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1. Introduction and background
A sequence space is a vector subspace of the space ω of all sequences with real entries. Well known classical sequence spaces
are `p (the space of p-absolutely summable sequences, 1 ≤ p < ∞), `∞ (the space of bounded sequences), c0 ( the space of
null sequences), c (the space of convergent sequences). On the other hand, bs, cs0 and cs are the most frequently encountered
spaces consisting of sequences generating bounded, null and convergent series, respectively. Further ψ is the space of all finite
sequences. A Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are c0 and c
endowed with the supremum norm ‖x‖

∞
= supn∈N |xn|, where N= {1,2,3, ...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an
important role in the study of sequence spaces. Let X and Y be two sequence spaces, A = (ank) be an infinite matrix with
real entries and An indicate the nth row of A . If each term of the sequence A x = {(A x)n}= {∑∞

k=1 ankxk} is convergent, this
sequence is called A -transform of x = (xn). Further, if A x ∈ Y for every sequence x ∈ X, then the matrix A defines a matrix
mapping from X into Y. (X,Y) represents the collection of all matrices defined from X into Y. Additionally, B(X,Y) is the set
of all bounded (continuous) linear operators from X to Y. A matrix A = (ank) is called a triangle if ann 6= 0 and ank = 0 for
k > n.

The matrix domain XA of the matrix A in the space X is defined by

XA = {x ∈ ω : A x ∈ X}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
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any triangle A and a BK-space X, the sequence space XA gives a new BK-space equipped with the norm ‖x‖XA
= ‖A x‖X .

Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,
the papers [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] can be referred.

The spaces

Xα =

{
t = (tk) ∈ ω :

∞

∑
k=1
|tkxk|< ∞ for all x = (xk) ∈ X

}
,

Xβ =

{
t = (tk) ∈ ω :

∞

∑
k=1

tkxk converges for all x = (xk) ∈ X

}
,

Xγ =

{
t = (tk) ∈ ω : sup

n

∣∣∣∣∣ n

∑
k=1

tkxk

∣∣∣∣∣< ∞ for all x = (xk) ∈ X

}
,

are called the α-, β -, γ-duals of a sequence space X, respectively.
Let (X,‖.‖X) be a normed space and BX = {x ∈ ω : ‖x‖X = 1}. Given any BK-space X⊃ ψ and t = (tn) ∈ ω ,

‖t‖∗X = sup
x∈BX

∣∣∣∣∣∑k
tkxk

∣∣∣∣∣
implies that t ∈ Xβ .

Lemma 1.1. [16, Theorem 1.29] `β

1 = `∞ and `
β
p = `q, where 1 < p < ∞ and 1

p +
1
q = 1. The equality ‖t‖∗`p

= ‖t‖
`

β
p

holds for

all t ∈ `
β
p , where 1≤ p < ∞.

Lemma 1.2. [16, Theorem 1.23 (a)] Given any BK-spaces X, Y and A ∈ (X,Y), there exists a linear operator LA ∈ B(X,Y)
such that LA (x) = A x for all x ∈ X.

Lemma 1.3. [16] Let X⊃ ψ be a BK-space and Y ∈ {c0,c, `∞}. If A ∈ (X,Y), then

‖LA ‖= ‖A ‖(X,Y) = sup
n∈N
‖An‖∗X < ∞.

Let Q be a bounded set in a metric space X and B(x,δ ) be the open ball. The value

χ(Q) = inf{ε > 0 : Q ⊂ ∪n
i=1B(xi,δi),xi ∈ X,δi < ε,n ∈ N}

is called the Hausdorff measure of noncompactness of Q.
To compute the Hausdorff measure of noncompactness of a set in `p for 1≤ p < ∞, the following result is essential.

Theorem 1.4. [17] Let Q be a bounded subset in `p for 1 ≤ p < ∞ and Pr : `p → `p be the operator defined by Pr(x) =
(x0,x1,x2, ...,xr,0,0, ...) for all x = (xk) ∈ `p and each r ∈ N. Then, we have

χ(Q) = lim
r

(
sup
x∈Q
‖(I−Pr)(x)‖`p

)
,

where I is the identity operator on `p.

