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• DFT computations were performed on dimeric aza-BODIPY molecule and its chlorinated form. 

• Their intriguing photophysical behaviors were investigated by conducting TDA-DFT calculations. 

• The results were compared to shed light on the effect of chlorination. 
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Abstract 

Density functional theory (DFT) computations were performed to unveil the electronic structures 

and the Kohn-Sham Molecular Orbitals (MOs) of the dimeric aza-BODIPY molecule and its 

chlorinated form. The optimized conformation of dimers is well in alignment with the one 

provided in the literature. The HOMO-LUMO gap of dichloro-derivative is smaller than that of 

the dimeric aza-BODIPY molecule by 35.0 meV. The predicted HOMO energies of -6.40 and -

6.60 eV point out the good stabilities of both compounds. They were reported to demonstrate 

bathochromic shifts of 40 and 57 nm compared to their monomers substituted by H and Cl, 

respectively. The intriguing photophysical behaviors of these molecules were investigated by 

conducting the Tamm-Dancoff density functional theory (TDA-DFT) calculations. The max 

values emerge from the HOMO-1 → LUMO+1 (83-86%) transitions, whereas the low energy 

transitions arise from HOMO → LUMO (89%). Therefrom predicted ELUMO→HOMO of the dimeric 

aza-BODIPY and dichloro-derivative are 1.89 and 1.87 eV, respectively, which are matching well 

with the reported literature values. 
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1. INTRODUCTION 

 

The complexation of dipyrromethene with BF3 leads to the formation of boron dipyrromethene (4,4-

difluoro-4-bora-3a,4a-diaza-s-indacen) also known as BODIPY ( 

Figure 1) [1,2]. The effect of substitution pattern especially meso-substitution on spectroscopic and 

photophysical properties of BODIPY has been meticulously explored [3,4]. Moreover, BODIPY dimers 

linked via  or β positions of monomer units have also been investigated thoroughly experimentally and 

computationally [5−7]. Replacement of carbon at the meso position of BODIPY by nitrogen renders aza-

BODIPY [8, 9]. Although aza-dipyrromethene has been known since the 1940s, its BF2 chelated form (aza-

BODIPY) was firstly achieved by Boyer et. al in 1993 [10, 11]. Aza-BODIPY has also been extensively 

studied by considering its fused aromatic systems and substitution effects on its chemical and photophysical 

properties [12,13]. Absorption maxima of aza-BODIPY are shifted to the near infrared region compared to 

BODIPY emerging from the diminishing of a gap between the highest occupied molecular orbital (HOMO) 

− the lowest unoccupied molecular orbital (LUMO) [14]. Both electron donating groups at 3/5-positions 

and electron withdrawing units at 1/7-positions decrease the HOMO−LUMO gaps, and hence result in 

bathochromic shifts. Moreover, it is reported that they have sharp absorption peaks with extinction 

coefficients between 75,000 and 85,000 M-1 cm-1 [10]. The intriguing photophysical properties of aza-

BODIPYs allow aza-BODIPYs to be utilized as key materials in the construction of solar cells, logic gates, 

and agents for biolabeling, boron neutron capture therapy (BNCT) and Photodynamic therapy (PDT) 

[15−17]. Homocoupling of aza-BODIPY through β-position gives rise to the formation of dimeric aza-

BODIPY. Despite the fascinating effect of dimerization on the optoelectronic properties that is, enhancing 
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photophysical properties, shifting the absorption maxima to the longer wavelengths, a limited number of 

studies involving dimeric aza-BODIPY were reported [18,19]. 

 

 
 

Figure 1. (aza)-BODIPY, dimeric aza-BODIPY and their precursor compounds; dipyrromethene and 

aza-dipyrromethene 

 

Bard and co-workers [19] investigated the photophysical and electrochemical properties of dimeric aza-

BODIPY (R1=R2=Ph), which was synthesized from tetra-phenyl substituted monomer via oxidative 

homocoupling. It was pointed out that the enhanced electronic interactions and bathochromic shift to near-

infrared region endow this dye molecule with a wide applicability. Moreover, Gul [20] investigated the 

effect of Cl atom located at the para-positions of the distal phenyl groups on the properties of dimeric aza-

BODIPY (R1=p-ClPh, R2=Ph) indicating a significant bathochromic shift of 57 nm and a large Stokes shift 

of 34 nm compared to its monomer. In this study, DFT computations were performed to shed light on the 

electronic structures and Frontier Molecular Orbitals (FMOs) of the dimeric aza-BODIPY molecule and its 

chlorinated form. Tamm−Dancoff approximation (TDA)-DFT [21,22] calculations were conducted to 

unveil their optoelectronic properties. 

