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Abstract

In this study, a special lower triangular matrix derived by combining Riesz matrix and Euler totient matrix is
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1. Introduction and background

A sequence space is a vector subspace of the space @ of all sequences with real entries. Well known classical sequence spaces
are ¢, (the space of p-absolutely summable sequences, 1 < p < o), £, (the space of bounded sequences), ¢y ( the space of
null sequences), ¢ (the space of convergent sequences). On the other hand, bs, csg and cs are the most frequently encountered
spaces consisting of sequences generating bounded, null and convergent series, respectively. Further v is the space of all finite
sequences. A Banach sequence space having continuous coordinates is called a BK space. Examples of BK spaces are ¢y and ¢
endowed with the supremum norm || x|, = sup,,cy |Xx|, where N = {1,2,3,...}.

By virtue of the fact that the matrix mappings between BK-spaces are continuous, the theory of matrix mappings plays an
important role in the study of sequence spaces. Let X and Y be two sequence spaces, & = (ay;) be an infinite matrix with
real entries and 7, indicate the n' row of .«7. If each term of the sequence 7/x = {(%7x),} = {¥r_ @uxi} is convergent, this
sequence is called o7 -transform of x = (x,). Further, if &/x € Y for every sequence x € X, then the matrix <7 defines a matrix
mapping from X into Y. (X,Y) represents the collection of all matrices defined from X into Y. Additionally, B(X,Y) is the set
of all bounded (continuous) linear operators from X to Y. A matrix &/ = (a,;) is called a triangle if a,, # 0 and a,; = 0 for
k> n.

The matrix domain X, of the matrix .7 in the space X is defined by

Xo={xcw:dxeX}.

Since this space is also a sequnce space, the matrix domain has a crucial role to construct new sequence spaces. Moreover given
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any triangle </ and a BK-space X, the sequence space X, gives a new BK-space equipped with the norm [[x|[y = [l.&/x|| -
Several authors applied this technique to construct new Banach spaces with the help of special triangles. For relevant literature,
the papers [1, 2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15] can be referred.
The spaces
X“:{t:(tk)ew: thk<oof0ra11x:(xk)€X},
k=1
xP = {t = () € 0: ) tx converges for all x = (x;) € X} ,

k=1

n
Z TiXk

k=1

Xyz{t:(tk)ea):sup

<<>0forallx:(xk)€X},

are called the -, 3-, y-duals of a sequence space X, respectively.
Let (X,]|.]|x) be a normed space and Bx = {x € o : ||x||x = 1}. Given any BK-space X D y and t = (1,,) € o,

Zthk
k

el = sup
XEBy

implies that r € XB.

Lemma 1.1. /16, Theorem 1.29] élf = lo and Eﬁ =4y, where 1 < p < o and % —|—$ = 1. The equality ||t||}p = ||t||[ﬁ holds for
4

allt € Eg, where 1 < p < oo,

Lemma 1.2. [16, Theorem 1.23 (a)] Given any BK-spaces X, Y and o/ € (X,Y), there exists a linear operator £,y € B(X,Y)
such that £y (x) = o/ x for all x € X.

Lemma 1.3. [16] Let X D w be a BK-space and Y € {co,¢,lw}. If & € (X,Y), then

Lo | = 17 Nl (x,v) = sup [ #hlx < oo
neN

Let 2 be a bounded set in a metric space X and B(x, §) be the open ball. The value
X(Q) = inf{S >0:2cC U:»’:lB(xi,Si),xi eX, o< enc N}

is called the Hausdorff measure of noncompactness of 2.
To compute the Hausdorff measure of noncompactness of a set in £, for 1 < p < oo, the following result is essential.

Theorem 1.4. [17] Let 2 be a bounded subset in L), for | < p < coand P, : £, — {, be the operator defined by P.(x) =
(X0,X1,X2,...,%-,0,0,...) for all x = (x) € £, and each r € N. Then, we have

2(2) =tim (swp [ -0, ).

where I is the identity operator on £ ,.

