

Sünek Betonarme Perde Duvarların Şekil değiştirme Esaslı Hasar Sınırları

Saeid Foroughi^{1,*}, S. Bahadır Yüksel¹

¹Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, İnşaat Mühendisliği Bölümü, Konya, Türkiye

Makale Tarihçesi								
Gönderim:	22.12.2020							
Kabul:	06.05.2021							
Үауіт:	30.06.2021							

Araştırma Makalesi

Öz – Betonarme perde duvarların deprem performansının belirlenmesi için doğrusal olmayan davranışları ile şekildeğiştirme esaslı hasar sınırları araştırılmıştır. Bu amaçla yapılan çalışmada on adet farklı parametreye sahip süneklik düzeyi yüksek perde duvar modelleri tasarlanarak çözümlemeleri yapılmıştır. Türkiye Bina Deprem Yönetmeliği 2018'de tanımlanan performans düzeyi hasar seviyeleri için perde duvarların şekildeğiştirme sınırları ile plastik dönme sınırları hesaplanmıştır. Perde duvarların şekildeğiştirmeye göre değerlendirme ve tasarımı için etkin kesit rijitliği ve akma dönme değerleri de hesaplanmıştır. Türkiye Bina Deprem Yönetmeliği 2018'e göre betonarme perde duvarların farklı performans düzeyleri için şekildeğiştirme sınırlarının hesaplanmasında; malzeme dayanımları, kesitte donatı konfigürasyonu, kullanılan sargılı betonun gerilme-şekildeğiştirme ilişkisi, kesitlerin moment-eğrilik gibi doğrusal olmayan davranışları ile plastik mafsal özellikleri dikkate alınmaktadır. Perde duvarlar için farklı performans düzeylerine göre şekildeğiştirme taleplerine karşılık gelen hasar sınırları elde edilerek değerlendirilmiştir. Perde duvar modellerinde farklı yatay donatı oranına göre hesaplanan beton toplam birim şekildeğiştirmeleri ve farklı eksenel yük oranlarındaki akma dönmesi ile plastik dönme değerleri farklı performans düzeyleri için hesaplanarak araştırılmıştır. Betonarme perde duvarlar için elde edilen moment-eğrilik ilişkilerinin üzerinde Türkiye Bina Deprem Yönetmeliği 2018'e göre hesaplanacak hasar sınırları ve bölgeleri görsel olarak işlenmiştir. Eksenel yük seviyesi, yatay ve düşey donatı oranı gibi, akma ve göçme öncesi eğrilik değerlerini etkileyen parametreler plastik dönme ve yönetmeliğin öngördüğü hasar sınırlarını etkilemektedir. Yatay donatı oranının artması ve aralığının azalması sonucunda perde duvar kesitleri daha güvenli yönde kalmaktadır.

Anahtar Kelimeler – Betonarme perde duvar, hasar sınırları, performans düzeyi, plastik dönme, şekil değiştirme sınırları

Deformation Based Damage Limits of the Ductile Reinforced Concrete Shear Walls

¹Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Civil Engineering, Konya, Turkey

Article Histor	ry	Abstract - Nonlinear behaviour and deformation-based damage limits investigated to determine the seismic
Received:	22.12.2020	performance of the shear walls. Ten high ductility levels shear walls having different parameters were designed and
Accepted:	06.05.2021	level damage limits defined in Turkey Building Earthquake Code 2018. Effective section stiffness and yield rotation
Published:	30.06.2021	values were also calculated for the evaluation and design of shear walls according to deformation. According to Turkey Building Earthquake Code 2018, in the calculation of deformation limits for different performance levels of
Research Arti	cle	shear walls; material strengths, reinforcement configuration in the cross-section, the stress-strain relationship of the confined concrete used, nonlinear behaviour of the sections such as moment-curvature and plastic hinge properties are taken into consideration. The damage limits corresponding to the deformation demands according to different performance levels were obtained and evaluated for shear walls. Concrete strain values for different transverse reinforcement ratios, yield and plastic rotation values at different axial load levels were calculated and investigated for different performance levels. On the moment-curvature relationships obtained for shear walls, the damage limits and regions to be calculated according to the Turkey Building Earthquake Code 2018 were visually processed. Parameters such as axial load levels, transverse and longitudinal reinforcement ratios that affect the yield and ultimate curvature values, also affect the plastic rotation and the damage limits stipulated by the regulation. The shear wall sections remain in a safer direction as the transverse reinforcement ratio increases and the spacing decreases.

Keywords – Reinforced concrete shear wall, damage limits, performance level, plastic rotation, strain limits

¹ b saeid.foroughi@yahoo.com

² byuksel@ktun.edu.tr

^{*}Sorumlu Yazar / Corresponding Author

1. Giriş

Betonarme perde duvarların sismik davranışı, genel yapının sismik performansı üzerinde büyük bir etkiye sahiptir (Xiao-chun ve Xiao-lei, 2011). Şekildeğiştirme esaslı tasarım yöntemleri; malzemenin doğrusal olmayan davranışını dikkate almaktadır. Doğrusal olmayan hesap yöntemleriyle hesaplanan şekildeğiştirme sınır değerleri, deprem yönetmeliklerinde farklı performans düzeyleri için tanımlanan sınır değerler ile karşılaştırılarak taşıyıcı sistem elemanlarının hangi hasar bölgelerinde olduğuna karar verilir (Foroughi ve Yüksel, 2019).

