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Abstract

A fourth order parallel splitting algorithm is proposed to solve one dimensional non-homogeneous heat
equation with integral boundary conditions. we approximate the space derivative by fourth order �nite
di�erence approximation. This parallel splitting technique is combined with Simpson's 1/3 rule to tackle
nonlocal part of this problem. The algorithm develop here is tested on two model problems. We conclude
that our method provides better accuracy due to availability of real arithmetic.
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1. Introduction

This section, contain some important de�nitions and basic material require to understand this paper.
Partial di�erential equations (PDE) are the important class of di�erential equations. Parabolic PDE describes
the di�usion of heat in a speci�c area over time and plays a vital role in di�erent scienti�c research areas.
Most general form of Parabolic PDE is di�usion equation, which is used in di�erent scienti�c �elds like
chemical di�usion and other related processes. The di�usion equation is generated from Fouriers law and
conservation of energy. Von Neumann developed this method in 1940. In this method, the starting line of
the error is stated in terms of a Fourier series, as the important point of this series is it increase the power
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of the function. This technique is only utilized if the linear di�erence scheme has constant coe�cients and
also the di�erence scheme with variable coe�cient. This method can be applied at each grid point. The
Neumann condition is compulsory only for three level di�erence scheme and this assumption is necessary for
two level di�erence scheme.

PDE is an equation involving functions and their partial derivatives. It involves rates of change of
dependent variable with respect to two or more independent variables. In PDE initial condition (IC) is
known as seed value or cauchy condition. The IC is the value of unknown function u and its derivatives at
the given point. The conditions which implies on the boundaries of the di�erential equation is known as
boundary conditions (BCs). There are three types of BCs such as Dirichlet BCs, Neumann BCs and Robin
BCs.

1. Dirichlet BCs are known as �rst kind of BCs. It is the certain values that a solution needs to take on
along the boundary of the domain.

2. Neumann BCs are second type of BCs. It describes the values in which the rate of change of a solution
is implemented within the boundary of the region.

3. Robin BCs are known as third kind of BCs and also known as mixed BCs. It is a requirement of a
linear combination of the values of a function and the values of its derivatives on the boundary of the
region.

The study of PDE with integral BCs is one of the most important issue of applied sciences. The develop-
ment of numerical methods for the treatment of non-local boundary conditions (NLBC) is a greatly focoused
research area as the appeared mathematical modeling of many real life problems such as chemical di�usion,
thermoelasticity etc.

Finite di�erence (FD) scheme is an algebraic expression, which is used to approximate derivatives involve
in PDE. A common usage of FD scheme is to solve di�erential equations numerically and approximating
derivatives for root locating and numerical optimization. FD schemes are also used in many �elds like
engineering, business and science etc. While handling of di�erential equations, FD is the very e�cient
method due to ease of implementation on discretization based problem.

In 1963 Cannon [9] and Batten [8] presented the existence of NLBC independently. In 1964 Kamynin
and Ionkin [13] studied homogeneous second order heat equation with Ic and NLBC. Taj and Twizzel [20,
22] introduced third order numerical techniques coupled with Pade approximation to �nd solution of one
dimensional and higher dimensional heat equations. They [21] expand their work to fourth-order parallel
splitting technique to get higher e�ciency in previous results with much better error of approximation and
also contain all the characteristic as in the third order. Dehghan [10, 11] start working on the idea of parallel
splitting method and apply this technique for the results of parabolic and hyperbolic PDEs. Dehghan used
method of lines (MOL) and semidiscretization approach to convert the PDE into a system of �rst-order
ordinary di�erential equations [10, 11].