A linear operator . : X — Y is a compact operator if the domain of . is all of X and for every bounded sequence x = (x,)
in X, the sequence (£ (x,)) has a convergent subsequence in Y. The idea of compact operators between Banach spaces is
closely related to the Hausdorff measure of noncompactness. The Hausdorff measure of noncompactness of an operator
Z e BX,Y), || Z|ly = x(Z(Bx)) = 0if and only if .Z is compact.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays a role to characterize
the compactness of an operator between BK spaces. For the relevant literature, see [18, 19, 20, 21, 22, 23, 24].

The Euler totient matrix ® = (¢,) is defined as in [25]

b = o®) itk n
nk 0 , ifk{n,
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where ¢ is the Euler totient function. In the recent time, by using this matrix, many new sequence and series spaces are defined
and studied in the papers [26, 27, 28, 29, 30, 31, 32, 33].

For p € N with p # 1, ¢(p) gives the number of positive integers less than p which are coprime with p and ¢(1) = 1. Also,
the equality

p=Y ok

k|p

holds for every p € N. For p € N with p # 1, the Mébius function u is defined as

(—=1)" if p = p1ps...pr, where py, pa, ..., p, are
ulp) = non-equivalent prime numbers
0 if 52 | p for some prime number j

and u(1) = 1. The equality
Z“(k) =0 (1.1)

klp

holds except for p = 1.
The Riesz matrix E = (e, ) is defined as

e if0<k<n
€nk = On .
0 , ifk>n,

where (gi) is a sequence of positive numbers and Q, = Y}_gx for all n € N. By using these matrix, the authors of [34]
introduced the Riesz sequence spaces of non-absolute type.

The main purpose of this study is to construct new BK spaces £,(Rg) for 1 < p < eo. The matrix Rg is obtained by
combining Euler totient matrix and Riesz matrix. After studying certain properties of the resulting spaces, o-, B- and y-duals
are computed. Finally some matrix mappings from the spaces ¢, (Ra) to the classical spaces are characterized and compact
operators are studied.

2. The sequence space /,(Ro)

In the present section, we introduce the sequence space £,(Re) by using the matrix Rg, where 1 < p < co. Also, we present
some theorems which give inclusion relations concerning this space.
The matrix Rp = (r,) is defined as

ak9(k) ifk | n
Tk = On ’ .
0 , ifkfn,

where O, = q1 +q> + ... + ¢q,. We call this matrix as Riesz Euler Totient matrix operator.
The inverse Rg,' = (r;,!) of the matrix R is computed as

u(g) o i
o[ ahe itk
0 , ifktn

for all k,n € N.
Now, we introduce the sequence space £, (Ra) by

L Y o (k)x,

™ kln

¢)(Ro) = {x— (x) E@: Z

P
<°<>} (1< p<oo).

Unless otherwise stated, y = (y,) will be the Rg-transform of a sequence x = (x,), that is, y, = (Rex), = é Y qrP (k) xx
foralln € N.

, py\1/p
@kaqw(k)xk’) , where

Theorem 2.1. The space {,(Re) is a Banach space with the norm given by |\x||¢,(ry) = ():n
1<p<on.
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Proof. We omit the proof which is straightforward. O

Corollary 2.2. The space £,(Ro) is a BK-space, where 1 < p < oo,
Theorem 2.3. The space {,(Ro) is linearly isomorphic to £, where 1 < p < oo,

Proof. Let f be a mapping defined from ¢,(Ra) to £, such that f(x) = Rex for all x € £,(Re). It is clear that f is linear. Also
it is injective since the kernel of f consists of only zero. To prove that f is surjective, consider the sequence x = (x,) whose
terms are

w(z
n = Z (k) % k
kln ®(n) gqn
for all n € N, where y = (y) is any sequence in £,,. It follows from (1.1) that
u(t) o,
(Rox)y, ZQk(P o)), —=Ly;
On Kn Qn K Jlk @(k) gk

Qn ZZ“ Q/yf an(zu ) %y% :@.u( )Qnyn:yn

kln jlk kjn \ jlk
and so x = (x,) € £,(Roe). f preserves norms since the equality |||/, (rg) = || f(x)||¢, holds. O

Remark 2.4. The space (2(Re) is an inner product space with the inner product defined as (x,%)(,(r,) = (RoX, RoX)r,, where
(-s-)¢, is the inner product on {, which induces ||.||¢,.