 

2. MATERIAL METHOD 

 

Geometry optimizations of aza-BODIPY dimers were performed in a vacuum at DFT level using the 

Gaussian 09 package program [23] Meta hybrid M06-2X [24] functional was employed with Duning’s 

correlation-consistent double-zeta basis set cc-pVDZ due to its good results in the literature for geometry 

optimizations of the dimeric aza-BODIPY dimer and also metal complexes [25,26]. It was reported that 

solvent effect on geometry optimization of BODIPY is insignificant and the basis set affects moderately. 

Therefore, the global minima of the dimers were predicted by performing calculations at M06-2X/cc-pVDZ 

level of theory in the gas phase. The atom–pairwise dispersion correction (D3) [27,28] was included for 

M06-2X functional with the help of the keyword IOp(3/124=30) [29]. As the predicted results obtained 

utilizing the M06-2X functional are strongly dependent on the choice of grid and “ultrafine” grid (a pruned 

grid of 99 radial shells and 590 angular points per shell) is suitable for optimizations of larger molecules 

with many soft modes, an “Ultrafine” grid was considered for numerical integration [30,31]. Convergence 

of a maximum force = 1.2 × 10−5 a.u. and RMS force = 2.0 × 10−6 a.u. were achieved for the ground-state 

optimizations. The minima of the calculated structures were verified by analyzing the harmonic vibrational 

frequencies using analytical second derivatives, which have NIMAG=0. Orbital composition analysis was 

performed using the Multiwfn program (a multifunctional wavefunction analyzer) with Mulliken partition 

[32]. Natural Bond Orbital (NBO) analyses [33−35] were realized with NBO 3.1 [36,37] linked through 

Gaussian 09 using cc-pVTZ [23] basis set to shed light on the electronic structures and the second-order 

perturbative estimates of bond−antibond interactions. Single point (SP) calculations were performed on gas 

phase optimized geometries at UM062X/cc-pVDZ//M06-2X/cc-pVDZ level of theory to predict the first 

vertical ionization energies (VIE). The time-dependent DFT (TD-DFT) calculations were performed with 

TDA and frozen core option based on the reports which indicate that excitation energies obtained from 

TDA computations are very similar to those predicted using the full time-dependent (TD) method. 

Moreover, TDA demonstrated better performances in the estimations involving purely valence excitations, 

transition metals and, also large conjugated systems [38]. TDA-DFT computations were performed using 

TDA keyword provided in the Gaussian 09 package and the PBE0 [39] functional owing to its good 

performance in the prediction of vertical excitation energies yielding the least amounts of mean absolute 

deviation of 0.267 eV [25]. The same basis set was utilized for the gas phase calculations of the lowest 

singlet−singlet vertical excitations because of the use of larger basis sets (aug-cc-pVDZ, cc-pVTZ, aug-cc-
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pVTZ) and density fitting basis sets (def2-TZVPP, def2-QZVPP) has little effect on the excitation energies 

and the solvent effect on the excited-state properties of this type of molecules was observed to be negligible 

[40,41]. Although TDA computations both in gas phase and in tetrahydrofuran (THF) provided 

hypsochromic deviations compared to the experimentally recorded value for dichloro-aza-BODIPY, the 

deviation is smaller in THF (38 nm) than in vacuum (54 nm). Moreover, the larger oscillator strength 

(F = 0.906) was predicted in solvent with respect to that in gas phase (F = 0.588). Therefore, incorporation 

of the solvent effects was realized by using self-consistent reaction field (SCRF) with the integral equation 

formalism of the Polarizable Continuum Model (IEFPCM) [42]. IEFPCM is a widely used methodology in 

the computational chemistry, which is the default SCRF method in Gaussian 09 program package. IEF is 

less affected by both the numerical and physical errors on the apparent charges compared to conventional 

PCM method and it is among the most effective methods for standard isotropic dielectrics. THF ( = 7.4257) 

was chosen as solvent to mimic the UV-Vis measurement conditions. To obtain absorption bands, the 

calculations were performed for singlets with the number of states (NStates) of 50. The visualization of 