Rehman et al.[16] worked on the di�usion equation with initial and NLBC and they used fourth-order
numerical method for non homogeneous di�usion equation with NLBC and develop L-acceptable. Fifth-
order parallel splitting numerical technique was developed and applied on homogeneous and inhomogeneous
di�usion equation with a NLBC. The results presented that the above described method contain L-acceptable
as well as �fth order accuracy [23]. Soltanalizadeh [1, 19] introduced the new technique of matrix formulation
for the system of equations and he focused on the wave equation with the NLBC [5]. Mardan et al. developed
a hybrid numerical methods which is partially sixth-order accuracy in time and space, due to a combination
of sixth-order �nite approximations and �fth-order Pade approximation. They [24] approximate the second
order spatial derivatives by sixth order FD approximation. The presence of NLBC makes such a problem
applicable when modeling processes such as blood �ow, underground water �ow, population dynamics, and
thermo-elasticity. We can also extend this work in fractional calculus for NLBC[14, 18, 2, 3, 4, 6, 7, 15].
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2. Fourth order parallel splitting Method

In this section, we present the development of fourth order splitting method to get numerical solution of
the non-homogeneous di�usion equation with NLBC. The spatial derivative is approximated by fourth-order
FD approximations. Simpson's 1

3 rule is used to tackle integral conditions and to remove additional variables
to get a system of N equations with N variables.

Considered the di�usion equation

∂v

∂t
− ∂2v

∂x2
+ v = p(x, t) , 0 < x < X, t > 0, (1)

with the IC
v(x, 0) = g(x) x ∈ (0, 1), 0 < t < T, (2)

and the NLBC � 1

0
v(x, t)dx = q1(t), 0 < t < T, (3)

� 1

0
b(x)v(x, t)dx = q2(t). 0 < t < T, (4)

where p(x, t), g(x), q1(t), q2(t), b(x) are known functions. Here we developed a method for the numerical
solution of di�usion equation (1) under IC (2) and the NLBC (3) and (4) by using the FD. Simpson's 1/3
rule is use to over come the di�culty of the integral boundary conditions. The rectangular mesh of points is
constructed with space variable [0 < x < 1] and time variable [t > 0]

We divide the spatial interval into N + 1 subintervals having length h = 1/(N + 1) and the open
ended time interval is divided into length time step l results into rectangular mesh points with co-ordinates
(xm, tn) = (mh, nl) where m = 0, 1, 2, ..., N,N + 1 and n = 0, 1, 2, 3, ....

To approximate second order spatial derivative the fourth order FD scheme is given by

∂2v(x, t)

∂2x
=

1

12
h2{−vi−2 + 16vi−1 − 30vi + 16vi+1 − vi+2}

+
h4

90

∂6v(x, t)

∂x6
+O(h5), (5)

applying Eq. (5) with Eq. (1), we get system of ordinary di�erential equations as

dvi
dt

=
1

12
h2{−vi−2 + 16vi−1 − (30 + 12h2)vi + 16vi+1 − vi+2}

+
h4

90

∂6vi
∂x6

+O(h5), i = 2, ..., N − 1 (6)

In order to get same accuracy and dominant error term special formulas are needed for i = 1 and i = N as

∂2v(x, t)

∂2x
=

1

12
h2{9vi−1 − 9vi − 19vi+1 + 34vi+2 − 21vi+3 + 7vi+4 − vi+5}

+
h4

90

∂6v(x, t)

∂x6
+O(h5), (7)

∂2v(x, t)

∂2x
=

1

12
h2{−vi−5 + 7vi−4 − 21vi−3 + 34vi−2 − 19vi−1 − 9vi

+ 9vi+1}+
h4

90

∂6v(x, t)

∂x6
+O(h5), (8)
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using Eq. (7) and Eq. (8) in Eq. (1) for i = 1 and i = n, we get

dv1
dt

=
1

12
h2{9v0 − (9 + 12h2)v1 − 19v2 + 34v2 − 21v3 + 7v4 − v5}

+
h4

90

∂6v(x, t)

∂x6
+O(h5), (9)

and

dvN
dt

=
1

12
h2{−vN−5 + 7vN−4 − 21vN−3 + 34vN−2 − 19vN−1

− (9 + 12h2)vN + 9vN+1}+
h4

90

∂6v(x, t)

∂x6
+O(h5). (10)

