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Abstract

The present study focusses on the existence of positivity of the solutions to the higher order three-point
boundary value problems involving p-Laplacian

[ϕp(x
(m)(t))](n) = g(t, x(t)), t ∈ [0, 1],

x(i)(0) = 0, for 0 ≤ i ≤ m− 2,

x(m−2)(1)− αx(m−2)(ξ) = 0,

[ϕp(x
(m)(t))]

(j)
at t=0 = 0, for 0 ≤ j ≤ n− 2,

[ϕp(x
(m)(t))]

(n−2)
at t=1 − α[ϕp(x

(m)(t))]
(n−2)
at t=ξ = 0,

where m,n ≥ 3, ξ ∈ (0, 1), α ∈ (0, 1ξ ) is a parameter. The approach used by the application of Guo–
Krasnosel’skii fixed point theorem to determine the existence of positivity of the solutions to the problem.
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1. Introduction

Differential equations have created a tremendous amount of interest and played a vital role in many
areas of mathematical sciences. The theory of differential equations gives profound and wide mathematical
support for addressing many emerging issues of present society that are challenging and multidisciplinary
in the universe. In this theory, one of the significant and useful operators is one-dimensional p-Laplacian
operator and is defined as ϕp(τ) = |τ |p−2τ , where p > 1, ϕ−1

p = ϕq and
1
p +

1
q = 1. Recently, researchers have

given great consideration to study p-Laplacian problems due to the wide applicability in various real time
applications such as biophysics, plasma physics, image processing, rheology, glaciology, turbulent filtration
in porous media, radiation of heat etc. We mention a few papers devoted to p-Laplacian problems, see [3, 4,
19, 26, 20, 10, 13] for the existence of positivity of the solutions. For applications and recent developments,
we refer [7, 1, 2, 5, 9, 15, 16, 18, 28].

We consider higher order three-point boundary value problems involving p-Laplacian of the form

[ϕp(x
(m)(t))](n) = g(t, x(t)), t ∈ [0, 1], (1)

x(i)(0) = 0, for 0 ≤ i ≤ m− 2,

x(m−2)(1)− αx(m−2)(ξ) = 0,

[ϕp(x
(m)(t))]

(j)
at t=0 = 0, for 0 ≤ j ≤ n− 2,

[ϕp(x
(m)(t))]

(n−2)
at t=1 − α[ϕp(x

(m)(t))]
(n−2)
at t=ξ = 0,


(2)

where m,n ≥ 3, ξ ∈ (0, 1), α ∈ (0, 1ξ ) is a parameter, and the function g : [0, 1]×R+ → R+ is continuous and
establish the existence of positivity of the solution by using fixed point theorem of Guo–Krasnosel’skii. If
p = 2, we get various order three-point boundary value problems by giving different values tom and n. In the
past, most researchers have focussed and demonstrated the positivity results for boundary value problems
of third order three-point using various methods, see [11, 29, 33, 35, 22, 23, 25, 27, 34, 24, 39]. However,
some works on positivity results have been found for nth, 2nth and 3nth order p-Laplacian boundary value
problems, see [21, 12, 32, 38, 8, 36, 37, 30, 31]. Motivated by the aforementioned papers, we then extend
the results to mnth order p-Laplacian problem stated in (1), (2).

For establishing the results, assume the following condition is fulfilled in the entire paper:

(F1) α is a parameter such that 0 < αξ < 1, where ξ ∈ (0, 1).

The remaining portion of the paper is structured as below. With the aid of Green functions, the solution
of p-Laplacian problem stated in (1) and (2) is expressed as a solution to an analogous integral equation and
then some inequalities for these Green functions are established in Section 2. The existence of the positivity
results of the problem (1)-(2) is established and the results are validated by an example in Section 3.