Theorem 2.5. The space {,(Ra) is not an inner product space for p # 2.

Proof. Consider the sequences x = (x,) and ¥ = (%), where

. ZEZ; % + %% , ifniseven
tﬁﬁﬁi a4 , ifnisodd
and
) ggzg%_%% , ifniseven
In = H(n) Oy if n is odd
¢(n) qn ’

for all n € N. Then, we have Rpx = (1,1,0,...,0,...) € £, and Rox = (1,—1,0,...,0,...) € £,. Hence, one can easily observe
that

%+ %6, (Re) + X =%l e,(Re) 7 2UM1x]le, (Re) T 1%l (Re))-

Theorem 2.6. The inclusion {,(Ra) C {4(Ra) strictly holds for 1 < p < q < oe.

Proof. Ttis clear that the inclusion ¢, (Re) C ,4(Re) holds since £, C £, for 1 < p < g < oo. Also, £, C £, is strict and so there
exists a sequence z = (z,) in £,\¢,. By defining a sequence x = (x,) as

v HG) o
=2 ) g0

for all n € N, we conclude that x € £,(Ro)\¢,(Rs). Hence, the desired inclusion is strict. O
Before presenting the next result, we define the sequence space £..(Ro) by
lo(Rp) ={x € @ : Rpx € Lo }.
Theorem 2.7. The inclusion {,(Ra) C lw(Ra) strictly holds for 1 < p < oo,

Proof. The inclusion is obvious since £, C l« holds for 1 < p < co. Let x = (x,) be a sequence such that x, = ¥ |, (— 1k L(:)(é; %

()ﬂ
for 1 < p < co. O

foralln € N. We obtain that Rpx = (an Lin gk (k) Ljie(—1) u) QJ) = ((—1)") € £\, which implies that x € Lo (Re)\lp(Ro)
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3. The a-, - and y-duals of the space /,(Rs)

In this section, we determine the o-, B- and y-duals of the sequence space ¢, (Ra), where 1 < p < co. The following lemmas
are required to prove our main results in this section. Here and in what follows .#~ denotes the family of all finite subsets of N.

Lemma 3.1. [35] The following statements hold:
o = (an) € (Lp,41) if and only if

q
< oo 3.1)

sup Z

Fex |

Z Qnk

neF

holds, where 1 < p < oo,
A = (ap) € (b, 1) if and only if (3.1) holds with g = 1.
o = (ay) € (01,4)) if and only if

snglam < oo (3.2
n

holds.
o = (an) € (Lp,c) if and only if

li_r>n ayy exists for each k € N 3.3)
Nn—>o0
and
sup Y |a|? < oo 34
n ok

holds, where 1 < p < oo,
A = (an) € (bw,c) if and only if (3.3) and

fim ¥ o] = i

hold.
o = (an) € (¢1,c¢) if and only if (3.3) and

Sup || < oo (3.5)

nk

hold.
o = (ank) € (£p,co) if and only if

lim a,; = 0 for eachk € N 3.6)
n—soo

and (3.4) holds, where 1 < p < oo,
o = (an) € (b, o) if and only if (3.6) and

Jim 3 lane] =0

hold.
o = (an) € (¢1,c0) if and only if (3.5) and (3.6) hold.
o = (ank) € (Lp,le) if and only if (3.4) holds, where 1 < p < oo,
A = (an) € (boo, o) if and only if (3.4) holds with g = 1.
o = (ay) € (1,4w) if and only if (3.5) holds.

In the following theorem, we determine the a-duals of the spaces £,(Ra) (1 < p <o) and ¢ (Ra).
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Theorem 3.2. The a-duals of the spaces {,(Re) (1 < p < o) and {i(Ra) are as follows:

L . p o |
(p(Rep))* = {t— (tn) € ®: sup §k ne}ﬂk‘” o 0" < }
and
o_ ), _ ) 1(%) Ok
(61(Rg))* = {t =t cw: sipneNE,k\n q)(li) " tal < oo}.

