Nutrient and Botanical Composition of Pasture in Ceylanpinar Agriculture Farm^{*}

Mehmet AVCI¹⊠Oktay KAPLAN¹Muğdat YERTÜRK²Mustafa ASLAN³¹Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Harran University, Sanliurfa²Department of Animal Sciences, Faculty of Veterinary Medicine, Harran University, Sanliurfa³Department of Biology, Faculty of Arts and Sciences, Harran University, Sanliurfa

Geliş ve kabul tarihi: 02.01.2006-24.02.2006, ⊠ Sorumlu araştırmacı, 535 9754812, mavci@harran.edu.tr

SUMMARY

This study was performed to determine the pasture quality at different vegetation periods (1 April-1 June) in Ceylanpmar Agricultural Farm. Plant length, dry matter yields and nutrient matter [dry matter (DM), crude protein (CP), ether extract (EE), ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), organic matter (OM)] and energy contents were determined at plant samples collected once every two weeks. In this research, organic matter digestibility of pasture (OMD), and digestible organic matter (DOM) and amount of energy obtained per area unit has also been calculated. CP, EE, OMD and energy levels decreased (P<0.05), whereas DM, NDF and ADF levels increased (P<0.05), in pasture hay because of advancing maturity. The highest level of hay yield in the pasture at third and fourth period of sampling increased DOM and energy yield of pasture to the maximum level at the third period. Dry matter yields, crude protein, OMD, ME and NE_L of pasture in sampling periods of 1st, 2nd, 3rd, 4th and 5th were found as 32.96, 48.62, 66.51, 59.04 and 40.71 kg/decare; 14.88%, 14.08 %, 11.99 %, 9.19 % and 7.18 %; 67.09 %, 62.24 %, 60.35 %, 58.96 % and 55.95 %; 10.15, 9.42, 9.13, 8.92 and 8.46 MJ/ kg DM; 6.38, 5.88, 5.68, 5.54 and 5.23 MJ/ kg DM, respectively. In conclusion, Ceylanpinar Agricultural Farm Pasture begin to grow old and dry after second period of May because of climate conditions and become insufficiency of nutrients and energy. For this reason, food supplementation is inevitable to grazing animals at the pasture, especially following this period.

Keywords: Pasture, botanical composition, nutrient composition, energy content, digestibility, stage of maturity

Ceylanpınar Tarım İşletmesi merasının besin ve botaniksel kompozisyonu

ÖZET

Bu çalışma, Ceylanpınar Tarım İşletmesi merasının, değişik vejetasyon dönemlerinde (1 Nisan -1 Haziran), kalitesini belirlemek amacıyla yapılmıştır. İki haftada bir toplanan ot örneklerinde bitki boyu, kuru madde verimi, besin madde [kuru madde (KM), ham protein (HP), ham yağ (HY), ham kül (HK), neutral detergent fiber (NDF), acid detergent fiber (ADF) ve organik madde (OM)] ve enerji içerikleri belirlenmiştir. Çalışmada ayrıca, meranın organik madde sindirilebilirliği (OMS) ile birim alandan elde edilen sindirilebilir organik madde (SOM) ve enerji miktarları da hesaplanmıştır. Vejetasyonun ilerlemesine bağlı olarak mera otlarında KM, NDF ve ADF düzeyleri artarken (P< 0.05); HP ve HY düzeyi ile OMS ve enerji düzeyleri azalmıştır (P< 0.05). Meranın kuru ot veriminin, örneklenmenin 3. ve 4. döneminde en üst düzeyde olması, SOM ve enerji verimlerini 3. dönemde maksimum düzeye yükseltmiştir. 1., 2., 3., 4 ve 5. örnekleme dönemlerinde meranın kuru ot verimi sırasıyla 32,96, 48,62, 66,51, 59,04 ve 40,71 kg/dekar; ham protein düzeyi %14.88, %14.08, %11.99, %9.19 ve %7.18; OMS sırasıyla %67.09, %62.24, %60.35, %58.96 ve %55.95; ME değerleri sırasıyla 10.15, 9.42, 9.13, 8.92 ve 8.46 MJ/ kg KM; NE_L değerleri ise aynı sıraya göre 6.38, 5.88, 5.68, 5.54 ve 5.23 MJ/ kg KM olarak belirlenmiştir. Bu çalışmada, Ceylanpınar Tarım İşletmesi merasının, iklim şartlarının da etkisiyle, mayıs ayının ikinci yarısından itibaren hızla kartlaşmaya ve kurumaya başladığı ve dolayısıyla besin maddeleri ve enerji bakımından fakirleştiği; özellikle bu dönemden sonra merada otlayan hayvanlara ek yemleme yapılmasının zorunlu olduğu sonucuna varılmıştır.