Mevcut veya yeni yapılacak betonarme binaların kapsamlı bir performansa dayalı sismik değerlendirmesi için betonarme perde duvarların deformasyon kapasitesinin tahmin edilmesi çok önemlidir (Özdemir, Kazaz ve Özkaya, 2017). Yer değiştirme sünekliği, yapıların sismik tepkisini karakterize eden bir parametredir. Ayrıca, deplasman sünekliği, belirli sismik yönetmeliklere göre gerçekleştirilen bir yapısal tasarımda, sismik tasarımın ana amacına ulaşıp ulaşamayacağını belirlemek için kullanılabilir (Perez ve Mulder, 2018). Betonarme perde duvarlar, depreme dayanıklı bina tasarımında veya mevcut yapıların deprem açısından güçlendirilmesinde etkin olarak kullanılmaktadır. Deplasman esaslı yapılan sismik tasarımda ve yapısal elemanların performans değerlendirmesi için süneklik ve eğrilik gibi kesitsel deformasyon miktarları büyük önem taşımaktadır. Doğrusal olmayan analiz, yapısal elemanların deformasyon yanıtının yer değiştirme tabanlı prosedürlere göre tahmin edildiği yöntemlerdir (Kazaz, Gülkan ve Yakut, 2012a). Betonarme perde duvarlarda uç bölgeleri, eksenel yük oranı, perde duvar en boy oranı (b_w/l_w) ve kesme açıklığı dâhil olmak üzere perde duvarların deformasyon kapasitesini etkileyen çeşitli faktörler vardır. Uç bölgeleri, betonarme perde duvarların hasar modunu ve deformasyon kapasitesini kontrol eden önemli parametrelerden biridir (Zhou, Zhang, Huang ve Li, 2014).

Qian ve Xu (2007), betonarme perde duvarlar için yer değiştirme tabanlı bir performans sınırı için tasarım yöntemi geliştirmiş ve belirli bir hasar talebine göre enine donatı için karakteristik bir bağıntı önermişlerdir. Xin, Liang ve Deng (2009) farklı sismik seviyelerde ve eksenel basınç oranlarında, perde duvar uç bölgesi uzunluğunu ve donatı detaylandırmasını incelemişlerdir. Hong, Lu, Yang ve Zhang (2008) perde duvar uç bölgesi hasar modu, taşıma kapasitesi, süneklik oranı, sertlik ve betonarme perdelerin enerji yayma kapasitesi üzerindeki etkisini tartışmışlardır. Wallace ve Moehle (1992) geliştirdikleri yöntemle perdelerin şekil değiştirme talebi ile kapasiteyi karşılaştırarak perde uç bölgelerinde gerekli olan donatı detaylandırması ve sünekliği araştırmıştır. Deprem performans ve güçlendirilmesi için alternatif yaklaşım şekil değiştirme esaslı tasarımdır. Şekil değiştirme esaslı tasarımın yeni binalarda uygulanması deprem mühendisliğinde son yıllarda oldukça ilgi gören bir alandır (Karageyik ve Sucuoğlu, 2011; Moehle, 1992; Panagiotakos ve Fardiş, 1999; Priestley, Calvi, Kowalsky ve Powell, 2008; Tjhin, Ascheim ve Wallace, 2007). Perde duvarlı binalarda, limit durumları ve karşılık gelen sınır değerleri tanımlamak için betonarme yapısal duvarların deformasyon sınırlarının araştırılması gerekmektedir (Taleb, 2018). Betonarme elemanlarda performansın ve hasarın doğru analitik değerlendirilmesi için, belirli hasar durumlarında iyi tanımlanmış deformasyon limitleri gereklidir (Kazaz, Gülkan ve Yakut, 2012b).

Gerçek yapısal davranışın daha doğru bir simülasyonunu elde etmek için, betonarme elemanların doğru moment-eğrilik ilişkileri ile sargısız ve sargılı betonun gerilme-şekil değiştirme ilişkilerinin incelenmesi gerekmektedir (Foroughi ve Yüksel, 2020a). Daha önceki çalışmalarda, betonarme taşıyıcı elemanların moment-eğrilik, yanal kuvvet-tepe deplasman, eğrilik sünekliği ile deplasman süneklik davranışlarının, eksenel yük, boyuna ve enine donatı oranlarında meydana gelen değişikliklerden önemli ölçüde etkilendiği gözlenmiştir (Foroughi ve Yüksel, 2020b, 2020c). Betonarme perde duvarların yük taşıma kapasiteleri ile şekil değiştirmeyi inceleyen önceki çalışmalara bakıldığında (Rutenberg ve Nsieri, 2006) perde davranışını etkileyen en önemli değişkenlerin perde duvarların yükseklik / plandaki uzunluk oranı (H_w/l_w), eksenel yük oranı (N/N_{max}), boyuna ve yatay donatı oranı olduğu sonucu elde edilmiştir.

Süneklik düzeyi yüksek betonarme perde duvarların kesit tasarımı, geometrisi, boyuna donatı oranı, yatay donatı oranı ve yerleşimleri Betonarme Yapıların Tasarım ve Yapım Kuralları (TS500, 2000) ve Türkiye Bina Deprem Yönetmeliğinde (TBDY, 2018) verilen hükümler dikkate alınarak tasarlanmıştır (bkz. Şekil 1). Tasarlanan perde duvarların planda uzun kenarının (l_w) kalınlığına (b_w) oranı 6'dan büyük olarak belirlenmiştir. Farklı boyuna ve yatay donatı oranına sahip tasarlanan süneklik düzeyi yüksek betonarme perde

duvarların davranışları, malzemelerin doğrusal olmayan davranışı dikkate alınarak gerilme-şekil değiştirme ve moment-eğrilik ilişkilerinden incelenmiştir. Deprem etkisi altında binaların şekil değiştirmeye göre değerlendirmesi için betonarme perde duvarların etkin kesit rijitliği, etkin rijitlik katsayısı, akma dönmesi ve süneklik değerleri TBDY (2018)'de verilen bağıntılar ve kesitlerin moment-eğrilik ilişkilerinden elde edilen değerlere göre hesaplanmıştır. Betonarme perde duvarları için TBDY (2018)'de tanımlanan Göçme Öncesi (GÖ), Kontrollü Hasar (KH) ve Sınırlı Hasar (SH) performans düzeyleri için oluşan şekil değiştirme sınırları, farklı yatay donatı oranına göre beton birim şekil değiştirmeleri ve farklı eksenel yük seviyelerde plastik dönmeler hesaplanarak performans düzeyleri araştırılmıştır. Doğrusal olmayan hesap yöntemleriyle elde edilen şekil değiştirme sınır değerleri, perde duvar hasar sınırlarına karşı gelmek üzere TBDY (2018)'de öngörülen sayısal değerler ile karşılaştırarak performans düzeyleri hesaplanmıştır.