MOs with isosurface value of 0.03 a.u. was performed with GaussView 5.0 [43]. IR and absorption spectra 

were generated by using GaussSum 3.0 [44]. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Geometry Optimization 

 

X-ray crystal structure of dichloro-substituted 2,6-dibromo-aza-BODIPY compound was considered as a 

starting point [20]. Bromine atoms were replaced by H atoms and βC−Br distances in crystal structure were 

arranged to 1.08509 Å based on the βC−H distances of dimeric aza-BODIPY molecule provided in the 

literature [25]. Aza-BODIPY dimer was constructed by connecting two βC of monomeric units and keeping 

the distance of 1.45560 Å. Dihedral angle around βC − βC bond was set to 40° to avoid the bulkiness of 

aryl units, but at the same time to maintain the conjugation as high as possible. It is known that the dihedral 

angle of above 30° results in diminishing electron conjugation in the -backbone and hence altering the 

optoelectronic properties of target materials [45]. Crystal structure also clearly depicts a nearly σv 

symmetry, which is slightly destroyed by an intersect angle of 4.7° between two pyrrole rings [20]. 

However, the close σv symmetry observed in a monomer disappears in its dimers. C2 symmetry was 

employed with the keyword Symm=(PG=C2, follow) in the route section to accelerate the optimization 

calculations. The predicted Cartesian coordinates are provided in the Supporting Material (S1). 

 

 
 

Figure 2. Dimeric aza-BODIPY and dimeric dichloro-aza-BODIPY subjected to DFT computations 

 

Gas phase DFT level optimization of dimeric aza-BODIPY and dimeric dichloro-aza-BODIPY compounds 

demonstrated that dimerization of monomeric aza-BODIPY and dichloro-aza-BODIPY cannot change the 

planarity of core units. The greatest deviation of 1.8° was observed with the N atom of the pyrrole ring 

proximate to the dimer connection in both dimers, which brought about the intersection angle of 2.4° and 

2.5° between two pyrrole rings in the aza-BODIPY units, respectively ( 

Figure 2). This prediction is well in alignment with the reported X-ray crystal structure analysis of dichloro-

aza-BODIPY, in which the intersect angles of the pyrrole rings were recorded to be 4.1° and 4.7° [20,46]. 
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The distal dihedral angles φ1 and φ2 were estimated to be 25° and 43°, respectively, which indicate the 

effect of dimerization on the torsion angle φ2 emerging from the sterically bulky inner distal phenyl rings 

and their proper arrangements to form slipped-stack - interactions with a distance of 3.4 Å. Zhang et al 

[47] performed B3LYP/TZVP level optimization on aza-BODIPY providing φ1 and φ2 as 24° and 30° with 

a - stacking in a distance of 3.4°, which noticeably points out the dimerization responsible for the large 

φ2 of 43°. On the other hand, two bromine atoms at the β-positions of pyrrole units in the X-ray crystal 

structure give rise to the rotation of the distal phenyl groups in such a way that slipped-stack - interactions 

between aryl units are completely removed. Based on the X-ray crystal structure analysis, this phenomenon 

was explained by the crystal lattice containing Cl- and Br- stackings, which form a 2-dimensional 

supramolecular assembly in distances around 3.3 Å [20]. Computations suggest the presence of nonbonding 

CH•••N interactions in 2.38 Å between ortho-CH of outer distal phenyl units and adjacent N (meso), which 

do not show up in inner distal phenyl groups owing most probably to the strong intermolecular - 

interactions formed between inner distal aryl units [48]. CAr−Cl bond lengths were calculated to be 1.74 Å 

which are somewhat longer than those in the crystal structure by 0.02Å. Fluorine atoms sitting on the boron 

centers are also involved in non-covalent interactions with the ortho-CH of proximate phenyl units in 2.06 

Å, which decreases the dihedral angle between the outer phenyl and core unit to 30°. However, the strong 

- interactions between inner phenyl units hinders the diminishing of torsional angles, hence gives rise to 

a large deviation of inner phenyl moieties from the planarity of the BODIPY unit with dihedral angles of 

up to 46°. Two fluorine atoms are separated from each other by 2.30 Å via a boron atom with the angle of 

112°, which was observed in the crystal structure as the distance of 2.24 Å and the angle of 111° indicating 

the well alignment of estimated geometric parameters with those belonging to X-ray crystal structure. The 

DFT level predictions provided the length of the dimeric linkages as 1.467 Å and the dihedral angles (φ5) 

between two monomeric units to be 48° in both dimers which clearly point out the lack of significant effects 

of chlorine atoms on the computed geometries. Rotation around this single bond by scanning φ5 

undoubtedly renders two maxima with different energies and four minima with two different energy levels 

indicating two enantiomeric pairs. The conformation of dimers reported in this work is well in alignment 

with the one provided in the literature [25]. 