Anahtar Sözcükler: Mera, botaniksel bileşim, besin madde bileşimi, enerji içeriği, sindirilebilirlik, vejetasyon dönemi

INTRODUCTION

Sustainable beef production optimizes the use of pasture while reducing the dependence on grain and harvested forage. Cattle, as ruminant herbivores, may be thought of as "solar-powered grass combines," having the ability to convert plant material into high quality beef for human consumption. Raising grain to feed ruminants requires higher fertilizer and pesticide inputs and consequently, is more energy-intensive and possibly more expensive than pasture. Land that is too erodible for annual cropping can be maintained as permanent sod. Flora, stage of maturity, soil composition, climate, altitude and other managerial factors affect the physical and chemical properties of grassland. Moreover, the determination of the botanical and nutrient compositions of pastures is essential for assessing nutrient intake and the economics of production (16, 4).

Ceylanpinar Agricultural Farm pastures are subjected to very intensive grazing by a number of animals over a limited grazing period (March, April, May and June) due to the short vegetation period. However, animals are fed with diets solely consisting of hay during the winter season. The application of rotational grazing may not be feasible in Ceylanpinar Agricultural Farm because of the physical limitations mentioned. However, a limited number of studies concerning the agronomical characteristics of pastures from a nutritional standpoint in

^{*}This study was supported by Harran University, Scientific Researches Commission Project. (HÜBAK:303)

Ceylanpınar Agricultural Farm are available.

The objectives of this study were to examine the botanical composition and determine the nutritional value of pasture in Ceylanpınar Agricultural Farm with respect to stages of maturity.

MATERIALS and METHODS

This study was performed in Ceylanpinar Agricultural Farm. Ceylanpinar State Farm lies in the Sanliurfa province. The mean altitude of these locations ranged from 390 to 470 m, the average temperature and precipitation were 7.1 °C - 52.8 mm, 6.3 °C - 88.2 mm, 9.6 °C - 52.0 mm, 15.9 °C - 27.6 mm, 23.8 °C - 16.4 mm in January, February, March, April, May, respectively.

Pasture samples were collected biweekly from seven different locations (Karataş, Güzelyat, Güzelyurt, Gümüşsuyu, Şenkuyu, Mehmet Ağa ve Beyaz kule) during the vegetation period. Samples were collected at each location from 1 April to 1 June, totally five times. Twenty subsamples obtained from 100 cm² isolated spaces in close proximity at soil level were harvested and then pooled to represent each sample by location.

To determine their botanical composition, samples were dried at room temperature without disturbing the original structure. Samples obtained at all stages of maturity were analyzed to determine the nutritive value of the pastures. Nutritive value parameters included dry matter (DM), crude protein (CP), ether extract (EE), ash, neutral detergent fiber (NDF), acid detergent fiber (ADF), and organic matter (OM). Samples were dried at 60 °C for 48 h and then ground to pass through a 1 mm screen. Concentrations of DM, CP, EE, ash and OM were determined using the proximate analysis as outlined by AOAC (2), while concentrations of ADF and NDF were determined using the detergent system as described by Georing and Van Soest (26). Invitro organic matter digestibility (OMD) of pasture samples were analyzed due to Tilley and Terry (23), method modified by Marten and Barnes (15). NRC (19) and equality reported by Ishler et al (8) for determining digestible energy (DE), metabolic energy (ME) and net-energy lactation (NE_L) contents were used, respectively. Digestible organic matter (DOM) and amount of energy obtained per area unit has also been calculated.