The combination of Eq.(1) with Eqs.(6), (9) and (10) results in a mesh gride at time level t = tn
construct a system of N linear equations in N + 2 unknowns v0, v1, v2, ..., vN+1. Simpson's 1/3 rule is used
to approximate the integrals in (3) and (4) [17, 12]. Here Eq. (3) and Eq. (4)

q1(t) =
h

3
{v(0, t) + 4

N+1
2∑

n=1

v(2i− 1)h, t+ 2

N+1
2

−1∑
n=1

v(2ih, t) + v(N + 1)h, t}, (11)

and

q2(t) =
h

3
{b(0, t)v(0, t) + 4

N+1
2∑

n=1

b((2i− 1)h, t)v((2i− 1)h, t)

+2

N+1
2

−1∑
n=1

b(2ih, t)v(2ih, t) + v(N + 1)h, t}. (12)

Solving Eq. (11) and Eq. (12) for V0 and VN+1 and substituting their values in the above system we have a
system of N linear ODE which can be written in vector matrix form as

dV (t)

dt
= AV (t) + V (t), t > 0 (13)

with initial distribution
V (0) = g (14)

in which V (t) = [v1(t), v2(t), ..., vN (t)]T and g = [g(x1), g(x2), ..., g(xN )]T , where transpose is denoted by
T and order of matrix B is N ×N which is given by

A =
1

12h2



η
′
1 η

′
2 η

′
3 η

′
4 η

′
5 ...... η,N

ψ
′
1 ψ

′
2 ψ

′
3 ψ

′
4 ψ

′
5 ...... ψ

′
N

−1 16 −30 16 −1
. . .

. . .
. . .

. . .
. . .

−1 16 −30 16 −1

γ
′
1 γ

′
2 γ

′
3 γ

′
4 γ

′
5 ...... γ

′
N

δ
′
1 δ

′
2 δ

′
3 δ

′
4 δ

′
5 ...... δ

′
N


N×N

(15)

where
η
′
1 = 9B1 − 9, η

′
2 = 9B2 − 19, η

′
3 = 9B3 + 34, η

′
4 = 9B4 − 21,

η
′
5 = 9B5 + 7, η

′
6 = 9B6 − 1, η

′
j = 9Bj for j ≥ 7,

ψ
′
1 = −B1 + 16, ψ

′
2 = −B2 − 30, ψ

′
3 = −B3 + 16, ψ

′
4 = −B4 − 1, ψ

′
j = −Bj for j ≥ 5,

γ
′
j = −nj for1 ≤ j ≤ 5 , γ

′
6 = −n6 − 1, γ

′
7 = −n7 + 16, γ

′
8 = −n8 − 30, γ

′
9 = −n9 + 16,
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δ
′
j = 9nj for1 ≤ j ≤ 3 , δ

′
4 = 9n4−1, δ

′
5 = 9n5+7, δ

′
6 = 9n6−21, δ

′
7 = 9n7+34, δ

′
8 = 9n8−19, δ

′
9 = 9n9−9,

in which

mj =


4h
3
(C4−C2bj)

C1C4−C2C3
, for j = 1, 3, 5, ..., N

2h
3
(C4−C2bj)

C1C4−C2c3
, for j = 2, 4, 6, ....., N − 1

and

nj =


4h
3
(C3−C1bj)

C1C4−C2C3
, for j = 1, 3, 5, ..., N

2h
3
(C3−C1bj)

C1C4−C2c3
, for j = 2, 4, 6, ....., N − 1

Here c1 = −h
3 , c2 = −h

3 , c3 = −h
3 b0 and c4 = −h

3 b10, also Υi = Υ(ih, t) and ∆i = ∆(ih, t). The column matrix
v(t) contains the factors from the functions p(x, t), q1(t) and q2(t) and is given as

v(t) = [
9l1

12h2
+ p1,

−l1
12h2

+ p2, p3, ..., pN−2,
−l2
12h2

+ pN−1,+
9l2

12h2
+ pN ]T (16)

where

l1 =
c2q2(t)− c4q1(t)
c1c4 − c2c3

,

and

l2 =
c3q1(t)− c1q2(t)
c1c4 − c2c3

.