 

3.2. IR Spectra and Molecular Electrostatic Potential 

 

The optimized geometries and vibrational spectra of dimeric (dichloro)-aza-BODIPY compounds at M06-

2X/cc-pVDZ level are given in  

Figure 3. Their predicted vibrational spectra are matching well with the experimentally recorded spectra 

[20,49]. The estimated vibrations and their force constants (in mDyne/A) are listed for the dimeric aza-

BODIPY molecule as 3236 (w, 6.78, Ar-CH), 1608 (s, 14.9, C=C), 1594 (s, 13.0, C=C), 1557 (m, 5.98, 

C=C), 1453 (m, 5.81, B-N), 1139 (m, 1.44, B-F), 1075 cm-1 (s, 1.89, C-H); and for the dichloro substituted 

one as 3236 (w, 6.78, Ar-CH), 1609 (s, 14.7, C=C), 1591 (s, 13.2, C=C), 1556 (m, 6.25, C=C), 1455 (m, 

6.19, B-N), 1141 (m, 1.30, B-F), 1074 (s, 2.34, C-H), 694 cm-1 (w, 1.78, C-Cl) (Supporting Material, S2 – 

S12). As anticipated large force constants belong to double bonds, whereas small force constants are 

attributed to B-F and C-Cl bonds. 
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Figure 3. Optimized structures and vibrational spectra of dimeric aza-BODIPY (left) and dimeric 

dichloro-aza-BODIPY (right) compounds at M06-2X/cc-pVDZ level 

 

Molecular Electrostatic Potential (MEP) maps demonstrate the charge distributions of compounds and 

provide information about the electron rich, region of attractive potential appearing in red, and electron 

deficient, region of repulsive potential appearing in blue, sites of the molecules [50−52]. MEP maps of 

dimeric aza-BODIPY and dimeric dichloro-aza-BODIPY compounds obtained at the same level of theory 

are depicted in  

Figure 4. For both molecules, it was observed that negative charges are mostly located on the fluorine (-

0.21 a.u.) and nitrogen (-0.19 − -0.23 a.u.) atoms, and in dichloro-derivative slightly on the chlorine atoms 

(-0.05 a.u.). On the other hand, positive charges are mainly found on the carbon atoms, which are connected 

to nitrogen atoms, and largely on boron atoms (+0.26 a.u.). Another important molecular property is the 

dipole moment, which helps in differentiating between polar and non-polar compounds. The larger the 

dipole moment, the greater the polarity of a molecule [53,54]. The dipole moments of dimeric aza-BODIPY 

and dimeric dichloro-aza-BODIPY molecules were predicted to be 1.778 and 4.927 Debyes, respectively, 

with the almost opposite direction of dipole moment vectors provided in  

Figure 4. The 2.8-fold difference between the dipole moments with quasi-opposite directions clearly 

emphasizes the substantial influence of chlorine atoms, whose positive mesomeric effect is more 

pronounced than its negative inductive effect, at the para positions of distal phenyl units on the polarities 

and charge distributions of molecules. 
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Figure 4. MEP maps (above) and dipole moment vectors (below) of dimeric aza-BODIPY and dimeric 

dichloro-aza-BODIPY compounds at M06-2X/cc-pVDZ level 

3.3. NBO Analysis 

 

NBO analysis, in which the density matrix is divided into one center and two-center orbitals demonstrating 

a Lewis type structure, is widely applied to shed light not only on the Lewis structure of stable molecules, 

but also on the reactive intermediates, namely radical, diradical, carbene, zwitterionic species, etc. [55−57]. 