2. Preliminaries

This section contains preparatory results that are necessary to demonstrate the existence results.
We first express the solution of the following mth order non-homogeneous problem of three-point

x(m)(t) + φ(t) = 0, t ∈ [0, 1], (3)

x(i)(0) = 0, for 0 ≤ i ≤ m− 2,

x(m−2)(1)− αx(m−2)(ξ) = 0,

}
(4)

where φ(t) ∈ C([0, 1], R+), in terms of Green’s function Gm(t, s) as a solution of an analogous integral
equation. By taking y(t) = ϕp(x

(m)(t)), the solution of nth order non-homogeneous problem of three-point

y(n)(t) + ψ(t) = 0, t ∈ [0, 1], (5)
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y(j)(0) = 0, for 0 ≤ j ≤ n− 2,

y(n−2)(1)− αy(n−2)(ξ) = 0,

}
(6)

where ψ(t) ∈ C([0, 1], R+), is expressed in terms of Green’s function Gn(t, s) as a solution of an analogous
integral equation.

Lemma 2.1. [34] If the condition (F1) is fulfilled, then the solution of the problem stated in (3), (4) is

x(t) =

� 1

0
Gm(t, s)φ(s)ds,

where

Gm(t, s) = H(t, s) +
αtm−1

(m− 1)! (1− ξα)
G(ξ, s), (7)

H(t, s) =
1

(m− 1)!


tm−1(1− s), 0 ≤ t ≤ s ≤ 1,

[tm−1(1− s)− (t− s)m−1], 0 ≤ s ≤ t ≤ 1,

and

G(ξ, s) =


(1− ξ)s, 0 ≤ s ≤ ξ ≤ 1,

(1− s)ξ, 0 ≤ ξ ≤ s ≤ 1.

Lemma 2.2. [34] If the condition (F1) is fulfilled, then the solution of the problem stated in (5), (6) is

y(t) =

� 1

0
Gn(t, s)ψ(s)ds,

where

Gn(t, s) = K(t, s) +
αtn−1

(n− 1)! (1− ξα)
G(ξ, s), (8)

K(t, s) =
1

(n− 1)!


tn−1(1− s), 0 ≤ t ≤ s ≤ 1,

[tn−1(1− s)− (t− s)n−1], 0 ≤ s ≤ t ≤ 1,

and

G(ξ, s) =


(1− ξ)s, 0 ≤ s ≤ ξ ≤ 1,

(1− s)ξ, 0 ≤ ξ ≤ s ≤ 1.

Using Lemmas 2.1 and 2.2, the solution of the problem stated in (1), (2) is

x(t) =

� 1

0
Gm(t, s)ϕq

[� 1

0
Gn(s, r)g(r, x(r))dr

]
ds. (9)

Lemma 2.3. [34] If the condition (F1) is fulfilled, then Gm(t, s) in (7) fulfills the subsequent conditions:

(i) Gm(t, s) ≥ 0, for all t ∈ [0, 1] and s ∈ [0, 1],

(ii) Gm(t, s) ≤ Gm(1, s), for all t ∈ [0, 1] and s ∈ [0, 1],

(iii) min
t∈[ξ,1]

Gm(t, s) ≥ ξm−1Gm(1, s), for all s ∈ [0, 1].

Lemma 2.4. [34] If the condition (F1) is fulfilled, then Gn(t, s) in (8) fulfills the subsequent conditions:

(i) Gn(t, s) ≥ 0, for all t ∈ [0, 1] and s ∈ [0, 1],
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(ii) Gn(t, s) ≤ Gn(1, s), for all t ∈ [0, 1] and s ∈ [0, 1],

(iii) min
t∈[ξ,1]

Gn(t, s) ≥ ξn−1Gn(1, s), for all s ∈ [0, 1].

The fixed point theorem of Guo–Krasnosel’skii mentioned below is often used as the fundamental tool
to establish the positivity results of the problem stated in (1), (2).