A linear operator L : X→ Y is a compact operator if the domain of L is all of X and for every bounded sequence x = (xn)
in X, the sequence (L (xn)) has a convergent subsequence in Y. The idea of compact operators between Banach spaces is
closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator
L ∈ B(X,Y), ‖L ‖χ = χ(L (BX)) = 0 if and only if L is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize
the compactness of an operator between BK spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix Φ = (φnk) is defined as in [25]

φnk =

{
ϕ(k)

n , if k | n
0 , if k - n,
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where ϕ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined
and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For p ∈N with p 6= 1, ϕ(p) gives the number of positive integers less than p which are coprime with p and ϕ(1) = 1. Also,
the equality

p = ∑
k|p

ϕ(k)

holds for every p ∈ N. For p ∈ N with p 6= 1, the Möbius function µ is defined as

µ(p) =


(−1)r if p = p1 p2...pr, where p1, p2, ..., pr are

non-equivalent prime numbers
0 if p̃2 | p for some prime number p̃

and µ(1) = 1. The equality

∑
k|p

µ(k) = 0 (1.1)

holds except for p = 1.
The Riesz matrix E = (enk) is defined as

enk =

{ qk
Qn

, if 0≤ k ≤ n
0 , if k > n,

where (qk) is a sequence of positive numbers and Qn = ∑
n
k=0 qk for all n ∈ N. By using these matrix, the authors of [34]

introduced the Riesz sequence spaces of non-absolute type.
The main purpose of this study is to construct new BK spaces `p(RΦ) for 1 ≤ p < ∞. The matrix RΦ is obtained by

combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, α-, β - and γ-duals
are computed. Finally some matrix mappings from the spaces `p(RΦ) to the classical spaces are characterized and compact
operators are studied.

2. The sequence space `p(RΦ)

In the present section, we introduce the sequence space `p(RΦ) by using the matrix RΦ, where 1≤ p < ∞. Also, we present
some theorems which give inclusion relations concerning this space.

The matrix RΦ = (rnk) is defined as

rnk =

{
qkϕ(k)

Qn
, if k | n

0 , if k - n,

where Qn = q1 +q2 + ...+qn. We call this matrix as Riesz Euler Totient matrix operator.
The inverse R−1

Φ
= (r−1

nk ) of the matrix RΦ is computed as

r−1
nk =

{
µ( n

k )

ϕ(n)
Qk
qn

, if k | n
0 , if k - n

for all k,n ∈ N.
Now, we introduce the sequence space `p(RΦ) by

`p(RΦ) =

{
x = (xn) ∈ ω : ∑

n

∣∣∣∣∣ 1
Qn

∑
k|n

qkϕ(k)xk

∣∣∣∣∣
p

< ∞

}
(1≤ p < ∞).

Unless otherwise stated, y = (yn) will be the RΦ-transform of a sequence x = (xn), that is, yn = (RΦx)n =
1

Qn
∑k|n qkϕ(k)xk

for all n ∈ N.

Theorem 2.1. The space `p(RΦ) is a Banach space with the norm given by ‖x‖`p(RΦ) =
(

∑n

∣∣∣ 1
Qn

∑k|n qkϕ(k)xk

∣∣∣p)1/p
, where

1≤ p < ∞.
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Proof. We omit the proof which is straightforward.

Corollary 2.2. The space `p(RΦ) is a BK-space, where 1≤ p < ∞.

Theorem 2.3. The space `p(RΦ) is linearly isomorphic to `p, where 1≤ p < ∞.

Proof. Let f be a mapping defined from `p(RΦ) to `p such that f (x) = RΦx for all x ∈ `p(RΦ). It is clear that f is linear. Also
it is injective since the kernel of f consists of only zero. To prove that f is surjective, consider the sequence x = (xn) whose
terms are

xn = ∑
k|n

µ( n
k )

ϕ(n)
Qk

qn
yk

for all n ∈ N, where y = (yk) is any sequence in `p. It follows from (1.1) that

(RΦx)n =
1

Qn
∑
k|n

qkϕ(k)xk =
1

Qn
∑
k|n

qkϕ(k)∑
j|k

µ( k
j )

ϕ(k)
Q j

qk
y j

=
1

Qn
∑
k|n

∑
j|k

µ(
k
j
)Q jy j =

1
Qn

∑
k|n

(
∑
j|k

µ( j)

)
Q n

k
y n

k
=

1
Qn

µ(1)Qnyn = yn

and so x = (xn) ∈ `p(RΦ). f preserves norms since the equality ‖x‖`p(RΦ) = ‖ f (x)‖`p holds.