According to the one center and two-center orbitals analyses, the occupancy reveals the following Lewis 

type structure indicating the electron density of 0.90 located only on p-orbital of Cb, and a lone-pair of 1.89 

for Nf, found on sp2.7-orbital (Figure 5). Two empty orbitals of each 0.41, namely sp1.2 and p orbitals, for 

Bg form highly polarized covalent bonds with the fluorine atoms, which dedicate 1.6 electrons to each B−F 

bond. These polar covalent bonds are supported by the second order perturbation theory, analysis of the 

Fock matrix in NBO Basis indicating the strong interactions between the electrons of fluorine atoms and 

empty orbitals of boron atoms with energies of 277 and 168 kcal/mol. Moreover, other polarized bonds are 

detected between electron rich nitrogen and boron atoms. NBO analysis undoubtedly demonstrates the 

polarity of the B−N bond with the larger polarization coefficient of 0.879 for the N hybrid and the relatively 

smaller one as 0.477 for B. The lone pairs of chlorine atoms, however, moderately interact with the -bonds 

of the distal phenyl units in energy of 13.6 kcal/mol. The electrons on Cb interact with the Nd = Ce and Cc 

= Cd double bonds with energies of 76 and 40 kcal/mol, respectively. NBO analysis noticeably points 

toward the positive charge of +0.29 on Cb indicating the electron deficient center which is strongly 

delocalized with electron rich Nf (-0.38) over the pyrrole unit. 

 

 
 

  
Figure 5. (Above) The structure of dimeric aza-BODIPY based on NBO analysis. (Below) NBO charges 

of dimeric aza-BODIPY (left) and dimeric dichloro-aza-BODIPY (right) compounds at PBE0/cc-pVTZ 

level 

 

3.4. Molecular Orbitals and Global Reactivity Properties 

 

The energies of FMOs are considered to assess the stability of a reaction and intramolecular charge transfer 

(ICT) properties of dimers, whereas the HOMO−LUMO gap was reported to be related to the stability or 

sensitivity of compounds [58,59]. The FMO, HOMO-1 and LUMO+1 were computed at the same level of 

theory, which underestimates the energies of the molecular orbitals, but provides valuable information 

about the understanding of the difference in molecular properties of both molecules, and their constructed 

surfaces are depicted in  
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Figure 6. While the HOMO-1 is located on the core units and slightly spreads over the proximate phenyl 

units and inner distal phenyl groups with nodal planes going through the BF2 and all the nitrogen atoms in 

both dimers, HOMOs are mainly observed on the same atoms excluding inner distal phenyl groups. The 

charge density separation, resulting from the existing these nodal planes, precluded the delocalization of 

HOMO and HOMO-1 to the other side of the core unit. However, LUMOs and LUMO+1 are predominantly 

located on the core units possessing little contribution from outer distal and proximate phenyl units with 

nodal planes cutting the BF2 subgroups. The contribution of nitrogen orbitals is observed in these virtual 

orbitals. These predictions noticeably indicate the efficient ICT from the outer core units to inner core units 

over nitrogen atoms, which facilitate the electronic communications. Orbital composition analysis, using 

Mulliken, Stout & Politzer, SCPA, Hirshfeld, Hirshfeld-I, Becke and natural atomic orbital (NAO) methods 

to provide the contribution of each atom to the specified molecular orbitals, can also be efficiently utilized 

in fully delocalized systems [60]. Orbital composition analysis renders the highest HOMO orbital 

compositions of 8.0−8.2% for carbon atoms connected to meso nitrogen atoms in both dimers, while the 

highest LUMO orbital compositions were predicted to be 8.9−9.0% for the meso nitrogen atoms 

(Supporting Material, S12-S14). The orbital energies show that substitution of chlorine atoms at the para 

positions of the distal phenyl units diminishes not only the energies of virtual orbitals from LUMO = -2.85 

eV/ LUMO+1 = -2.662 eV to LUMO = -3.09 eV/ LUMO+1 = -2.90 eV, but also those of occupied orbitals 

from HOMO = -6.40 eV/ HOMO-1 = -6.71 eV to HOMO = -6.60 eV/ HOMO-1 = -6.92 eV. Thus, it 

enhances the stability of the molecule against oxidation, but the effect is more pronounced in the virtual 

orbitals. As a result, the HOMO−LUMO gap of dichloro-derivative is smaller than that of the dimeric aza-

BODIPY molecule by 35.0 meV. -4.90 eV or lower energy is required for the HOMOs of molecules to 

achieve stable molecules against oxidation. The predicted HOMO energies of -6.40 and -6.60 eV point out 

the good stabilities of both compounds. HOMO energy (-6.40 eV) of the unsubstituted dimer is slightly 

lower than that of the monomer (-5.58 eV) (44), which unambiguously indicates the increase in stabilization 

via dimerization [45]. Although M06-2X correctly predicts the global minimum conformer and accurately 

estimates the lowest energy conformer [61], M06-2X/cc-pVDZ level computation overestimates the 

LUMO energy (-2.85 eV) somewhat, which was calculated to be -3.42 eV for the monomer at 

B3LYP/TZVP level. The situation may emerge from the disturbance of the inner distal phenyl units in 

dimer. For the energy of HOMO, it can be compensated by elongation of conjugation via dimerization [62]. 