Theorem 2.5. [6, 14, 17] Let X be a Banach Space and the set κ ⊆ X be a cone. Suppose the sets Ω1 and
Ω2 are any two open subsets of X such that 0 ∈ Ω1 and Ω1 ⊂ Ω2. If F : κ ∩ (Ω2\Ω1) → κ is a completely
continuous operator such that, either

(i) ∥Fx∥ ≤ ∥x∥, x ∈ κ ∩ ∂Ω1 and ∥Fx∥ ≥ ∥x∥, x ∈ κ ∩ ∂Ω2, or

(ii) ∥Fx∥ ≥ ∥x∥, x ∈ κ ∩ ∂Ω1 and ∥Fx∥ ≤ ∥x∥, x ∈ κ ∩ ∂Ω2 holds.

Then the operator F has a fixed point in κ ∩ (Ω2\Ω1).

3. Existence of Positivity of the Solutions

This section presents the existence of positivity results of the problem stated in (1), (2).
For our construction, let us take X = {x : x ∈ C[0, 1]}, a Banach space with the standard norm

∥x∥ = maxt∈[0,1] |x(t)|. Consider a set κ as

κ = {x ∈ X : x(t) ≥ 0 for t ∈ [0, 1] and min
t∈[ξ,1]

x(t) ≥ M∥x∥},

where

M = min{ξm−1, ξn−1}. (10)

Then, it is obvious that the set κ is a cone in X. To establish the results, we use the operator F : κ→ X by
defining as

Fx(t) =

� 1

0
Gm(t, s)ϕq

[� 1

0
Gn(s, r)g(r, x(r))dr

]
ds. (11)

Define the non-negative extended real numbers g0, g
0, g∞ and g∞ by

g0 = lim
x→0+

min
t∈[0,1]

g(t, x)

ϕp(x)
, g0 = lim

x→0+
max
t∈[0,1]

g(t, x)

ϕp(x)
,

g∞ = lim
x→∞

min
t∈[0,1]

g(t, x)

ϕp(x)
and g∞ = lim

x→∞
max
t∈[0,1]

g(t, x)

ϕp(x)
,

and assume that the above are exist. The case g0 = 0 and g∞ = ∞ represents superlinear and the case
g0 = ∞ and g∞ = 0 represents the sublinear.

We also consider the following conditions are fulfilled in this paper:

(F2) 0 <
� 1
0 Gm(t, s)ds <∞ and 0 <

� 1
0 Gn(t, s)ds <∞, and

(F3) the function g(t, x) is a non-decreasing for the second variable x.

Lemma 3.1. If F : κ→ X is given in (11) then F is a self map on the cone κ.
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Proof. By using the Lemmas 2.3, 2.4 and the condition (F2), Fx(t) ≥ 0 for x ∈ κ and t ∈ [0, 1]. Then, by
Lemma 2.3 and for x ∈ κ, we obtain

Fx(t) =

� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

≤
� 1

0
Gm(1, s)ϕq

(� 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

so that

∥Fx∥ ≤
� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds. (12)

Then, by Lemma 2.3 and (10), for x ∈ κ that

min
t∈[ξ,1]

Fx(t) = min
t∈[ξ,1]

{� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

}

≥ ξm−1

� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

≥ M
� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

≥ M∥Fx∥.

Hence, the operator F is a self map on a cone κ.

Moreover by applying Arzela-Ascoli theorem, F is a completely continuous operator. The existence of
positivity results of the p-Laplacian problem stated in (1), (2) for both the superlinear case as well as the
sublinear case is now established.

Theorem 3.2. Suppose the assumptions (F1), (F2) and (F3) are fulfilled. If the conditions g0 = 0 and
g∞ = ∞ hold, then the nonlinear p-Laplacian problem stated in (1), (2) has at least one positive solution
and it lies in the cone κ.

