0.93 for “total 

gross”, 0.89 for “total net”, 0.92 for “vat amount” and 0.99 for 

“IBAN”. When the values are analyzed, the Extreme Gradient 

Boosting model achieved the second closest results to the 

Random Forest. The other models did not show any obvious 

superiority over each other. 

The training results of all labeled fields to be predicted were 

obtained separately. The results obtained for each model and 

each distance measurement technique can be seen in Tables 6-

13. First of all, there are two main reasons for special training 

for each field. First reason is ensuring maximum score by 

choosing different attributes that best represent each tag. The 

second is to be able to choose different models that provide the 

best success for the field. Note that, it may not always be 

possible to achieve the best score in all fields with a single 

model (Nasiboğlu and Akdoğan, 2020). 

According to the Tables 6-13, it can be seen that the best 

model is Random Forest for all fields. However, as can be seen 

in Table 6, Table 7 and Table 13, the Extreme Gradient Boosting 

model was able to produce results close to Random Forest. In 

the future, it can be thought that these two models will be 

successful in the estimation of other fields such as address, tax 

number. At the same time, the values of two different distance 

measurement methods can be evaluated in the tables.  Although 

Jaro-Winkler and Levenshtein methods obtain very close scores, 

we can say that Levenshtein method gives a better result.  

If we evaluate the results on the basis of fields, high scores were 

obtained on invoice number, invoice date and IBAN. The reason 

for this success is that these tagged data, coordinates and 

potential words around them are similar in many invoices. The 

reason for not achieving such high success in the amounts 

section is because the labeled data can be located in very 

variable regions on the page. For example, total amount may be 

at the top on the second page in a multi-page invoice, while it is 

in the middle on the page of single-page invoice. It can also be 

located on both the right and left side on the page. Despite these 

variations, a satisfactory success has been achieved for the 

amount fields. Due to the insufficient amount of labeled data in 

the delivery date and the due date fields, the desired success can 

not be achieved for this fields. 

 

 

Table 5. Part of the Sample Invoice Ready for Traning 

RawText Pattern IsFirstStr IsFirstInt … InvoiceDateLevDistance TotalNetLevDistance 

Gesamt Xxxxxx 
1 0 … 0 0 

Gesamt netto Xxxxxx xxxxx 
1 0 … 0 0 

Gesamt netto 
483,60 

Xxxxxx xxxxx 
000?00 

1 0 … 0 0 

Gesamt netto 
483,60 € 

Xxxxxx xxxxx 
000?00 ? 

1 0 … 0 0 

netto xxxxx 
1 0 … 0.35 0.65 

netto 483,60 xxxxx 000?00 
1 0 … 0.35 0.65 

netto 483,60 
€ 

xxxxx 000?00 ? 
1 0 … 0.35 0.65 

483,60 000?00 
0 1 … 0.25 1 
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...  

Figure 4. A Sample Invoice image from the Dataset 

 

Table 6. Precision, Recall and F1 Scores for “invoice number” 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.99 0.96 0.97 0.99 0.96 0.97 

Gradient Boosting 

Machine 
0.96 0.91 0.93 0.96 0.90 0.93 

Extreme Gradient 

Boosting 
0.98 0.97 0.97 0.98 0.97 0.97 

K-Nearest Neighbors 0.93 0.95 0.94 0.90 0.94 0.92 

AdaBoost 0.94 0.89 0.92 0.94 0.88 0.91 

Decision Tree 0.95 0.96 0.95 0.95 0.96 0.95 
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Table 7. Precision, Recall and F1 Scores for “invoice date” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.97 0.97 0.97 0.97 0.97 0.97 

Gradient Boosting 

Machine 
0.93 0.95 0.94 0.93 0.94 0.94 

Extreme Gradient 

Boosting 
0.96 0.97 0.96 0.96 0.97 0.96 

K-Nearest Neighbors 0.91 0.93 0.92 0.92 0.93 0.93 

AdaBoost 0.90 0.94 0.92 0.90 0.93 0.92 

Decision Tree 0.97 0.96 0.96 0.97 0.96 0.96 

 

 

Table 8.  Precision, Recall and F1 Scores for “due date” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.97 0.81 0.88 0.95 0.81 0.87 

Gradient Boosting 

Machine 
0.90 0.64 0.75 0.87 0.65 0.74 

Extreme Gradient 

Boosting 
0.91 0.80 0.85 0.91 0.81 0.86 

K-Nearest Neighbors 0.66 0.61 0.63 0.64 0.56 0.60 

AdaBoost 0.85 0.53 0.65 0.69 0.56 0.61 

Decision Tree 0.78 0.80 0.79 0.74 0.78 0.76 

 