The output of the system (13) with (14) is given by

V (t) = exp(tA)f +

� t

0
exp[(t− r)A]v(r)dr (17)

satis�es the recurrence relation

V (t+ l) = exp(lA)V (t) +

� t+l

t
exp[(t+ l − r)A]v(r)dr, t = 0, l, 2l, ... (18)

By using Pade's approximation to approximate the matrix exponential function in (18) where a1, a2, a3 are
three parameters and a real scalar θ given by

E4θ =
1 + (1− a1)θ + (1/2− a1 + a2)θ

2 + (16 −
a1
2 + a2 − a3)θ3

(1− a1θ + a2θ2 − a3θ3) + (−1
24 + a1

6 −
a2
2 + a3)

=
p(θ)

q(θ)
, (19)

with error constant C = 1
30 −

1
8a1 + 1

3a2 −
1
2a3. Stability of this technique is guaranteed by [11].

The quadrature term in (18) is approximated by

� t+l

t
exp[(t+ l − r)A]v(r)dr = W1v(r1) +W2v(r2) +W3v(r3) +W4v(r4), (20)

where r1 6= r2 6= r3 6= r4 and W1,W2, W3 and W4 are matrices. Taking r1 = t, r2 = t + l
3 , r3 = t + 2l

3 ,
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r4 = t+ l.

W1 =
l

24
{3I − (19− 78a1 + 216a2 − 324a3)lA

+ (3− 8a1 + 12a2)l
2A2}P,

W2 =
3l

16
{2I + (16− 56a1 + 144a2 − 216a3)lA

+ (1− 4a1 + 12a2 − 24a3)l
2A2}P,

W3 =
3l

8
{I − (7− 26a1 + 72a2 − 108a3)lA

− (1− 4a1 + 12a2 − 24a3)l
2A2}P,

W4 =
l

48
{6I + (44− 168a1 + 432a2 − 648a3)lA

+ (11− 44a1 + 132a2 − 216a3)l
2A2

+ (2− 8a1 + 24a2 − 48a3)l
3A3}P. (21)

2.1. Calculation of the above Method For N=11

By using above system of equations construct a matrix.

R1 =
[
−a −19 34 −21 7 −1 0 0 0 0 0

]
,

R2 =
[
16 −d 16 −1 0 0 0 0 0 0 0

]
,

R3 =
[
−1 −16 −d 16 −1 0 0 0 0 0 0

]
,

R4 =
[
0 −1 16 −d 16 −1 0 0 0 0 0

]
,

R5 =
[
0 0 −1 16 −d 16 −1 0 0 0 0

]
,

R6 =
[
0 0 0 −1 16 −d 16 −1 0 0 0

]
,

R7 =
[
0 0 0 0 −1 16 −d 16 −1 0 0

]
,

R8 =
[
0 0 0 0 0 −1 16 −d 16 −1 0

]
,

R9 =
[
0 0 0 0 0 0 −1 16 −d 16 −1

]
,

R10 =
[
0 0 0 0 0 0 0 −1 16 −d 16

]
,

R11 =
[
0 0 0 0 0 −1 7 −21 34 −19 −a

]
,

A =



R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11



,

A1 =
1

12h2
A.
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where a = 9 + 12h2 and d = 30 + 12h2.

By using MATLAB calculate the values of g1, g2, l1 and l2.

g1 = 1.499600040000000e+ 000, g2 = 8.331333533333334e− 001

l1 = 2.399280072000000e+ 001, l2 = 2.999280072000000e+ 001

values of mj , for j = 1, 2, 3, ...., 11

mj =



−3.666666666666667e+ 000
−1.666666666666666e+ 000
−3.000000000000000e+ 000
−1.333333333333333e+ 000
−2.333333333333334e+ 000
−1.000000000000000e+ 000
−1.666666666666667e+ 000
−6.666666666666666e− 001
−1.000000000000000e+ 000
−3.333333333333336e− 001
−3.333333333333333e− 001