One-way analysis of variance (ANOVA) was employed to determine the main effects of stage maturity on the nutrient composition of pastures (22).

RESULTS

The botanical compositions of the pastures in the experiments are presented in Table 1. In the study area, steppe vegetation is dominated by Leguminosae, Compositae, Graminea and Brassicaceae. The first five families with the highest number of species are Leguminosae 25 (20.8%), Compositae 24 (20 %), Graminea 24 (20 %), Brassicaceae 16 (13.3 %), Labiatae 8 (6.6 %).

The mean chemical compositions and energy (DE, ME, NE_L) contents of the pastures are given in Table 2. Stage of maturity affected concentrations of DM, CP, EE, ash, NDF, ADF and OM for pastures in the Ceylanpmar Agricultural Farm (Table 2). DM, NDF, ADF and OM concentration gradually increased by the end of the harvest season. CP, EE, and energy concentration decreased as stage of maturity advanced. DM yield, invitro OMD, DOM yields and energy yields of pasture plant harvested at different stages are shown in table 3. Digestible organic matter (DOM), SE, ME and NE_L yields increased until third period and, decreased at following periods.

Table 1a. Botanical composition of pasture in Ceylanpinar Agriculture Farm

Gramineae (20.0 %)	Leguminosae (20.8 %)	Compositae (20.0 %)	
Aegilops speltoides	Alhagi mannifera	Achillea biebersteinii	
Avena barbata	Astragalus aduncus	Achillea wilhelmsii	
Avena eriantha	Astragalus lonigerus	Crepis kotschyana	
Avena sterilis	Astragalus ancistrocarpu	Carlina lanata	
Avena sativa	Astragalus allepicus	Filago vulgaris	
Avena wiestii	Astragalus oocephalus	Filago pyramidata	
Bromus madritensis	Astragalus vexillaris	Centaurea balsamita	
Bromus pumilio	Astragalus elbistanicus	Centurea rigida	
Bromus squarrprosus	Hippocrepis unisilaquosa	Centaurea hyalolepis	
Bromus suquarrosus	Hymenocarpus circinatus	Cousinia stenocephala	
Bromus tectorum	Lens ervoides	Gundelia tornefatti	
Hordeum murinum.	Lens culinaris	Anthemis austriaca	
Hordeum geniculatum	Lathyrus pseudo-cicera	Echinops viscosus	
Hordeum spontaneum	Lathyrus bleharicarpus	Echinops orientalis	
Poa bulbosa	Onobrychis crista-galli	Scorzonera pungens	
Aegilops biuncialis	Onobrychis kotschyana	Hedypnois cretica	
Alopecurus utriculatus	Onobrichis oxyodonta	Crepis foetida	
Phalaris paradoxa	Trifolium purpureum	Carduus pycnocephalus	
Crithopsis delileana	Trifolium dasyurum	Scorzonera papposa	
Vulpia persica	Trifolium resupinatum	Trapagopon buphthalmoides	
Lolium rigidum	Trifolium sylvaticum	Carthamus persicus	

Avcı ve ark.