 

Table 9. Precision, Recall and F1 Scores for “delivery date” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.93 0.64 0.76 0.89 0.63 0.74 

Gradient Boosting 

Machine 
0.83 0.44 0.58 0.76 0.52 0.62 

Extreme Gradient 

Boosting 
0.84 0.61 0.71 0.81 0.57 0.67 

K-Nearest Neighbors 0.65 0.50 0.56 0.70 0.57 0.63 

AdaBoost 0.65 0.34 0.45 0.83 0.34 0.48 

Decision Tree 0.63 0.64 0.64 0.64 0.62 0.63 
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Table 10. Precision, Recall and F1 Scores for “total gross” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.97 0.88 0.93 0.98 0.88 0.93 

Gradient Boosting 

Machine 
0.93 0.69 0.79 0.93 0.68 0.79 

Extreme Gradient 

Boosting 
0.96 0.88 0.92 0.96 0.88 0.92 

K-Nearest Neighbors 0.87 0.78 0.82 0.84 0.77 0.80 

AdaBoost 0.86 0.67 0.76 0.85 0.64 0.73 

Decision Tree 0.86 0.88 0.87 0.85 0.88 0.86 

 

 

Table 11. Precision, Recall and F1 Scores for “total net” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.96 0.83 0.89 0.96 0.83 0.89 

Gradient Boosting 

Machine 
0.90 0.55 0.68 0.89 0.55 0.68 

Extreme Gradient 

Boosting 
0.93 0.81 0.86 0.93 0.81 0.86 

K-Nearest Neighbors 0.79 0.70 0.74 0.76 0.69 0.73 

AdaBoost 0.78 0.52 0.62 0.76 0.52 0.62 

Decision Tree 0.80 0.83 0.82 0.81 0.82 0.82 

 

 

Table 12. Precision, Recall and F1 Scores for “vat amount” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.96 0.88 0.92 0.96 0.87 0.92 

Gradient Boosting 

Machine 
0.91 0.63 0.75 0.91 0.62 0.74 

Extreme Gradient 

Boosting 
0.95 0.88 0.92 0.94 0.87 0.91 

K-Nearest Neighbors 0.85 0.80 0.82 0.85 0.78 0.81 

AdaBoost 0.80 0.59 0.68 0.82 0.57 0.67 

Decision Tree 0.85 0.85 0.85 0.82 0.85 0.83 
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Table 13. Precision, Recall and F1 Scores for “IBAN” 

 

Model 
Precision 

Lev. 

Recall 

Lev. 

F1 

Lev. 

Precision 

J-Win 

Recall 

J-Win. 

F1 

J-Win 

Random Forest 0.99 0.99 0.99 0.99 0.99 0.99 

Gradient Boosting 

Machine 
0.98 0.97 0.98 0.98 0.97 0.98 

Extreme Gradient 

Boosting 
0.99 0.99 0.99 0.99 0.99 0.99 

K-Nearest Neighbors 0.97 0.99 0.98 0.98 0.99 0.99 

AdaBoost 0.97 0.97 0.97 0.97 0.97 0.97 

Decision Tree 0.99 0.99 0.99 0.99 0.99 0.99 

 

 

 

5. Conclusion 

In this work, the machine learning models based on n-gram 

structure were discussed to recognize information on the invoice 

images. The conversion of the words on the invoice into n-grams 

and the using of Levenshtein and Jaro-Winkler distances 

between words were effective in the training of the models. 

Although there is not a big difference between Jaro-Winkler and 

Levenhstein distances’ calculation methods, the Levenshtein 

distance is slightly better, as seen in the results. The effective 

attributes’ list was discovered to increase the performance values 

of the models. The data set, collected by authors from different 

firms, containing 9910 invoice images were divided into 80% 

training and 20% test sets. The labeling process performed by 

two expert. While one expert performed labeling for the fields, 

the other one checked the labeled fields. The F1 scores were 

used to compare the models because of the unbalanced data.  

When the performances of the models were compared, it 

was observed that the Random Forest model was superior to 

other models with a value of 0.9137 average F1 score. In 

addition, the Random Forest model was found to be robust to the 

overfitting problem. The average scores of the other models 

were determined as Gradient Boosting Machine with 0.80, 

Exreme Gradient Boosting with 0.8975, K-Nearest Neighbour 

with 0.8012, AdaBoost with 0.7462 and Decision Tree with 

0.8587 F1-scores. 

 In the future studies, it is aimed to construction of the models 

and the additional attributes for effective extraction of invoice 

information. Also, it is planned to construct effective approaches 

to extract other information such as address, postal code and 

customer number on the invoice images. 
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