2. Betonarme Bina Elemanlarının Birim Şekil Değiştirme Sınırları

TBDY (2018)'de yapılacak performans değerlendirmesinde yapısal betonarme taşıyıcı elemanlar için GÖ, KH ve SH performans düzeyi ve sınır değerleri tanımlanmıştır. Betonarme kesitlerde SH performans düzeyi için sınırlı miktarda, KH için dayanımının güvenli olarak sağlanabileceği ve GÖ ise ileri düzeyde doğrusal olmayan davranışı tanımlamaktadır. Farklı performans düzeyleri için yayılı plastik davranış modeline göre donatı çeliği ile beton birim şekil değiştirme sınır değerleri Tablo 1'de verilmiştir. Performans düzeyleri için yığılı plastik davranış modeline göre plastik dönme sınır değerleri Tablo 2'de verilmiştir. Taşıyıcı elemanlarda eksenel yük seviyesi ve malzeme modelleri dikkate alınarak moment-eğrilik ilişkilerinden plastik dönme değerleri hesaplanabilmektedir.

Tablo 1

Performans düzeylerine göre şekil değiştirme sınırları (TBDY, 2018)

Şekil değiştirme	Betonda birim	Donatıda birim
sınırları	kısalma	şekil değiştirme
GÖ	$\epsilon_c^{(G\ddot{O})} = 0.0035 + 0.04\sqrt{\omega_{we}} \le 0.018$	$\varepsilon_{\rm s}^{\rm (G\ddot{O})} = 0.40 \varepsilon_{\rm su}$
KH	$\epsilon_{\rm c}^{\rm (KH)} = 0.75 \epsilon_{\rm c}^{\rm (GÖ)}$	$\varepsilon_{\rm S}^{\rm (KH)} = 0.75 \varepsilon_{\rm S}^{\rm (G\ddot{O})}$
SH	ε ^(SH) =0.0025	$\epsilon_{s}^{(SH)}=0.0075$

Tablo 2

Performans duzeylerine gore plastik donme sinirlari (IBDY, 20.
--

,	
Şekil değiştirme sınırları	Plastik dönmeler
GÖ	$\theta_{\rm p}^{\rm (GÖ)} = \frac{2}{3} \left[\left(\phi_{\rm u} - \phi_{\rm y} \right) L_{\rm p} \left(1 - 0.5 \frac{L_{\rm p}}{L_{\rm s}} \right) + 4.5 \phi_{\rm u} d_{\rm b} \right]$
KH	$\theta_{\rm p}^{\rm (KH)} = 0.75 \theta_{\rm p}^{\rm (G\ddot{O})}$
SH	$\theta_{\rm p}^{\rm (SH)} = 0$

 ω_{we} , etkin yatay donatısının mekanik donatı oranı Denklem (2.1) ile hesaplanabilmektedir. Yatay donatısının etkinlik katsayısı (α_{se}) ve minimum hacimsel yatay donatı oranı (ρ_{sh}) Denklem (2.2) ile hesaplanmaktadır. f_{ywe} ve f_{ce} donatı çeliği ve beton için beklenen dayanımıdır ($f_{ce}=1.3f_{ck}$, $f_{ye}=1.2f_{yk}$). A_{sh} ve s yatay donatı alanı ve aralığıdır. b_o ve h_o ; yatay donatı arasında kalan sargılı beton boyutu ve a_i ; bir yatay donatı veya çiroz tarafından mesnetlenen boyuna donatıların eksenleri arasındaki mesafedir.

$$\omega_{we} = \alpha_{se} \rho_{sh,min} \frac{f_{ywe}}{f_{ce}}$$
(2.1)

$$\alpha_{se} = \left(1 - \frac{\sum a_i^2}{6b_o h_o}\right) \left(1 - \frac{s}{2b_o}\right) \left(1 - \frac{s}{2h_o}\right), \quad \rho_{sh} = \frac{A_{sh}}{b_k s}$$
(2.2)

Betonarme perde modellerinin analizlerinde sargısız ve sargılı beton modelleri için Mander, Priestley ve Park (1988) tarafından geliştirilen model kullanılmıştır. Mander modeline göre sargı etki katsayısı (k_e) Denklem (2.3), x ve y yönünde çekirdek betona uygulanan etkili yanal basınçlar ve ortalama basınç dayanımı (f'_{lx} ve f'_{ly}) Denklem (2.4a) ve (2.4b), sargılı beton basınç dayanımı (f'_{cc}) Denklem (2.5) ve maksimum basınç gerilmesine karşı gelen birim şekildeğiştirme değerleri (ε_{cc}) Denklem (2.6) ile hesaplanmaktadır. Betondaki en büyük birim şekildeğiştirme değeri ε_{cu} enine donatıda oluşan ilk kopma anındaki değere karşılık gelir. Sargılı betondaki maksimum basınç birim şekildeğiştirmesi ε_{cu} Denklemden (2.7) hesaplanabilmektedir.