Table 1b	Botanical c	composition of	pasture in (Cevlanninar	Agriculture Farm
1 4010 10.	Dotument	omposition or	public m	Coylumphilum	I LEI CUITUI CI UIIII

Rostraria cristata	Trigonella mesopotamica	Scorzonera kotschyi
Sorgum halepense	Medicago orbicularis	Rhagadiolus angulosus
Criphopsis delileana	Lotus aegaeus	Anthemis austraica
Brassicaceace (13.0 %)	Labiatae (6.6 %)	Umbelliferaceae (5.0 %)
Alyssum strictum	Phlomis kurdica	Bubleurum alleppicum
Alyssum hirsutum	Phlomis bruguieri	Pimpinella corybosa
Erysimum hirschfeldioides	Teucrium pruninosum	Erygium billardieri
Matthiola longipetale	Salvia ceratophylla	Daucus guttatus
Erysimum hirschfeldies	Salvia palaestine	Eryngium glomeratum
Sisymbrium septulatum	Salvia branchyantha	Scandix stellata
Sisymbrium altissimum	Ziziphora capitata	Boraginaceae (4.1 %)
Arabis aucheri	Teucrium polium	Anchusa azure
Lepidium latifolium	Caryophyllaceae (5.0 %)	Buglossoides tenuiflora
Chrisocamela velutina	Arenaria acerosa	Onosma allepicum
Capsella bursa-pastoris	Ankyropetalum gypsophiloides	Alkana hirsutissima
Iberis acutiloba	Cerastium dichotomum	Heliotropium myosotoites
Sinapsis alba	Dianthus zonatus	Geraniaceae (1.6 %)
Sinapsis arvensis	Dianthus strichus	Erodium cicutarium
Clypeola jonthlaspi	Gypsophila pilosa	Geranium rotundifolium
Sterigmostemum sulphureum	Linaceae (0.8 %)	Papaveraceae (1.6 %)
Hypericaceae (0.8 %)	Linum mucronatum	Papaver rhoes
Hypericum capitatum		Papaver hybridum

Table 2. Nutrient composition (%) and energy content (MJ/kg KM) of pastures in Ceylanpinar Agriculture Farm.

	Ι	II	III	IV	V
DM	27.92±0.52°	38.27±0.58 ^d	54.67±0.93°	71.43±0.70 ^b	88.27±0.36ª
Ash	10.16±0.18ª	10.30±0.18ª	10.14±0.14 ^a	9.81±0.18 ^{ab}	9.40±0.15 ^b
ОМ	89.84±0.18 ^b	89.69±0.18 ^b	89.86±0.14 ^b	90.19±0.18ª	90.60±0.15ª
СР	14.88±0.24ª	14.08±0.24 ^b	11.99±0.15°	9.19±0.21 ^d	7.18±0.09°
EE	5.42±0.10ª	4.54±0.12 ^b	3.50±0.05°	2.26±0.07 ^d	2.29±0.05 ^d
NDF	58.80±0.63 ^d	60.30±0.52 ^d	62.35±0.53°	67.50±0.37 ^b	70.52±0.44ª
ADF	25.19±0.37 ^d	25.97±0.29 ^{cd}	27.66±0.23°	39.35±0.90 ^b	44.73±0.52ª
DE	12.38±0.63ª	11.48±1.08 ^b	11.13±0.71 ^{bc}	10.88±1.05 ^{bc}	10.32±1.07°
ME	10.15±0.52ª	9.42±0.89 ^b	9.13±0.59 ^{bc}	8.92±0.86 ^{bc}	8.46±0.88°
NEL	6.38±0.35ª	5.88±0.60 ^b	5.68±0.40 ^{bc}	5.54±0.58 ^{bc}	5.23±0.59°

a,b,c,d,e: means in the same parameter with different letters are significantly different (P<0.05).