 

 
LUMO+1 (MO=259, -2.662 eV) 

 
LUMO+1 (MO=291, -2.898 eV) 

 
LUMO (MO=258, -2.845 eV) 

 
LUMO (MO=290, -3.085 eV) 
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HOMO (MO=257, -6.398 eV) 

 
HOMO (MO=289, -6.603 eV) 

 
HOMO-1 (MO=256, -6.711 eV) 

 
HOMO-1 (MO=288, -6.915 eV) 

 

Figure 6. Molecular Orbitals (MOs) of dimeric aza-BODIPY (left) and dimeric dichloro-aza-BODIPY 

(right) compounds at M06-2X/cc-pVDZ level with isosurface values of 0.03 a.u (ELUMO−HOMO = 3.553 and 

3.518 eV, respectively) 

 

The energies of FMOs can be utilized to derive some global reactivity properties. Ionization potential (IP 

= -EHOMO) is a physical property, the energy required to remove one or more electrons from neutral 

atom/molecule in the gas phase to form positively charged ions, which affects the chemical behavior of the 

atom/molecule [63,64]. The predicted IP values of the dimeric aza-BODIPY and its dichloro-derivative are 

6.40 and 6.60 eV, respectively, which emphasize the higher reactivity of the dimeric aza-BODIPY molecule 

with respect to dichloro aza-BODIPY emerging from the mesomeric effect of chlorine atoms on 

stabilization of the system. Another property is the first vertical ionization (VI) which takes place rapidly 

from the HOMO in the time range of nuclear motion and gives rise to a highly vibrationally excited radical 

cation moiety following Koopman’s theorem [65] and the Franck–Condon principle [66]. Subsequent 

reorganization of the radical cation occurs on a timescale of 10-12 – 10-6 s [67]. For the estimation of VIE, 

SP computations were performed at unrestricted DFT level by removing one electron from the optimized 

neutral molecule, which provides a radical cation on the neutral state geometry with a positive charge and 

a spin of doublet. The obtained VIEs, gaps between the electronic energies of the molecules at neutral states 

and excited states, are calculated to be 7.08 and 7.30 eV for the dimeric aza-BODIPY and its dichloro-

derivative, respectively, which points out the higher stability of dichloro-derivative compared to the 

unsubstituted molecule. The spin densities of 0.14−0.17 were observed at carbon atoms connected to the 

meso nitrogen atoms indicating the high HOMO orbital compositions on these carbons, which was also 

supported by the orbital composition analysis. While ionization is related to the energy of HOMO, electron 

affinity (EA = -ELUMO) can be obtained from the energy of LUMO and it is the energy detected during the 

acquirement of an electron to form the corresponding anion in the gas phase [68]. The estimated EA values 

for the dimeric aza-BODIPY and its dichloro-derivative are 2.84 and 3.09 eV, respectively, highlighting 

the enhanced reactivity of dichloro-derivative as an electrophile compared to its dimeric aza-BODIPY 

molecule. The average value of the HOMO and LUMO energies provides the Mulliken absolute 

electronegativity (χ = (IP + EA)/2) [57,58]. The electronegativity of aza-BODIPY is predicted to be 4.62 

eV and that of aza-dichloro-BODIPY is found as 4.85 eV. Based on the estimated electronegativities, 

dichloro aza-BODIPY molecule has the greater electron-attracting power. Moreover, the HOMO−LUMO 

gap also provides the chemical hardness (η = (IP − EA)/2) and the chemical softness (S = 1/η), which 
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describe the polarizability of an atom or a molecule [69,70]. η values are predicted to be 1.78 eV for the 

dimeric aza-BODIPY and 1.76 eV for its dichloro derivate representing the slightly higher hardness of the 

dimeric aza-BODIPY molecule, that is, dichloro derivative can be ascribed as the softer chemical species 

[71]. Another important physical property is the chemical potential (μ = -χ = -(IP + EA)/2), which is a 

negative value of the Mulliken absolute electronegativity and calculated to be -4.62 and -4.85 eV, 

respectively, pointing out the higher stability (being passive) of dichloro-derivative or higher activity 

(reactivity) of the dimeric aza-BODIPY molecule [72−74]. 