Proof. Consider the matrix C = (c,;) defined by
RE) 0
Cak =4 9K an o k|n
0 , ktn
for any sequence r = (1,) € w. Hence, given any x = (x,) € £,(Re) for 1 < p < oo, we have ,x, = (Cy), for all n € N. This

implies that rx € £; with x € £,(Ro) if and only if Cy € ¢; with y € £,,. It follows that t € (£,(Re))* if and only if C € (£p,¢;)
which completes the proof in view of Lemma 3.1. O

Theorem 3.3. Let us define the following sets:

nu(f) Ok
Aj=qt=(%) € ®: lim Z —==——t; exists for each k € N
noe ek PU) i
q
<%,

<%_

The B and y-duals of the spaces {,(Ra) (1 < p <o) and {;(Rs) are as follows:
(£p(Ro))P = A1 NAs and (41 (Re))P = A1 N A3,
(f;,(Rq;))y = A2 and (fl(qu))y = A3.

f ubo

Jj=kk|j 90 J)

Azz{tz(tk)éa):supz
n Tk

and

Z :ui)Qk

Az = ) E®: sup
} { (%) =k k|j o(j) QJ

Proof. Lett = (t;) € ® and B = (b,) be an infinite matrix with terms

noo B g g
by = i=kkitie(y a0 ! =k=n
0 . if k>n.

Hence it follows that

S -y (T2, (3 ey,
Lo a i el) g

k=1 k=1 k k| j

(O

for any x = (x,) € {,(Re). This equality yields that tx € cs for x € £,(Ro) if and only if By € ¢ for y € £,. That is,
€ (¢,(Re))P if and only if B € (£,,c) for 1 < p < o. Hence, by Lemma 3.1, it is concluded that (¢,(Re))? = A; N A, and
(61(Re))P = A1 NAs.
This equality also yields that tx € bs for x € £,(Re) if and only if By € £, fory € ¢,,. Thatis, r € (¢,(Ra))? if and only if
B e (¢,,0) for 1 < p < o. Hence, by Lemma 3.1, it is concluded that (¢,(Re))? = A2 and ({1 (Ro))" = As.
O
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4. Some matrix transformations related to the sequence space ¢,(Rs)

In this section, we give the characterization of the classes (¢,(Ra),Y), where 1 < p < oo and Y € {/w,c,co,¢; }. Throughout
this section, we write d(n,k) = ¥._ dx for an infinite matrix D = (d,) and all n,k € N.

Theorem 4.1. Let 1 < p < coandY be any sequence space. Then, we have o/ = (an) € ({,(Ra),Y) if and only if

mk

p — (d(”)) € (€y,c) foreachn e N,

D = (dw) € (£,,Y),
here d”) O o ke d dy=Y" B O o il N
where = w(d) an k= 2j—k k| nj === forall k,m,n € N.
mk ):;-n:k,k\janj (p(i) % , 0<k<m ! J=RKITE 9k) 4

Proof. We omit the proof since it follows with the same technique in [6, Theorem 4.1]. O

The following results are obtained by combining Theorem 4.1 with Lemma 3.1.

Theorem 4.2.
(a) & = (an) € ({1(Ra), L) if and only if

lim d’:'k) exists for each n,k € N, 4.1
Mm—oo

sup dr(:k) < oo for eachn € N (4.2)
m,k

and (3.5) holds with d,; instead of ayy.
(b) o = (an) € (£1(Ra),c) if and only if (4.1) and (4.2) hold, and (3.3) and (3.5) also hold with d instead of ayy.
(c) o = (an) € (U1(Ra),co) if and only if (4.1) and (4.2) hold, and (3.5) and (3.6) also hold with d,;, instead of ayy.
(d) o = (an) € (£1(Rp), 1) if and only if (4.1) and (4.2) hold, and (3.2) also holds with d, instead of ayy.