Table	3. Dry matter	yield, organic mat	ter digestibility, DOM a	and energy yields of pastures	in Ceylanpınar Agriculture Far
-------	---------------	--------------------	--------------------------	-------------------------------	--------------------------------

	Ι	II	III	IV	V
Plant length, cm	9.04±0.26 ^d	14.39±0.51°	21.21±0.64ª	20.30±0.36ª	17.36±0.35 ^b
DM yield, kg/da	32.96±1.85°	48.62±2.24 ^b	66.51±2.35ª	59.04±2.31ª	40.71±1.04°
OMD, %	67.09±3.42ª	62.24±5.87 ^b	60.35±3.87 ^{bc}	58.96±5.68 ^{bc}	55.95±5.79°
DOM yield, kg/da	20.52±0.61 ^d	32.62±0.53 ^b	41.14±0.81ª	34.81±1.06 ^b	22.78±0.75°
DE yield, MJ/da	378±11.28 ^d	602±9.69 ^b	740±15.02ª	642±19.55 ^b	420±13,75°
ME yield, MJ/da	310±9.25 ^d	493±7.95 ^b	607±12.32ª	527±16.03 ^b	344±11.27°
NE _L yield, MJ/da	194±6.27 ^d	310±5.39 ^b	378±8.34ª	327±10.86 ^b	213±10.57°

a,b,c,d: means in the same parameter with different letters are significantly different (P<0.05).

DISCUSSION

Plant senescence plays an important role in determining forage availability. Samples for examining botanical composition of pastures were harvested only at the final stage of the vegetation because the Gramineae bloom was earlier than the Leguminoseae in a mixed flora setting (14).

In the study area, steppe vegetation is dominated Compositae, Graminea by Leguminosae. and Brassicaceae. The highest number of species were Leguminosae 25 (20.8%), Compositae 24 (20 %), Graminea 24 (20 %), Brassicaceae 16 (13.3 %), Labiatae 8 (6.6 %). In an earlier study conducted in a larger district area, the proportions of the Gramineae and Leguminosae were found as 54 % and 30 %, respectively (12). This imbalance in the proportion of Gramineae and Leguminosae may adversely affect nitrogen fixation in the soil and, consequently, may reduce soil fertility and the nutritive value of pastures (7).

DM increased by stage of maturity (Table 3). The average DM concentrations were found as 27.92 %-88.27 % for the district (Table 2), which is consistent with the results of other studies (3, 17). At the third harvest and thereafter, the elevation of DM concentration may be due to plant maturation and cell wall lignification (16, 6).

The average ash concentration was found as 10.16 % and 9.40 %. Ash concentration decreased gradually by stage of maturity. These results were in agreement with the results of other surveys (3, 13). The lack of a stage of maturity effect on ash concentration could be related to the lack of change in OM concentration by stage of maturity since OM concentration is inversely related to ash concentration.

CP concentration decreased from 14.88 % to 7.18 % during the experimental period (Table 3). In fact, tropical grasses are notoriously low in protein (20). Other reports (16, 18, 1) also support that the concentration of CP decreases by advancing stage of maturity suggesting that animals should be supplemented with protein sources, especially towards the end of the grazing season. The younger forage contains a lot of crude protein and also has high digestibility, all of which means good animal performance. The quality of pasture forage, for grazing or hay production, is affected by several factors, such as maturity, soil fertility, temperature and moisture. It may also be mentioned that Oslen (20) found that pasture in Uganda did not give a high yield response in crude protein similar to grasses grown in the humid tropics, the reason-presumably being lack of rain in some periods (27).

ADF and NDF increased by advancing stage of maturity (24). The ADF and NDF content of pasture were lower during the early grazing season than during the late grazing season, reflective of seasonal temperature changes. These findings are consistent with measurements of Kanneganti et al. (9). Content of ADF and NDF investigated in this study were also supported by the other studies (10, 11, 13). In general, the fat in forages decreased with advancing maturity. In this study, however, there was a linear decrease in EE concentration, which is consistent with the literature (25).

There was an increase in the dry matter yields and plant length of the pastures until third harvest then decrease with advancing stages of maturity (Table 3). Dry matter yield obtained in this study were between 32.96-66.51 kg/decare. These findings are lower than results obtained in Kars and Van (11, 10).