$$k_{e} = \left(1 - \sum_{i}^{n} \frac{(w'_{i})^{2}}{6}\right) \left(1 - \frac{S'}{2b_{c}}\right) \left(1 - \frac{S'}{2d_{c}}\right) / (1 - \rho_{cc})$$
(2.3)

$$f'_{lx} = k_e \frac{A_{sx}}{s \, d_c} f_{yh} = k_e \, f_{lx}$$
(2.4a)

$$f'_{ly} = k_e \frac{A_{sy}}{s b_c} f_{yh} = k_e f_{ly}$$
(2.4b)

$$f_{cc}' = f_{co}' \left(-1.254 + 2.254 \sqrt{1 + \frac{7.94f_l'}{f_{co}'} - 2\frac{f_l'}{f_{co}'}} \right)$$
(2.5)

$$\varepsilon_{cc} = \varepsilon_{co} \left[1 + 5 \left(\frac{f_{cc}'}{f_{co}'} - 1 \right) \right]$$
(2.6)

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{yw}\varepsilon_{su}}{f_{cc}'}$$
(2.7)

3. Betonarme Elemanlarının Etkin Kesit Rijitlikleri

Çatlamış kesite ait etkin kesit rijitlikleri (EI_e) , moment-eğrilik ilişkisi dikkate alınarak, akma momentinin akma eğriliğine oranı olarak (M_y/ϕ_y) hesaplanır. EI_e sabit olmamakla birlikte; beton basınç dayanımı, kesit geometrisi, kesit boyutu ve kesite etkiyen eksenel yük seviyesi gibi tasarım parametrelerine bağlıdır. Betonarme perdelerin brüt atalet momenti (I) ve betonun elastisite modülüne ($E_c = 3250 + \sqrt{f_{ck}} + 14000$) göre çatlamamış kesit rijitlikleri (EI) hesaplanmıştır. Betonarme taşıyıcı elemanların etkin kesit rijitlikleri moment-eğrilik ilişkilerinden, $k_e = EI_e/EI$ olarak hesaplanmaktadır. Doğrusal olmayan hesap için taşıyıcı sistemlerin akma durumu için yer değiştirmiş plastik mafsal akma dönmesi (θ_y) Denklem (3.1) ile hesaplanmıştır. Yığılı plastik davranışına göre modellenen perdelerin etkin kesit rijitlikleri Denklem (3.2)'e göre belirlenmiştir. Denklemde; L_s kesme açıklığı ve perde duvarlar için $\eta = 0.50$ olarak alınmıştır. Süneklik katsayısı, moment-eğrilik analizlerinden hesaplanan göçme öncesi eğriliğin akma eğriliğine oranı olarak hesaplanır ($\mu = \phi_u/\phi_y$).

$$\theta_{y} = \frac{\phi_{y}L_{s}}{3} + 0.0015\eta \left(1 + 1.5\frac{h}{L_{s}}\right) + \frac{\phi_{y}d_{b}f_{ye}}{8\sqrt{f_{ce}}}$$
(3.1)
$$(EI)_{e} = \frac{M_{y}L_{s}}{\theta_{y}\frac{L_{s}}{3}}$$
(3.2)

Bu çalışmada betonarme yapısal elemanların şekildeğiştirme esaslı hasar sınırlarının belirlenmesi için farklı parametrelere sahip süneklik düzeyi yüksek betonarme perde duvar modelleri tasarlanmıştır. Perde duvarın kalınlığı b_w =300mm, plandaki uzunluğu l_w = 3000mm ve uç bölgelerinin her birinin plandaki uzunluğu l_u = 600mm olarak belirlenmiştir ($l_u \ge 2b_w$ ve $l_u \ge 0.2l_w$). Tasarlanan betonarme perde duvarların görünüşü Şekil 1'de ve perde duvar modellerine ait parametreler ve detaylar Tablo 3'te verilmiştir. Betonarme perde duvarın uç bölgelerindeki düşey ve yatay donatı oranları TBDY (2018)'de verilen kurallara göre belirlenmiştir. TBDY (2018)'e göre tasarlanan betonarme perde duvar için uç ve gövde bölgelerindeki donatıların sınırlamaları kontrol edilmiştir. Tasarlanan betonarme perde duvar için uç ve gövde bölgelerindeki düşey donatı sınırlamalarının kontrolü Tablo 4'te verilmiştir. Tüm modeller için, C30 beton sınıfı ve B420C donatı çeliği dikkate alınmıştır. Yapılan analitik çalışmada TBDY (2018)'de donatı çeliği ve beton için verilen malzeme özellikleri dikkate alınmıştır.

Şekil 1. Betonarme perde duvar modellerinin kesiti

Tablo 3	
Tasarlanan	betonarme perde duvar modellerine ait detaylar

Kogit No	Perde du	ıvar uç bölgesi	Perde duvar gövde bölgesi			
Kesit No	Düşey donatı (mm)	Yatay donatı (mm)	Düşey donatı (mm)	Yatay donatı (mm)		
P1		Φ8/150		Φ8/150		
P2	10Ф16	Φ8/100	18Ф12	$\Phi 8/100$		
P3		$\Phi 8/50$		$\Phi 8/50$		
P4		Φ10/100		Φ10/100		
P5	10Ф16	Φ12/100	18Ф12	Φ12/100		
P6		$\Phi 14/100$		$\Phi 14/100$		
P7	10Ф18	Ф12/100	10-01-0	Φ12/100		
P8	10Ф20	$\Psi_{12}/100$	18Ψ12	$\Psi 12/100$		
P9	10.4.20	Ф12/100	18Ф14	Φ12/100		
P10	10420	$\Psi 12/100$	18Ф16	$\Psi 12/100$		