Remark 2.4. The space `2(RΦ) is an inner product space with the inner product defined as 〈x, x̃〉`2(RΦ) = 〈RΦx,RΦx̃〉`2 , where
〈., .〉`2 is the inner product on `2 which induces ‖.‖`2 .

Theorem 2.5. The space `p(RΦ) is not an inner product space for p 6= 2.

Proof. Consider the sequences x = (xn) and x̃ = (x̃n), where

xn =

{
µ(n)
ϕ(n)

Q1
qn

+
µ( n

2 )

ϕ(n)
Q2
qn

, if n is even
µ(n)
ϕ(n)

Q1
qn

, if n is odd

and

x̃n =

{
µ(n)
ϕ(n)

Q1
qn
− µ( n

2 )

ϕ(n)
Q2
qn

, if n is even
µ(n)
ϕ(n)

Q1
qn

, if n is odd

for all n ∈ N. Then, we have RΦx = (1,1,0, ...,0, ...) ∈ `p and RΦx̃ = (1,−1,0, ...,0, ...) ∈ `p. Hence, one can easily observe
that

‖x+ x̃‖`p(RΦ)+‖x− x̃‖`p(RΦ) 6= 2(‖x‖`p(RΦ)+‖x̃‖`p(RΦ)).

Theorem 2.6. The inclusion `p(RΦ)⊂ `q(RΦ) strictly holds for 1≤ p < q < ∞.

Proof. It is clear that the inclusion `p(RΦ)⊂ `q(RΦ) holds since `p ⊂ `q for 1≤ p < q < ∞. Also, `p ⊂ `q is strict and so there
exists a sequence z = (zn) in `q\`p. By defining a sequence x = (xn) as

xn = ∑
k|n

µ( n
k )

ϕ(n)
Qk

qn
zk

for all n ∈ N, we conclude that x ∈ `q(RΦ)\`p(RΦ). Hence, the desired inclusion is strict.

Before presenting the next result, we define the sequence space `∞(RΦ) by

`∞(RΦ) = {x ∈ ω : RΦx ∈ `∞}.

Theorem 2.7. The inclusion `p(RΦ)⊂ `∞(RΦ) strictly holds for 1≤ p < ∞.

Proof. The inclusion is obvious since `p ⊂ `∞ holds for 1≤ p < ∞. Let x = (xn) be a sequence such that xn = ∑k|n(−1)k µ( n
k )

ϕ(n)
Qk
qn

for all n∈N. We obtain that RΦx=
(

1
Qn

∑k|n qkϕ(k)∑ j|k(−1) j µ( k
j )

ϕ(k)
Q j
qk

)
=((−1)n)∈ `∞\`p which implies that x∈ `∞(RΦ)\`p(RΦ)

for 1≤ p < ∞.
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3. The α-, β - and γ-duals of the space `p(RΦ)

In this section, we determine the α-, β - and γ-duals of the sequence space `p(RΦ), where 1≤ p < ∞. The following lemmas
are required to prove our main results in this section. Here and in what follows K denotes the family of all finite subsets of N.

Lemma 3.1. [35] The following statements hold:
A = (ank) ∈ (`p, `1) if and only if

sup
F∈K

∑
k

∣∣∣∣∣∑n∈F
ank

∣∣∣∣∣
q

< ∞ (3.1)

holds, where 1 < p < ∞.
A = (ank) ∈ (`∞, `1) if and only if (3.1) holds with q = 1.
A = (ank) ∈ (`1, `1) if and only if

sup
k

∑
n
|ank|< ∞ (3.2)

holds.
A = (ank) ∈ (`p,c) if and only if

lim
n→∞

ank exists for each k ∈ N (3.3)

and

sup
n

∑
k
|ank|q < ∞ (3.4)

holds, where 1 < p < ∞.
A = (ank) ∈ (`∞,c) if and only if (3.3) and

lim
n→∞

∑
k
|ank|= ∑

k

∣∣∣ lim
n→∞

ank

∣∣∣
hold.