Proof. From the definition of g0 = 0, there exist ρ1 > 0 and H1 > 0 such that

g(t, x) ≤ ρ1ϕp(x), for 0 < x ≤ H1,

where ρ1 satisfies

(ρ1)
q−1

� 1

0
Gm(1, s)ϕq

(� 1

0
Gn(1, r)dr

)
ds ≤ 1. (13)

Let x ∈ κ and ∥x∥ = H1. Then, for t ∈ [0, 1] and by Lemmas 2.3, 2.4, we get

Fx(t) =

� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

≤
� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(1, r)ρ1ϕp(x)dr

)
ds

≤ (ρ1)
q−1

� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(1, r)dr

)
ds∥x∥

≤ ∥x∥.

Hence, ∥Fx∥ ≤ ∥x∥. Now, if we are setting

Ω1 = {x ∈ X : ∥x∥ < H1}



S. Namburi, R.S. Ronanki, R.P. Kapula, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 451–459. 456

then
∥Fx∥ ≤ ∥x∥, for x ∈ κ ∩ ∂Ω1. (14)

Next, since g∞ = ∞, there exist ρ2 > 0 and H̄2 > 0 such that

g(t, x(t)) ≥ ρ2ϕp(x), for x ≥ H̄2,

where ρ2 satisfies

(ρ2)
q−1M2

�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)dr

)
ds ≥ 1. (15)

Let H2 = max

{
2H1,

H̄2
M

}
. Choose x ∈ κ and ∥x∥ = H2. Then

min
t∈[ξ,1]

x(t) ≥ M∥x∥ ≥ H̄2.

By the Lemmas 2.3, 2.4 and (10), and for t ∈ [0, 1], we obtain

Fx(t) =

� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g(r, x(r))dr

)
ds

≥ min
t∈[ξ,1]

{� 1

0
Gm(t, s)ϕq

( � 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

}

≥ M
� 1

0
Gm(1, s)ϕq

(� 1

0
Gn(s, r)g(r, x(r))dr

)
ds

≥ M
�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)ρ2ϕp(x)dr

)
ds

≥ M(ρ2)
q−1

�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)dr

)
M∥x∥ds

≥ (ρ2)
q−1M2

�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)dr

)
∥x∥ds

≥ ∥x∥.

Therefore, ∥Fx∥ ≥ ∥x∥. So, if we take

Ω2 = {x ∈ X : ∥x∥ < H2}

then
∥Fx∥ ≥ ∥x∥ for x ∈ κ ∩ ∂Ω2. (16)

By Theorem 2.5 to (14) and (16), it follows that the operator F has a fixed point x ∈ κ∩ (Ω2 \ Ω̄1) and that
fixed point x is the positive solution of the p-Laplacian problem (1)-(2).

Theorem 3.3. Suppose the assumptions (F1), (F2) and (F3) are fulfilled. If the conditions g0 = ∞ and
g∞ = 0 hold, then the nonlinear p-Laplacian problem stated in (1), (2) has at least one positive solution and
it lies in the cone κ.

Proof. From the definition of g0 = ∞, there exist ρ̄1 > 0 and R1 > 0 such that

g(t, x) ≥ ρ̄1ϕp(x), for 0 < x ≤ R1,

where ρ̄1 ≥ ρ2 and ρ2 is given in (15).
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Let x ∈ κ and ∥x∥ = R1. Then, by Lemmas 2.3, 2.4 and (10), and for t ∈ [0, 1], we obtain

Fx(t) =

� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

≥ min
t∈[ξ,1]

{� 1

0
Gm(t, s)ϕq

( � 1

0
Gn(s, r)g

(
r, x(r)

)
dr

)
ds

}

≥ M
�
s∈[ξ,1]

Gm(1, s)ϕq

( �
r∈[ξ,1]

Gn(s, r)ρ̄1ϕp(x)dr

)
ds

≥ M
�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)ρ̄1ϕp(x)dr

)
ds

≥ M(ρ̄1)
q−1

�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)dr

)
M∥x∥ds

= (ρ̄1)
q−1M2

�
s∈[ξ,1]

Gm(1, s)ϕq

(
M

�
r∈[ξ,1]

Gn(1, r)dr

)
∥x∥ds

≥ ∥x∥.