Dry matter yield, organic matter digestibility, DOM and energy yields of pastures are shown in table 3. OMD at the periods of 1, 2, 3, 4 and 5 were found as 67.09%, 62.24%, 60.35%, 58.96% and 55.95%.

With regard to these parameters, the highest value was obtained in the first period. But, when OMD and DM yield was considered together the lowest DOM yield was 20.52 kg/da, in the first period. The highest DOM yield was 41.14 kg/da, in the third period. DOM yield decreased due to vegetation progresses following third period. According to 1, 2, 3, 4 and 5 th periods, SE contents of grass samples were 12.38, 11.48, 11.13, 10.88 and 10.32 MJ/kg DM; ME values were 10.15, 9.42, 9.13, 8.92 and 8.46 MJ/kg DM; NE_L values were 6.38, 5.88, 5.68, 5.54 and 5.23 MJ/kg DM, respectively. Energy contents of pasture samples differed due to vegetation period. The highest energy content was at the first, followed by 2, 3, 4, and 5 th periods. The lowest energy content was at the fifth period samples. As shown in table 3, SE, ME and NE_L yields increased until third harvest period and, decreased following this period. The lowest energy yield was obtained at first vegetation period, while the highest was at the third period. This decrease could be explained as consumption of young leaves by animals (14, 18). Especially, hot temperatures and lack of moisture caused slow growth (5). In fact, it has been reported that when daily average temperature is above 86 F, the forage quality of grasses decline (6). Similar results have been reported by Karsli et al (10).

In conclusion, Ceylanpinar Agricultural Farm Pasture begin to grow old and dry after second period of May because of climate conditions and become insufficiency of nutrients and energy. For this reason, food supplementation is inevitable to grazing animals at the pasture, especially following this period.

REFERENCES

1. Abdalla HO, Fox DG, Seaney RR (1988): Variation in protein and fiber fractions in pasture during the grazing season. J. Anim. Sci. 66: 2663-2667.

2. AOAC (1990): Official Methods of Analysis. 15th Ed., Association of official analytical chemists, Washington, DC.

3. Balde AT, Vandersall JH, Erdman RA, Reeves JB, Glenn BP (1993): Effect of stage of maturity of alfalfa and orchardgrass on in situ dry matter and crude protein degradability and amino acid composition. Anim.

Avcı ve ark.

Feed Sci. Technol. 44: 29-43.

4. Church DC (1991): Roughages, Livestock Feeds and Feeding. Simon and Schuster, New Jersey, 1991; 56-68.

5. Clark DA, Penno JW, Neil PG (1997): Nutritional merits and problems of pasture. In: R.A.S. Welch, ed., Milk Composition, Production and Biotechnology. CAB International, Wallingford. 397– 418.

6. Cooper JF. (1970): Potential production and energy conversion in temperate and tropical grasses. Herbage Abstracts, 40:1-15.

7. Ensminger ME, Oldfield JE, Heinemann WW (1990): Pasture and Range Forages, Feeds and Nutrition. The Ensminger Publishing Company, California. 266-276.

8. Ishler, V., Heinrichs, J., Varga, G., (2000): From feed to milk: Understanding Rumen function. Penn. State uni. Collepe of Agricultural Sci. Extension circular 422, USA.

9. Kanneganti VR, Walgenbach RP, Massingill LJ (1998): Daily and seasonal forage availability under rotational grazing of a mixed-species temperate pasture. J. Sustainable Agric. 12:49-66.

10. Karslı MA, Deniz S, Nursoy H, Denek N, Akdeniz H (2003): Vejetasyon döneminin mera kalitesi ve hayvan performansı üzerine etkilerinin belirlenmesi. Turk. J. Vet. Anim. Sci. 27: 117-124.