Tasarlanan betonarme perde modellerinin gerilme-şekil değiştirme ve moment-eğrilik ilişkileri elde edilmiş, gerekli hesaplar ve incelemeler yapılmıştır. Farklı eksenel yük, boyuna ve yatay donatı oranları için analizlerden elde edilen gerilme-şekil değiştirme ve moment-eğrilik ilişkileri karşılaştırmalı olarak sunulmuştur. Betonarme perde duvarlarda malzemelerin doğrusal olmayan davranışı dikkate alınarak farklı tasarım parametreler için moment-eğrilik analizler SAP2000 (SAP2000, v.20.2.0) programı ile yapılmıştır. Kombine bükülme altındaki bir kesitin moment-eğrilik ilişkileri, eksenel yük seviyelerine bağlıdır. Düşey yükler ve deprem yüklerinin ortak etkisi altında hesaplanan eksenel basınç kuvvetlerinin en büyüğü olmak üzere, $A_c \ge N_{dm}/0.35 f_{ck}$ koşulu sağlanmalıdır (TBDY, 2018). Betonarme perde duvar kesitlerinde, $N_{max} = A_c \times f_{ck}$ olmak üzere N/N_{max} oranının 0.15, 0.25 ve 0.35 değerleri için moment-eğrilik analizleri yapılmıştır. Moment-eğrilik ilişkilerinden akma ve kırılma durumları için moment (M_y , M_u) ve eğrilik (\emptyset_y , \emptyset_u) değerleri, akma ve kırılma eğriliklerinden eğrilik süneklikleri (μ), etkin eğilme rijitlikleri (EI_e) ve etkin rijitlik katsayısı (k_e) hesaplanmıştır. GÖ, KH ve SH performans düzeyleri için oluşan sınır değerleri, farklı düşey ve yatay

donatı oranına göre hesaplanan donatı çeliği ve beton birim şekildeğiştirmeleri, farklı eksenel yük oranına göre moment-eğrilik analizlerinden hesaplanan akma ve göçme öncesi eğrilik değerleri, plastik mafsal uzunluğu, kesme uzunluğu ve düşey donatı çapına göre kesitlerin plastik dönmeleri hesaplanarak farklı parametrelere göre karşılaştırılmıştır. Betonarme perde duvarlarda plastik mafsal uzunluğunu hesaplamak için birçok farklı ampirik denklemler önerilmiştir. Plastik mafsal uzunluğu, eğrilik kapasitesinden güvenli bir yer değiştirme kapasitesini elde etmek için perde duvar uzunluğunun yarısı olarak kabul edilebilir (Bohl ve Adebar, 2011). Betonarme perde duvarlarda plastik mafsal uzunluğu; $L_p=0.5L_w = 1.5m$ ve kesme uzunluğu $L_s = 3m$ olarak alınmıştır.

Tablo 4									
Tasarlanan perde duvarlar için gövde ve uç bölgelerinde düşey donatı sınırlamaları									
Perde gövde bölgelerinde düşey donatı kontrolü									
Seçilen gövde düşey donatısı	18Ф12	18Ф14	18Ф16						
$\frac{A_s}{(L_w - 2l_u) \times b_w} \ge 0.0025$	0.0038 ≥ 0.0025	$0.0051 \ge 0.0025$	0.0067 ≥ 0.0025						
Perde uç bölgelerinde düşey donatı kontrolü									
Seçilen uç bölge düşey donatısı	10Ф16	10Ф18	10Ф20						
$\frac{A_{s}}{L_{w} \times b_{w}} \ge 0.002$	$0.0022 \ge 0.002$	$0.0028 \ge 0.002$	$0.0035 \ge 0.002$						

5. Araştırma Bulguları ve Tartışma

Tasarlanan betonarme perde duvarların farklı tasarım parametrelerine göre sargılı basınç dayanımı hesaplanmış (bkz. Şekil 2) ve elde edilen sonuçlar farklı tasarım parametrelerine göre karşılaştırılmıştır. Betonarme perde duvarların moment-eğrilik analizlerinden elde edilen sonuçlar kullanılarak kesitlerin \emptyset_y , M_y , \emptyset_u ve M_u değerleri farklı eksenel yük seviyelerine göre Tablo 5'te verilmiştir. Analiz sonuçlarından elde edilen moment-eğrilik ilişkileri Şekil 3'te sunulmuştur. Tablolarda M_y ve M_u değerleri; (kN.m), \emptyset_y ve \emptyset_u değerleri; (Rad/m), $(EI)_e$ değerleri; $(kN.m^2)$ ve θ_y değerleri; (Rad) olarak verilmiştir.

Şekil 2. Perde duvarların uç bölgelerinin gerilme-şekil değiştirme ilişkileri

				,			ě				
N _d	M,Ø	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
	My	6847	6867	6895	6835	6897	6926	7328	7811	7899	7986
0.15	Øy	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012	0.0012
0.15	M _u	7823	7941	8506	8187	8471	8672	9144	9891	10180	10500
	Øu	0.0187	0.0246	0.0412	0.0352	0.0414	0.0428	0.0413	0.0413	0.042	0.0431
0.25	My	8841	8871	8964	8896	8971	9043	9403	9896	9955	10026
	Øy	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013	0.0013
	M _u	9704	9837	10236	9946	10169	10610	10798	11503	11688	11892
	Øu	0.0118	0.0172	0.0286	0.0244	0.0329	0.0406	0.0311	0.0314	0.0293	0.0292
	My	10290	10379	10546	10449	10531	10671	10972	11464	11514	11570
0.35	Øy	0.0016	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015
	M _u	9999	11028	11519	11223	11487	11756	12011	12595	12715	12848
	Øu	0.0091	0.0118	0.0209	0.0175	0.0244	0.0291	0.0244	0.0244	0.0244	0.0243

Tablo 5									
Perde duvarların	akma	ve kırılma	durumu	için	hesaplar	nan M	ve Ø	değer	leri

Doğrusal olmayan hesap için betonarme perde duvarların etkin kesit rijitliği, etkin rijitlik katsayısı, akma dönmesi ve süneklik değerleri elde edilmiştir. Araştırılan parametreler TBDY (2018)'de verilen bağıntılar ve perde duvarların moment eğrilik analizlerinden hesaplanmıştır.