Therefore, ∥Fx∥ ≥ ∥x∥. Now, if we take

Ω3 = {x ∈ X : ∥x∥ < R1}

then
∥Fx∥ ≥ ∥x∥, for x ∈ κ ∩ ∂Ω3. (17)

Next, since g∞ = 0, there exist ρ̄2 > 0 and R̄2 > 0 such that

g(t, x(t)) ≤ ρ̄2ϕp(x), for x ≥ R̄2,

where ρ̄2 ≤ ρ1 and ρ1 is given in (13).
Set

g∗(t, x) = sup
0≤s≤x

g(t, s).

Then, it is evident that the real-valued function g∗ is a non-decreasing, g ≤ g∗ and

lim
x→∞

g∗(t, x)

x
= 0.

It follows that there exists R2 > max{2R1, R̄2} such that

g∗(t, x) ≤ g∗(t,R2), for 0 < x ≤ R2.

Choose x ∈ κ with ∥x∥ = R2. Then, we get

Fx(t) =

� 1

0
Gm(t, s)ϕq

(� 1

0
Gn(s, r)g(r, x(r))dr

)
ds

≤
� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(s, r)g(r,J2)dr

)
ds

≤
� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(s, r)ρ̄2ϕp(J2)dr

)
ds

≤ (ρ̄2)
q−1

� 1

0
Gm(1, s)ϕq

( � 1

0
Gn(1, r)dr

)
dsR2

≤ R2 = ∥x∥.
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Hence, ∥Fx∥ ≤ ∥x∥. Now, if we take
Ω4 = {x ∈ X : ∥x∥ < R2}

then
∥Fx∥ ≤ ∥x∥, for x ∈ κ ∩ ∂Ω4. (18)

Applying by Theorem 2.5 to (17) and (18), we have that the operator F has a fixed point x ∈ κ ∩ (Ω4 \ Ω̄3)
and that fixed point x is the positive solution of the p-Laplacian problem (1)-(2).

We consider the example to validate the established results.

Example 3.4. Let us take m = 4, n = 3 and ξ = 1
3 . Now, consider a nonlinear p-Laplacian problem

[ϕp
(
x(4)(t)

)
](3) = g(t, x(t)), t ∈ [0, 1], (19)

satisfying

x(0) = 0, x(1)(0) = 0, x(2)(0) = 0, x(2)(1)− 2x(2)(
1

3
) = 0,

[ϕp(x
(4)(t))]at t=0 = 0, [ϕp(x

(4)(t))]′at t=0 = 0,

[ϕp(x
(4)(t))]′at t=1 − 2[ϕp(x

(4)(t))]′
at t=ξ= 1

3

= 0.

 (20)

Let us take p = 2 for simplicity. By algebraic computations, we get

M = 0.1111.

(a) If we take g(t, x(t)) = x2(1 − e−2t), then g0 = 0 and g∞ = ∞. So, all the claims in the Theorem 3.2
are fulfilled. Therefore, the boundary value problem (19)-(20) has at least one positive solution.

(b) If we take g(t, x(t)) =

√
(t2+1)

t2x2 , then g0 = ∞ and g∞ = 0. So, all the claims in the Theorem 3.3 are
fulfilled. Therefore, the boundary value problem (19)-(20) has at least one positive solution.

4. Conclusion

In this paper, we established the existence of positive solutions to the higher order three-point bound-
ary value problem involving p-Laplacian operator by an application of the Guo–Krasnosel’skii fixed point
theorem for operators on a cone in a Banach space.

Acknowledgements: The authors express their gratitude to the referees for their insightful recommenda-
tions and remarks.
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