A = (ank) ∈ (`1,c) if and only if (3.3) and

sup
n,k
|ank|< ∞ (3.5)

hold.
A = (ank) ∈ (`p,c0) if and only if

lim
n→∞

ank = 0 for each k ∈ N (3.6)

and (3.4) holds, where 1 < p < ∞.
A = (ank) ∈ (`∞,c0) if and only if (3.6) and

lim
n→∞

∑
k
|ank|= 0

hold.
A = (ank) ∈ (`1,c0) if and only if (3.5) and (3.6) hold.
A = (ank) ∈ (`p, `∞) if and only if (3.4) holds, where 1 < p < ∞.
A = (ank) ∈ (`∞, `∞) if and only if (3.4) holds with q = 1.
A = (ank) ∈ (`1, `∞) if and only if (3.5) holds.

In the following theorem, we determine the α-duals of the spaces `p(RΦ) (1 < p < ∞) and `1(RΦ).
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Theorem 3.2. The α-duals of the spaces `p(RΦ) (1 < p < ∞) and `1(RΦ) are as follows:

(`p(RΦ))
α =

{
t = (tn) ∈ ω : sup

F∈K
∑
k

∣∣∣∣∣ ∑
n∈F,k|n

µ( n
k )

ϕ(k)
Qk

qn
tn

∣∣∣∣∣
q

< ∞

}
,

and

(`1(RΦ))
α =

{
t = (tn) ∈ ω : sup

k
∑

n∈N,k|n

∣∣∣∣µ( n
k )

ϕ(k)
Qk

qn
tn

∣∣∣∣< ∞

}
.

Proof. Consider the matrix C = (cnk) defined by

cnk =

{
µ( n

k )

ϕ(k)
Qk
qn

tn , k | n
0 , k - n

for any sequence t = (tn) ∈ ω . Hence, given any x = (xn) ∈ `p(RΦ) for 1≤ p < ∞, we have tnxn = (Cy)n for all n ∈ N. This
implies that tx ∈ `1 with x ∈ `p(RΦ) if and only if Cy ∈ `1 with y ∈ `p. It follows that t ∈ (`p(RΦ))

α if and only if C ∈ (`p, `1)
which completes the proof in view of Lemma 3.1.

Theorem 3.3. Let us define the following sets:

A1 =

{
t = (tk) ∈ ω : lim

n→∞

n

∑
j=k,k| j

µ( j
k )

ϕ( j)
Qk

q j
t j exists for each k ∈ N

}
,

A2 =

{
t = (tk) ∈ ω : sup

n
∑
k

∣∣∣∣∣ n

∑
j=k,k| j

µ( j
k )

ϕ( j)
Qk

q j
t j

∣∣∣∣∣
q

< ∞

}
,

and

A3 =

{
t = (tk) ∈ ω : sup

n,k

∣∣∣∣∣ n

∑
j=k,k| j

µ( j
k )

ϕ( j)
Qk

q j
t j

∣∣∣∣∣< ∞

}
.

The β and γ-duals of the spaces `p(RΦ) (1 < p < ∞) and `1(RΦ) are as follows:
(`p(RΦ))

β = A1∩A2 and (`1(RΦ))
β = A1∩A3,

(`p(RΦ))
γ = A2 and (`1(RΦ))

γ = A3.

Proof. Let t = (tk) ∈ ω and B = (bnk) be an infinite matrix with terms

bnk =

{
∑

n
j=k,k| j t j

µ( j
k )

ϕ( j)
Qk
q j

, if 1≤ k ≤ n
0 , if k > n.

Hence it follows that

n

∑
k=1

tkxk =
n

∑
k=1

tk

(
∑
j|k

µ( k
j )

ϕ(k)
Q j

qk
y j

)
=

n

∑
k=1

(
n

∑
j=k,k| j

t j
µ( j

k )

ϕ( j)
Qk

q j

)
yk = (By)n

for any x = (xn) ∈ `p(RΦ). This equality yields that tx ∈ cs for x ∈ `p(RΦ) if and only if By ∈ c for y ∈ `p. That is,
t ∈ (`p(RΦ))

β if and only if B ∈ (`p,c) for 1≤ p < ∞. Hence, by Lemma 3.1, it is concluded that (`p(RΦ))
β = A1∩A2 and

(`1(RΦ))
β = A1∩A3.