11. Kaya İ, Öncüer A, Ünal Y, Yıldız S (2004): Nutritive value of pastures in Kars District I. Botanical and nutrient composition at different stages of maturity. Turk. J. Vet. Anim. Sci. 28: 275-280.

12. Koç A, Gökkuş A (1996): Annual variation of aboveground biomass, vegetation height and crude protein on natural rangelands of Erzurum, Tr. J. Agriculture and Forestry. 20: 305-308.

13. Koç A, Gökkuş A, Bakoğlu A, Özaslan A (2000): Palandöken meralarının farklı kesimlerinden alınan ot örneklerinde bazı kimyasal özelliklerin otlatma mevsimindeki değişimi. Int. Anim. Nutr. Cong., Isparta. 2000; 471-478.

14. Marshall SA, Campbell CP, Buchanan-Smith JG (1998): Seasonal changes in quality and botanical composition of a rotationally grazed grasslegume pasture in Southern Ontario, Can. J. Anim. Sci. 78: 205-210.

15. Marten, G.C., Barnes, R.F., (1980): Prediction of Energy Digestibility of Forages with In vitro Rumen Fermentation and Fungal Enzyme Systems. In: Pigden, W.J., Balch, C.C., Graham, M. In OProc. Int. Workshop on Standardization of Analytical Methodology for FeedÓ. Int. Dev. Res. Center, Ottawa.

16. McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA (1995): Grass and Forage Crops. Animal Nutrition, England Longman Scientific and Technical. 434-444.

17. McCracken BA, Krysl LJ, Park KK, Holcombe DW, Judkins MB (1993): Steers grazing endophyte-free tall fescue: seasonal changes in nutrient quality, forage intake, digesta kinetics, ruminal fermentation, and serum hormones and metabolites. J. Anim. Sci. 71: 1588-1595.

18. Muruz H, Baytok E, Aksu T, Terzioğlu Ö (2000): Erçiş-Altındere Tarım İşletmesi doğal merasının kalitesi. Y.Y.Ü. Vet. Fak. Derg. 11: 66-70.

19. NRC, (2001): Nutrient requirements of dairy cattle. 7th Revised Ed., National Academy Pres, Washington, D.C., USA.

20. Olsen FJ (19973): Effect of large application of nitrogen fertilizer on productivity and protein content of four tropical grasses. Tropical Agriculture. 49:251-259.

21. Sankhyan SK, Shide AK, Bhatta R, Karim SA (1998): Comparison of diet and faecal collection methods for assessment of seasonal variation in dry matter intake by sheep maintained on a cenchrus ciliaris Pasture. Anim. Feed Sci. Tech. 82: 261-269.

22. SPSS (1996): SPSS for Windows 9.3 base systems user's guide. Release 9.0 copyright 1998 by SPSS Inc. Printed, USA.

23.Tilley, J.M.A., Terry, R.A.A., (1963): Two-Stage Technique for the In vitro Digestion of Forage Crops. J. Br. Grassl. Soc.18: 104-111.

24. Ulyatt MJ (1980): The feeding value of temperate pastures. In: Morley, F. W. H. Eds. Grazing Animals. Elsevier, Amsterdam. 125–141.

25. Ulyatt MJ, Lassey KR, Shelton ID, Walker CF (2002): Seasonal variation in methane emission from dairy cows and breeding ewes grazing ryegrass/white clover pasture in New Zealand. New Zealand Journal of Agricultural Research. 45: 217–226.

26. Van Soest PJ, Robertson JB (1979): Systems of analyses for evaluation of fibrous feed. In.: Pidgen, W.J., Balch, C.C., Graham, M., Eds., Workshop on standardization of analytical methodology for feeds, Int. Dev. Res. Center, Ottowa.

27. Vincente-Chandler J, Caro-Costas A, Pearson RM, Abrunda F, Figarella J, Silva S (1964): The intensive management of tropical forages in Puerto Rico Bulletin. University of Puerto Rico Agriculture Experiment Station. 1-152.