Betonarme perde duvarları için moment-eğrilik ilişkilerinden elde edilen $\mu - N/N_{max}$ ve $k_e - N/N_{max}$ ilişkileri Şekil 4 ve Şekil 5'te karşılaştırılmıştır. Betonarme perde duvarların plastik mafsal akma dönmesi (θ_y) değerleri farklı eksenel yük değerlerine göre Tablo 6'da özetlenmiştir. Betonarme taşıyıcı sistemlerinin etkin kesit rijitliklerinin hesaplanmasında, gerçekçi yollardan birisi de moment-eğrilik ilişkilerinin kullanılmasıdır. Betonarme kesitlerde EI_e değerleri, moment-eğrilik eğrilik ilişkisi ve yığılı plastik davranışına göre Denklem (3.2)'den hesaplanmıştır (bkz. Tablo 7). Betonarme perde duvarların farklı tasarım parametrelerine göre $N/N_{max} - \theta_p$ ilişkileri Şekil 6'da verilmiştir. Farklı performans düzeyi için $\varepsilon_s^{(GÖ)} = 0.032$, $\varepsilon_s^{(KH)} = 0.024$ ve $\varepsilon_s^{(SH)} = 0.0075$ sabit değerler olarak hesaplanmaktadır. Betonarme perde duvarlar için hesaplanan hasar sınırları ($\varepsilon_c^{(KH)}, \varepsilon_c^{(GÖ)}$) ve bölgeleri üzerine işlenmiş moment-eğrilik ilişkileri sırasıyla Şekil 7, 8, 9 ve 10'da verilmiştir.

Betonarme perde duvarların uç bölgelerindeki boyuna donatı oranının artması f'_{cc} , ε_{cc} ve ε_{cu} değerlerini çok fazla etkilememiştir. Perde duvarların uç bölgelerinde yatay donatı oranının artması ile f'_{cc} , ε_{cc} ve ε_{cu} değerleri artmaktadır. Moment-eğrilik ilişkilerine göre; eksenel yük seviyesinin artmasıyla betonarme perde duvarların M_y , ϕ_y ve M_u değerleri artmakta ϕ_u ve μ değerleri azalmaktadır. Perde duvarlarda yatay donatı oranının artmasıyla M_y , M_u ve ϕ_u değerleri artarken ϕ_y değerleri sabit kalmaktadır. Perde duvarlarda uç ve gövde bölgelerinde boyuna donatı oranının artmasıyla M_y ve M_u değerleri artmakta ϕ_y ve ϕ_u değerleri değişmemektedir. N/N_{max} değerinin artmasının eleman sünekliğini önemli derecede azalttığı görülmüştür.

Doğrusal olmayan davranışa göre hesaplanan θ_y değerleri, N/N_{max} değeri, perde duvar uç ve gövde bölgesinde boyuna ve yatay donatı oranının artmasıyla artmaktadır. Perde duvar uç ve gövde bölgesinde boyuna ve yatay donatı oranının artmasıyla EI_e artmaktadır. Hesaplanan k_e ; uç ve gövde bölgesi boyuna ve yatay donatı oranının artmasıyla artmaktadır. N/N_{max} değerinin artmasına bağlı olarak EI_e artmıştır.

 $\varepsilon_c^{(GO)}$, $\varepsilon_c^{(KH)}$ hasar sınırları f_{ye} , f_{ce} ve yatay donatısının konfigürasyonuna bağlı olarak hesaplanmaktadır. Farklı performans düzeylerinde θ_p için izin verilen sınır değerleri; \emptyset_y , \emptyset_u , L_p , L_s ve d_b 'nin fonksiyonudur. Dolaysıyla kesit geometrisi, boyuna ve yatay donatı oranı, eksenel yük seviyesi ve yatay donatı konfigürasyonu gibi \emptyset_y ve \emptyset_u değerlerini etkiyen tasarım parametreleri θ_p sınır değerlerini de etkilemektedir.

Şekil 3. Betonarme perde duvarlarının moment-eğrilik ilişkileri

Şekil 4. Betonarme perde duvarlarının $\mu - N/N_{max}$ ilişkileri

Şekil 5. Betonarme perde duvarlarının $k_e - N/N_{max}$ ilişkileri

Tablo	6
-------	---

Perde duvarların farklı eksenel yük seviyelerine göre hesaplanan θ_y değerleri

N _d	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10
0.15	0.00431	0.00431	0.00431	0.00431	0.00431	0.00431	0.00432	0.00432	0.00433	0.00433
0.25	0.00452	0.00452	0.00451	0.00452	0.00451	0.00450	0.00452	0.00452	0.00452	0.00452
0.35	0.00477	0.00476	0.00474	0.00475	0.00474	0.00472	0.00474	0.00474	0.00474	0.00474

Tablo 7

Perde duvarların farklı eksenel yük seviyelerine göre hesaplanan $(EI)_e$ değerleri