This equality also yields that tx ∈ bs for x ∈ `p(RΦ) if and only if By ∈ `∞ for y ∈ `p. That is, t ∈ (`p(RΦ))
γ if and only if

B ∈ (`p, `∞) for 1≤ p < ∞. Hence, by Lemma 3.1, it is concluded that (`p(RΦ))
γ = A2 and (`1(RΦ))

γ = A3.
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4. Some matrix transformations related to the sequence space `p(RΦ)

In this section, we give the characterization of the classes (`p(RΦ),Y), where 1≤ p < ∞ and Y ∈ {`∞,c,c0, `1}. Throughout
this section, we write d(n,k) = ∑

n
j=0 d jk for an infinite matrix D = (dnk) and all n,k ∈ N.

Theorem 4.1. Let 1≤ p < ∞ and Y be any sequence space. Then, we have A = (ank) ∈ (`p(RΦ),Y) if and only if

D(n) =
(

d(n)
mk

)
∈ (`p,c) f or each n ∈ N,

D = (dnk) ∈ (`p,Y),

where d(n)
mk =

{
0 , k > m

∑
m
j=k,k| j an j

µ( j
k )

ϕ(k)
Qk
q j

, 0≤ k ≤ m
and dnk = ∑

∞

j=k,k| j an j
µ( j

k )

ϕ(k)
Qk
q j

for all k,m,n ∈ N.

Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1].

The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.
(a) A = (ank) ∈ (`1(RΦ), `∞) if and only if

lim
m→∞

d(n)
mk exists for each n,k ∈ N, (4.1)

sup
m,k

∣∣∣d(n)
mk

∣∣∣< ∞ for each n ∈ N (4.2)

and (3.5) holds with dnk instead of ank.
(b) A = (ank) ∈ (`1(RΦ),c) if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with dnk instead of ank.
(c) A = (ank) ∈ (`1(RΦ),c0) if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with dnk instead of ank.
(d) A = (ank) ∈ (`1(RΦ), `1) if and only if (4.1) and (4.2) hold, and (3.2) also holds with dnk instead of ank.

Theorem 4.3. Let 1 < p < ∞.
(a) A = (ank) ∈ (`p(RΦ), `∞) if and only if (4.1) and

sup
m

m

∑
k=0

∣∣∣d(n)
mk

∣∣∣q < ∞ for each n ∈ N (4.3)

hold, and (3.4) also holds with dnk instead of ank.
(b) A = (ank) ∈ (`p(RΦ),c) if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with dnk instead of ank.
(c) A = (ank) ∈ (`p(RΦ),c0) if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with dnk instead of ank.
(d) A = (ank) ∈ (`p(RΦ), `1) if and only if (4.1) and (4.3) hold, and (3.1) also holds with dnk instead of ank.

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:
(a) A = (ank) ∈ (`1(RΦ),bs) if and only if (4.1), (4.2) hold and (3.5) holds with d(n,k) instead of ank.
(b) A = (ank) ∈ (`1(RΦ),cs) if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d(n,k) instead of ank.
(c) A = (ank) ∈ (`1(RΦ),cs0) if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with d(n,k) instead of ank.

Corollary 4.5. Let 1 < p < ∞. Then, the following statements hold:
(a) A = (ank) ∈ (`p(RΦ),bs) if and only if (4.1), (4.3) hold and (3.4) holds with d(n,k) instead of ank.
(b) A = (ank) ∈ (`p(RΦ),cs) if and only if (4.1), (4.3) hold and (3.3),(3.4) hold with d(n,k) instead of ank.
(c) A = (ank) ∈ (`p(RΦ),cs0) if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with d(n,k) instead of ank.
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5. Compact operators on the space `p(RΦ)

Let the matrix ˜A = (ãnk) defined by an infinite matrix A = (ank) as

ãnk =
∞

∑
j=k,k| j

µ( j
k )

ϕ( j)
Qk

q j
an j

for all n,k ∈ N.