 

3.5. Absorption Spectra 

 

The calculated UV-Vis absorption spectra and vertical excitation energies using TDA-DFT method with 

the incorporation of solvent effect (THF) are shown in Figure 7 and listed in Table 1. The computed spectral 

properties are well in alignment with the experimentally recorded absorption values. The max values of the 

compounds arise from the HOMO-1 → LUMO+1 (83−86%) transitions, whereas the low energy transitions 

arise from HOMO → LUMO (89%). As DFT level computations overestimate the energies of LUMOs, as 

a result, the HOMO−LUMO gaps are relatively larger than those recorded experimentally [75]. Therefore, 

the first excitation energy, calculated at TDA-DFT level provides accurate estimations of the 

HOMO−LUMO gaps. The ELUMO−HOMO of the dimeric aza-BODIPY and its dichloro-derivative are 

predicted at the DFT level to be 3.553 and 3.518 eV, respectively, whereas TDA-DFT computations suggest 

the rather smaller HOMO−LUMO gaps of 1.89 and 1.87 eV, which are matching well with the reported 

literature values [25]. Low energy transition of the unsubstituted dimer ( = 655 nm) is smaller than that of 

the monomer, whose experimentally recorded HOMO → LUMO transition takes place at 643 nm (predicted 

value is 614 nm) [47]. The estimated low energy transition (664 nm) of dichloro-derivative is well in 

alignment with the experimentally detected value of 702 nm [20]. 

 

  
Figure 7. UV-Vis absorption spectra of dimeric aza-BODIPY (left) and dimeric dichloro-aza-BODIPY 

(right) compounds at (IEFPCM: THF) −TDA-PBE0/cc-pVDZ//M06-2X/cc-pVDZ level 

 

Table 1. Excited state electronic transitions derived from (IEFPCM: THF) −TDA-PBE0/cc-pVDZ//M06-

2X/cc-pVDZ level computations 

Dimeric aza-BODIPY Dimeric dichloro-aza-BODIPY 

abs
a Eb Fc Major contribution (%) abs

a Eb Fc Major contribution (%) 

655 

532 

506 

445 

333 

282 

1.89 

2.33 

2.45 

2.78 

3.72 

4.39 

0.861 

1.259 

0.640 

0.473 

0.109 

0.362 

H → L (89) 

H-1 → L+1 (83) 

H-2 → L (86) 

H-3 → L (66), H-4→L+1 (25) 

H-15 → L+1 (31), H-16 →L (24) 

H → L+2 (53), H-18 → L+1 (13) 

664 

539 

514 

457 

338 

283 

1.87 

2.30 

2.41 

2.71 

3.66 

4.38 

0.906 

1.346 

0.445 

0.587 

0.204 

0.3216 

H → L (89) 

H-1 → L+1 (86) 

H-2 → L (90) 

H-3 →L (67), H-4 → L+1 (21) 

H-12→ L+1 (59), H-17 → L (25) 

H → L+4(66), H-1 → L+3 (11) 
aWavelengths () are in nm. bEnergies (E) are given in eV. cF: Oscillatory strength. (H: HOMO, L: LUMO). 
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4. CONCLUSION 

 

Aza-BODIPY dimers substituted by hydrogen and chlorine atoms at the para positions of the distal phenyl 

units were reported to demonstrate bathochromic shifts of 40 and 57 nm compared to their corresponding 

monomers, respectively. This paper has given an account of elucidation of the electronic structures, the 

Kohn-Sham Molecular Orbitals (MOs) and optoelectronic properties of aza-BODIPY dimers which were 

obtained by performing DFT computations. While orbital composition analysis renders the highest 

HOMO/LUMO orbital compositions in the molecules, global reactivity descriptors were utilized to predict 

the reactivity and stability of them. The intriguing photophysical behaviors of the dimer molecules were 

investigated by realizing TDA-DFT calculations rendering the low energy transitions arising from HOMO 

→ LUMO (89%). Further computational investigations are in progress to pave the way for new avenues of 

dimeric halogenated aza-BODIPYs. 
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