N _d	$(EI)_e$	P1	P2	P3	P4	P5	P6	P7	Р	P9	P10
0.15	$M_y/Ø_y$	5917891	5935177	5985763	5912630	5976603	6006938	6319966	6704721	6757057	6802385
	Denk. 3.2	1588631	1593271	1599768	1585847	1600232	1606961	1696296	1808102	1824249	1844342
0.25	$M_y/Ø_y$	6619001	6639970	6762221	6666167	6745113	6848682	6953853	7109195	7440765	7482648
	Denk. 3.2	1955973	1962611	1987583	1968142	1989135	2009556	2080310	2189381	2202434	2218142
0.35	$M_y/Ø_y$	6608863	6700452	6901832	6766172	6869537	7048217	7152542	7469377	7506846	7562092
	Denk. 3.2	2157233	2180462	2224895	2199789	2221730	2260805	2314768	2418565	2429114	2440928

Şekil 6. Betonarme perde duvarların N/N_max- θ_p ilişkileri

Journal of Advanced Research in Natural and Applied Sciences

Şekil 7. Farklı yatay donatı aralığına sahip perdelerin moment-eğrilik ilişkileri ve hasar sınırları

Şekil 8. Farklı yatay donatı çapına sahip perdelerin moment-eğrilik ilişkileri ve hasar sınırları

Şekil 9. Perde duvar uç bölgelerindeki farklı boyuna donatı çapına sahip perdelerin moment-eğrilik ilişkileri ve hasar sınırları

Şekil 10. Perde duvar gövde bölgelerindeki farklı boyuna donatı çapına sahip perdelerin moment-eğrilik ilişkileri ve hasar sınırları

6. Sonuçlar

Perde duvarlarda yatay donatı oranının artmasıyla $\varepsilon_c^{(G\ddot{O})}$, $\varepsilon_c^{(KH)}$ değerleri artmakta ve $\varepsilon_c^{(SH)} = 0.0025$ olarak sabittir. Boyuna donatı oranının artması sargılı beton basınç dayanımını fazla etkilemediği için hesaplanan beton birim şekildeğiştirme (ε_c) değerleri etkilemeniştir. Sabit yatay donatı oranı için boyuna donatı oranının artması ile $\varepsilon_c^{(G\ddot{O})}$ ve $\varepsilon_c^{(KH)}$ değerleri sabit kalmaktadır. Farklı boyuna ve yatay donatı oranına göre hesaplanan $\varepsilon_s^{(G\ddot{O})}$, $\varepsilon_s^{(KH)}$ ve $\varepsilon_s^{(SH)}$ değerleri sabit kalmaktadır. $\theta_p^{(G\ddot{O})}$ ve $\theta_p^{(KH)}$ sınır değerleri N/N_{max} değeri ve moment-eğrilik ilişkisine göre değişmektedir. N/N_{max} değerinin artmasıyla $\theta_p^{(G\ddot{O})}$ ve $\theta_p^{(KH)}$ sınır değerleri azalmaktadır. Sabit N/N_{max} değeri, boyuna ve yatay donatı çapı için yatay donatı aralığı nır artması ile $\theta_p^{(G\ddot{O})}$ ve $\theta_p^{(KH)}$ sınır değerleri azalmaktadır. Sabit boyuna donatı çapı, yatay donatı aralığı ve N/N_{max} değeri, yatay donatı çapı ve aralığı ve için boyuna donatı çapının artması ile $\theta_p^{(G\ddot{O})}$ ve $\theta_p^{(KH)}$ sınır değerleri az almaktadır. N/N_{max} değeri artıtıkça hasar sınır değerleri azalmakta, bu yük seviyelerinde yatay donatı oranının daha da önemli olduğu ve yönetmeliğin öngördüğü sınırlamanın son derece etkili olduğu sonuçlarına varılmaktadır. Hesaplanan hasar sınırı değerleri ve bölgeleri perde duvarların moment-eğrilik ilişkileri üzerinde işlenmiştir.

Teşekkür

Yazarlar; zaman ayırdıkları, kıymetli yorum ve önerilerde bulundukları için makaleyi değerlendiren hakemlere teşekkür etmektedir.

Yazar Katkıları

Çalışma ile ilgili analiz planı, betonarme perde duvar modellerinin tasarlanması, veri toplanması, istatistiksel analizlerin yapılması, elde edilen sonuçların değerlendirilmesi ve makalenin yazılması birinci ve ikinci yazar tarafından paylaşılarak yapılmıştır.

Çıkar Çatışması

Yazarlar tarafından herhangi bir çıkar çatışması beyan edilmemiştir.

Kaynaklar

- Bohl, A. and Adebar, P. (2011). Plastic hinge lengths in high-rise concrete shear walls. ACI Structure Journal, 108(2), 148–157. doi: https://doi.org/10.14288/1.0063296.
- Foroughi, S. and Yuksel, S. B. (2020a). Investigation of the Moment-Curvature Relationship for Reinforced Concrete Square Columns. *Turkish Journal of Engineering*, 4(1), 36-46. doi: https://doi.org/10.31127/tuje.571598.
- Foroughi, S. and Yuksel, S. B. (2020b). Analytical Investigation of Curvature Ductility of Reinforced Concrete Columns. Uludağ University Journal of the Faculty of Engineering, 25(1), 27-38. doi: https://doi.org/10.17482/uumfd.510862.
- Foroughi, S and Yüksel, S. B. (2020c). Investigation of nonlinear behavior of high ductility reinforced concrete shear walls. *International Advanced Researches and Engineering Journal*, 4(2), 116-128. doi: https://doi.org/10.35860/iarej.693724.
- Foroughi, S. ve Yüksel, S. B. (2019). Betonarme kolonların şekildeğiştirme esaslı hasar sınırlarının araştırılması. Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi (UMAGD), 11(2), 584–601. doi: https://doi.org/10.29137/umagd.519208.
- Kazaz, İ., Gülkan, P., and Yakut, A. (2012a). Performance limits for structural walls: An analytical perspective, *Engineering Structures*, 43, 105–119. doi: https://doi.org/10.1016/j.engstruct.2012.05.011.