Theorem 4.3. Let 1 < p < oo.
(a) & = (an) € (£p(Ro), L) if and only if (4.1) and

m
sup Z
m k=0

hold, and (3.4) also holds with d,. instead of a,.
(b) & = (an) € (£p(Ra),c) if and only if (4.1) and (4.3) hold, and (3.3) and (3.4) also hold with d,. instead of ay.
(¢) o = (an) € ({,(Ra),co) if and only if (4.1) and (4.3) hold, and (3.6) and (3.4) also hold with d, instead of apy.
(d) o = (an) € ({p(Ra), 1) if and only if (4.1) and (4.3) hold, and (3.1) also holds with d,. instead of ay.

d" ! < oo foreachn € N “4.3)
mk .

The following results are derived by using Theorems 4.2-4.3.

Corollary 4.4. The following statements hold:
(a) o = (an) € (¢1(Ra),bs) if and only if (4.1), (4.2) hold and (3.5) holds with d(n,k) instead of ayj.
(b) o = (an) € (€1 (Rap),cs) if and only if (4.1), (4.2) hold and (3.3),(3.5) hold with d(n,k) instead of a.
(c) o = (an) € (l1(Ra),cs0) if and only if (4.1), (4.2) hold and (3.5),(3.6) hold with d(n,k) instead of a.

Corollary 4.5. Let 1 < p < oo. Then, the following statements hold:
(a) o = (an) € ({,(Ra),bs) if and only if (4.1), (4.3) hold and (3.4) holds with d(n,k) instead of ayy.
(b) & = (an) € ({y(Ra),cs) if and only if (4.1), (4.3) hold and (3.3),(3.4) hold with d(n,k) instead of a.
(¢c) o = (an) € ({,(Ra),cs0) if and only if (4.1), (4.3) hold and (3.4),(3.6) hold with d(n, k) instead of ayy.
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5. Compact operators on the space /,(Rs)

Let the matrix .27 = (@) defined by an infinite matrix o7 = (a,) as

. H(%)Qk
fhnk _/:%” (p(.]) qj

a,,j

for all n,k € N. _
1(g)

For a sequence ¢ = (f) € o, define a sequence 7 = (fi) as iy = Y7, Kl W%tj for all k € N.

Lemma 5.1. Lett = (1) € (£,(Ra))P, where 1 < p < oo. Then 7 = () € £, and
Y nxe =Y fovk
k k

forall x = (x) € {,(Ro).

Lemma 5.2. The following statements hold.
(a) HIHZ(R(D) = supy |fi| < oo forallt = (1) € (£1(Ra))P.
(b) Ht”;,p(R@) = (X |fk|q)1/q <ooforallt=(t) € (EP(RQ))ﬁ, where 1 < p < oo,

Lemma 5.3. Let X be any sequence space and </ = (ayt) be an infinite matrix. If o/ € ({,(Ra),X), then o € (£,,X) and
/x =y forall x € {,(Re), where 1 < p < oo,

Proof. It follows from Lemma 5.1. O

Lemma 54. If o/ € ({i(Ra),!p), then we have

1/p
1l = 15 ) = 500 (zanw) <o,

where 1 < p < co,

Lemma 5.5. [22, Theorem 3.7] Let X D W be a BK-space. Then, the following statements hold.
(a) o € (X, L), then 0 < ||L ||, <limsup,, ||.27,[%.
(b) o € (X,cp), then || Ly ||, = limsup, ||,
(c) If X has AK or X = b and <7 € (X, ), then

1. .
5 limsup||.7, —allx < || Z || < limsup||#, —allx,
n n

where a = (ay) and ay, = lim, a,, for each k € N.

Lemma 5.6. [22, Theorem 3.11] Let X D y be a BK-space. If 7 € (X, (), then

lim | sup
" \Nex; X

and £, is compact if and only if lim, (supy, s | Enen %) =0, where ; is the subcollection of X consisting of subsets
of N with elements that are greater than r.

*

Y

nenN

Y

nenN

) < || Ly < 4lim ( sup
r

Ne;

X
Theorem 5.7. Let 1 < p < oo,
1. For o/ € ({,(Ra),lx),

1/q
0 <|[[Zy|y <limsup <Z|d,,k‘1>
n k

holds.
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2.