For a sequence t = (tk) ∈ ω , define a sequence t̃ = (t̃k) as t̃k = ∑
∞

j=k,k| j
µ( j

k )

ϕ( j)
Qk
q j

t j for all k ∈ N.

Lemma 5.1. Let t = (tk) ∈ (`p(RΦ))
β , where 1≤ p < ∞. Then t̃ = (t̃k) ∈ `q and

∑
k

tkxk = ∑
k

t̃kyk

for all x = (xk) ∈ `p(RΦ).

Lemma 5.2. The following statements hold.
(a) ‖t‖∗`1(RΦ) = supk |t̃k|< ∞ for all t = (tk) ∈ (`1(RΦ))

β .

(b) ‖t‖∗`p(RΦ) = (∑k |t̃k|q)1/q < ∞ for all t = (tk) ∈ (`p(RΦ))
β , where 1 < p < ∞.

Lemma 5.3. Let X be any sequence space and A = (ank) be an infinite matrix. If A ∈ (`p(RΦ),X), then ˜A ∈ (`p,X) and
A x = ˜A y for all x ∈ `p(RΦ), where 1≤ p < ∞.

Proof. It follows from Lemma 5.1.

Lemma 5.4. If A ∈ (`1(RΦ), `p), then we have

‖LA ‖= ‖A ‖(`1(RΦ),`p) = sup
k

(
∑
n
|ãnk|p

)1/p

< ∞,

where 1≤ p < ∞.

Lemma 5.5. [22, Theorem 3.7] Let X⊃ ψ be a BK-space. Then, the following statements hold.
(a) A ∈ (X, `∞), then 0≤ ‖LA ‖χ ≤ limsupn ‖An‖∗X.
(b) A ∈ (X,c0), then ‖LA ‖χ = limsupn ‖An‖∗X.
(c) If X has AK or X= `∞ and A ∈ (X,c), then

1
2

limsup
n
‖An−a‖∗X ≤ ‖LA ‖χ ≤ limsup

n
‖An−a‖∗X,

where a = (ak) and ak = limn ank for each k ∈ N.

Lemma 5.6. [22, Theorem 3.11] Let X⊃ ψ be a BK-space. If A ∈ (X, `1), then

lim
r

(
sup

N∈Kr

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)
≤ ‖LA ‖χ ≤ 4lim

r

(
sup

N∈Kr

∥∥∥∥∥∑
n∈N

An

∥∥∥∥∥
∗

X

)

and LA is compact if and only if limr
(
supN∈Kr

‖∑n∈N An‖∗X
)
= 0, where Kr is the subcollection of K consisting of subsets

of N with elements that are greater than r.

Theorem 5.7. Let 1 < p < ∞.

1. For A ∈ (`p(RΦ), `∞),

0≤ ‖LA ‖χ ≤ limsup
n

(
∑
k
|ãnk|q

)1/q

holds.
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2. For A ∈ (`p(RΦ),c),

1
2

limsup
n

(
∑
k
|ãnk− ãk|q

)1/q

≤ ‖LA ‖χ ≤ limsup
n

(
∑
k
|ãnk− ãk|q

)1/q

holds, where ã = (ãk) and ãk = limn ãnk for each k ∈ N.

3. For A ∈ (`p(RΦ),c0),

‖LA ‖χ = limsup
n

(
∑
k
|ãnk|q

)1/q

holds.

4. For A ∈ (`p(RΦ), `1),

lim
r
‖A ‖(r)

(`p(RΦ),`1)
≤ ‖LA ‖χ ≤ 4lim

r
‖A ‖(r)

(`p(RΦ),`1)

holds, where ‖A ‖(r)
(`p(RΦ),`1)

= supN∈Kr
(∑k |∑n∈N ãnk|q)1/q (r ∈ N).

Proof.

1. Let A ∈ (`p(RΦ), `∞). Since the series ∑
∞
k=1 ankxk converges for each n ∈ N, we have An ∈ (`p(RΦ))

β . From Lemma
5.2 (b), we write ‖An‖∗`p(RΦ) = ‖ ˜An‖∗`p

= ‖ ˜An‖`q = (∑k |ãnk|q)1/q for each n ∈N. By using Lemma 5.5 (a), we conclude
that

0≤ ‖LA ‖χ ≤ limsup
n

(
∑
k
|ãnk|q

)1/q

.