- Kazaz, İ., Gülkan, P.and Yakut, A. (2012b). Deformation limits for structural walls with confined boundaries. *Earthquake Spectra*, 28(3), 1019–1046. doi: https://doi.org/10.1193/1.4000059
- Karageyik, C. and Sucuoğlu, H. (2011). Betonarme binaların perdelerle güçlendirilmesinde şekildeğiştirme esaslı yöntemlerin uygulanması. *1. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı*. (pp. 1–10) 11-14 Ekim 2011-ODTÜ-Ankara. Erişim adresi: https://docplayer.biz.tr/18184862-Betonarmebinalarin-perdelerle-guclendirilmesinde-sekildegistirme-esasli-yontemlerin-uygulanmasi.html.
- Moehle, J. P. (1992). Displacement-based design of RC structures subjected to earthquakes. *Earthquake Spectra*. 8(3), 403–428. doi: https://doi.org/10.1193/1.1585688.
- Mander, J B., Priestley, M. J. N., and Park, R. (1988). Theoretical stress-strain model for confined concrete. *Journal of Structural Engineering (ASCE)*, 114(8), 1804–1826. doi: https://doi.org/10.1061/ (ASCE)0733-9445(1988)114:8(1804).
- Özdemir, M. A., Kazaz, İ. and Özkaya, S. G. (2017). Evaluation and comparison of ultimate deformation limits for RC columns. *Engineering Structures*, 153, p. 569–581. doi: https://doi.org/10.1016/ j.engstruct.2017.10.050
- Perez, J. C. V. and M. M. Mulder. (2018). Improved procedure for determining the ductility of buildings under seismic loads, *Revista Internacional de Metodos Numericos para Calculoy Diseno en Ingenieria*, 34(1), 1–8. doi: https://doi.org/10.23967/j.rimni.2018.03.001.
- Panagiotakos, T. B. and Fardis, M. N. (1999). Estimation of inelastic deformation demands in multistory RC frame buildings. *Journal of Earthquake Engineering*. 3(4), 495–518. doi: https://doi.org/10.1002/(SICI)1096-9845(199905)28:5<501::AID-EQE827>3.0.CO;2-5.
- Qian, Jia-ru., and Xu, Fu-jiang. (2007). Displacement-based deformation capacity design method of RC cantilever walls. *Journal of Tsinghua University: Science and Technology*. 47(3): 305–308. Erişim adresi: https://en.cnki.com.cn/Article_en/CJFDTOTAL-QHXB200703000.htm.
- Priestley, M. J. N., Calvi, G. M., Kowalsky, M. J. and Powell, G. H. (2008). Displacement-based seismic design of structures. *Earthquake Spectra*, 24(2). doi: https://doi.org/10.1193/1.2932170.
- Rutenberg, A. and Nsieri, E. (2006). The seismic shear demand in ductile cantilever wall systems and the EC8 Provisions. *Bulletin of Earthquake Engineering*, *4*, 1–21. doi: https://doi.org/10.1007/s10518-005-5407-9.
- SAP, 2000. Structural Software for Analysis and Design, Computers and Structures, Inc. Version 20.2.0. USA.
- Tjhin, T. N., Ascheim, M. A. and Wallace, J. W. (2007). Yield displacement-based seismic design of RC wall buildings. *Engineering Structures*, 29(11), 2946–2959. doi: https://doi.org/10.1016/ j.engstruct.2006.10.022.
- Taleb, R., Watanabe, H. and Kono, S. (2018). Numerical study on the ultimate deformation of RC structural walls with confined boundary regions. *Periodica Polytechnica Civil Engineering*. 62(1), 191–199. doi: https://doi.org/10.3311/PPci.10554.
- TS500. (2000). *Betonarme Yapıların Tasarım ve Yapım Kuralları*. Türk Standartları Enstitüsü, Ankara, Türkiye. Erişim adresi: http://www.iibh.org/kijun/pdf/Turkey_06.pdf.
- TBDY. (2018). *Türkiye Bina Deprem Yönetmeliği*. T.C. Bayındırlık ve İskân Bakanlığı, Ankara, Türkiye. Erişim adresi: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2-1.pdf.
- Wallace, J. W. and Moehle, J. P. (1992). Ductility and detailing requirements of bearing wall buildings, ASCE Journal of Structural Engineering, 118(6), 1625–1644. doi: https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1625).
- Xiao-chun, L. and Xiao-lei, H. (2011). Performance index limits of high reinforced concrete shear wall components. *Journal of the Central South University of Technology*. 18, 1248–1255. doi: https://doi.org/10.1007/s11771-011-0829-9_
- Xin, Li., Liang, Xing-wen. and Deng, Ming-ke. (2009). Plastic hinge rotation-based design method of shear walls boundary elements. *Industrial Construction*, 39(6), 50–64. Erişim adresi: https://en.cnki.com.cn/Article_en/CJFDTotal-GYJZ200906014.htm.
- Zhou, Y., Zhang, D., Huang, Z. and Li, D. (2014). Deformation capacity and performance-based seismic design for reinforced concrete shear walls. *Journal of Asian Architecture and Building Engineering*, 13(1), 209–215. doi: https://doi.org/10.3130/jaabe.13.209.
- Zhang, Hong-mei., Lu, Xi-lin., Yang, Xue-ping., and Zhang, song. (2008). Influence of boundary stirrup on seismic behavior of reinforced concrete shear walls. *Structural Engineers*, 24(5), 100–118. Erişim adresi: https://en.cnki.com.cn/Article_en/CJFDTotal-JGGC200805018.htm.