3.

4

Proof.

1.

For o € ({,(Ra),c),
| 1/q /g
3 limsup (Dank am) <12, <timsup (Dank am)
n k n k

holds, where @ = () and d; = lim, @, for each k € N.

For o € ({,(Ra),c0),

1/q
[-Ze ||y = limsup <Z|ﬁnk|">
n k

holds.
For of € (ﬁp(Rq;.)Jl),

tim 1) g 1) < 1%l < 4lim 1) o o)

holds, where |/} . . = supne ¢, (i | Ene @l )"/ (r € N).

P

Let o € (£,(Ro), /). Since the series Y7, ax; converges for each n € N, we have 7, € (¢,(Re))P. From Lemma
5.2 (b), we write ||4a7,,||zp<R¢) = ||437:1||jp =l %lle, = (Lx |@e|9)"/9 for each n € N. By using Lemma 5.5 (a), we conclude
that

1/q
0 < | Zxlly <limsup (Z|ﬁnkq> :
n X

Let o € (£,(Rg),c). By Lemma 5.3, we have & € ({,,c). Hence, from Lemma 5.5 (c), we write
1. . . S ik
3 limsup||7, ~all;, < .2, I, < limsup |7, all;.
n n

where @ = (d) and @ = lim, d, for each k € N. Moreover, Lemma 1.1 implies that |27, — dHZ‘p = ||, — dlle, =

(X |Gk — dk|‘1)1/" for each n € N. This completes the proof.

Let o € (£5(Ra),co). Since we have || ; ) = ||£7?1|\2p = [l %nlle, = (X« |de|9)"/4 for each n € N, we conclude
from Lemma 5.5 (b) that

1/q
[-Z ||y = limsup <Z|ﬁnk|"> -
n 3

Let o7 € (¢,(Ra),¢1). By Lemma 5.3, we have 7 € (£,,¢;). It follows from Lemma 5.6 that

* *

lim | sup o,
"\ Nex; Z "

nenN

Y o

neN

< || L llx < 4lim | sup
" \ Nex;

s a

Moreover, Lemma 1.1 implies that || ZneN;zZ,HZ‘p = || pen Zille o = Xkl Loen a‘nk|‘1)]/ 7 which completes the proof.

O

Corollary 5.8. Let 1 < p < oo.
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1. Zy is compact for o/ € ({,(Ro),lw) if

1/q
fim (; dnkq> =0.

2. Ly is compact for o/ € ({,(Rs),c) if and only if

1/q
lim (2]:. |Gk — 5k|q> =0.

3. L. is compact for & € ({,(Ra),co) if and only if
1/q
lim (Za,ﬂ) =0.
Tk
4. Ly is compact for </ € ({,(Rao), 1) if and only if

tim ] ).y = O

p(Re).l1) —

where H"Z{H o(Re),l1) — = SUPne w7, (Zk|ZnENank|q)
Theorem 5.9.
1. For & € ({1(Ro),l),

0= 120l < timsup (suplan
n k
holds.

2. For o/ € (ﬁ] (Rq>),c),

1
Elimsup <sup |Gk —dk> < ||-Zw ||y < limsup <sup |Gk —dk>
k n k

n

holds.
3. For & € ({1(Ro),c0),

%0l = limsup <sup |ank|)
n k

holds.
4. For o € ({1(Rs),t1),

Loy = l1m <sup Z |ank|)

holds.
Proof. It follows with the same technique in Theorem 5.7. 0
Corollary 5.10.

1. Ly is compact for &7 € (£1(Ro),le) if

lim (sup |dnk|) =0.
"o\ k
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[11]
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[14]

[15]

[16]

[17]

[18]

2. %Ly is compact for o € (£1(Rs),c) if and only if

lim (sup |Gk — dk|) =0.
no\ k

3. L.y is compact for o € (£1(Ra),co) if and only if

lim (sup|€lnk|> =0.
n k

4. L.y is compact for o/ € (£1(Ra), 1) if and only if

lim <sup ) |dnk|> =0.
r k

n=r
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