2. Let A ∈ (`p(RΦ),c). By Lemma 5.3, we have ˜A ∈ (`p,c). Hence, from Lemma 5.5 (c), we write

1
2

limsup
n
‖ ˜An− ã‖∗`p

≤ ‖LA ‖χ ≤ limsup
n
‖ ˜An− ã‖∗`p

,

where ã = (ãk) and ãk = limn ãnk for each k ∈ N. Moreover, Lemma 1.1 implies that ‖ ˜An− ã‖∗`p
= ‖ ˜An− ã‖`q =

(∑k |ãnk− ãk|q)1/q for each n ∈ N. This completes the proof.

3. Let A ∈ (`p(RΦ),c0). Since we have ‖An‖∗`p(RΦ) = ‖ ˜An‖∗`p
= ‖ ˜An‖`q = (∑k |ãnk|q)1/q for each n ∈ N, we conclude

from Lemma 5.5 (b) that

‖LA ‖χ = limsup
n

(
∑
k
|ãnk|q

)1/q

.

4. Let A ∈ (`p(RΦ), `1). By Lemma 5.3, we have ˜A ∈ (`p, `1). It follows from Lemma 5.6 that

lim
r

 sup
N∈Kr

∥∥∥∥∥∑
n∈N

˜An

∥∥∥∥∥
∗

`p

≤ ‖LA ‖χ ≤ 4lim
r

 sup
N∈Kr

∥∥∥∥∥∑
n∈N

˜An

∥∥∥∥∥
∗

`p

 .

Moreover, Lemma 1.1 implies that ‖∑n∈N
˜An‖∗`p

= ‖∑n∈N
˜An‖`q = (∑k |∑n∈N ãnk|q)1/q which completes the proof.

Corollary 5.8. Let 1 < p < ∞.
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1. LA is compact for A ∈ (`p(RΦ), `∞) if

lim
n

(
∑
k
|ãnk|q

)1/q

= 0.

2. LA is compact for A ∈ (`p(RΦ),c) if and only if

lim
n

(
∑
k
|ãnk− ãk|q

)1/q

= 0.

3. LA is compact for A ∈ (`p(RΦ),c0) if and only if

lim
n

(
∑
k
|ãnk|q

)1/q

= 0.

4. LA is compact for A ∈ (`p(RΦ), `1) if and only if

lim
r
‖A ‖(r)

(`p(RΦ),`1)
= 0,

where ‖A ‖(r)
(`p(RΦ),`1)

= supN∈Kr
(∑k |∑n∈N ãnk|q)1/q.

Theorem 5.9.

1. For A ∈ (`1(RΦ), `∞),

0≤ ‖LA ‖χ ≤ limsup
n

(
sup

k
|ãnk|

)
holds.

2. For A ∈ (`1(RΦ),c),

1
2

limsup
n

(
sup

k
|ãnk− ãk|

)
≤ ‖LA ‖χ ≤ limsup

n

(
sup

k
|ãnk− ãk|

)
holds.

3. For A ∈ (`1(RΦ),c0),

‖LA ‖χ = limsup
n

(
sup

k
|ãnk|

)
holds.

4. For A ∈ (`1(RΦ), `1),

‖LA ‖χ = lim
r

(
sup

k

∞

∑
n=r
|ãnk|

)
holds.

Proof. It follows with the same technique in Theorem 5.7.

Corollary 5.10.

1. LA is compact for A ∈ (`1(RΦ), `∞) if

lim
n

(
sup

k
|ãnk|

)
= 0.
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2. LA is compact for A ∈ (`1(RΦ),c) if and only if

lim
n

(
sup

k
|ãnk− ãk|

)
= 0.

3. LA is compact for A ∈ (`1(RΦ),c0) if and only if

lim
n

(
sup

k
|ãnk|

)
= 0.

4. LA is compact for A ∈ (`1(RΦ), `1) if and only if

lim
r

(
sup

k

∞

∑
n=r
|ãnk|

)
= 0.
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