,

values of nj , for j = 1, 2, 3, ...., 11

nj =



−3.333333333333333e− 001
−3.333333333333333e− 001
−1.000000000000000e+ 000
−6.666666666666666e− 001
−1.666666666666666e+ 000
−1.000000000000000e+ 000
−2.333333333333333e+ 000
−1.333333333333333e+ 000
−3.000000000000000e+ 000
−1.666666666666666e+ 000
−3.666666666666666e+ 000



,

and calculated values of pj for (j = 1, 2, 3, ..., 20)

p1 = −5.386114882221006e+ 001, p2 = 1.079999999999073e+ 002,

p3 = −5.335030674440576e+ 001, p4 = 2.114555667085107e− 001,

p5 = 1.417949572500437e+ 002, p6 = −8.099999999984026e+ 002,

p7 = 7.640302208857925e+ 002, p8 = −9.282517813743382e+ 001,

p9 = −2.779587258928380e+ 002, p10 = 9.719999999984564e+ 002,

p11 = −7.602263303810352e+ 002, p12 = 6.818505627541670e+ 001,

p13 = 1.244022140366359e+ 002, p14 = −4.859999999991785e+ 002,

p15 = 3.999612344557147e+ 002, p16 = −3.736344849317209e+ 001,

p17 = −1.164891815551947e+ 003, p18 = 4.211999999993268e+ 003,

p19 = −3.296460697860340e+ 003, p20 = 2.553525134190170e+ 002.
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Table 1: Relative error for example 1

l = 0.00001 Exact Solution Approximate Solution Relative Error

N = 7 1.12498 1.1249 8.3942× 10−6

N = 9 1.09998 1.0999 8.4048× 10−6

N = 11 1.08331 1.0833 8.3984× 10−6

N = 13 1.14283 1.1428 8.3876× 10−6

N = 15 1.12498 1.1249 8.4103× 10−6

3. Experiments

Now we apply the develop method on some examples from literature.This section contain some experi-
ments taken from literature.

Experiment 1: Consider the di�usion equation

∂v

∂t
− ∂2v

∂x2
+ v = p(x, t), 0 < x < X, t > 0,

with the IC

v(x, 0) = x, xε(0, 1), 0 < t < T,

and the NLBC� 1

0
v(x, t)dx =

1

2
+ t2, 0 < t < T,

� 1

0
xv(x, t)dx =

1

3
+

1

2
t2, 0 < t < T.

and exact solution to this problem is v(x, t) = x+ t2.
By using algorithm which developed above, this problem is solved for l = 0.00001 and n = 7, 9, 11, 13, 15.

In Table (3.1), calculate the exact solution, approximate solution and relative error. These results show that
the method behave smoothly over the interval 0 ≤ x ≤ 1. There is no oscillation are observed. It is worth
noting that the results obtained from this method are more accurate and precise than the methodology in
literature. Moreover, this method is forth-order precise except for few estimation of l and h when truncation
error is high.
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Figure 1: Numerical solution of problem 1, for h=0.1, l=0.00001, n=7

Experiment 2:
∂v

∂t
− ∂2v

∂x2
+ v = (10− 2x)et, xε(0, 1), 0 < t < T,

with the IC
v(x, 0) = 5− x, xε(0, 1), 0 < t < T,

and the NLBC� 1

0
v(x, t)dx =

9

2
et, 0 < t < T,

� 1

0
xv(x, t)dx =

13

6
et, 0 < t < T.

The exact solution to this problem is v(x, t) = (5− x)et.

Table 2: Relative error for example 2

l = 0.00001 Exact solution Approximate Solution Relative Error

N = 7 1.2232× 101 1.2232× 101 5.3935× 10−6

N = 9 1.2232× 101 1.2232× 101 5.3934× 10−6

N = 11 1.2232× 101 1.2232× 101 5.3935× 10−6

N = 13 1.2232× 101 1.2232× 101 5.3934× 10−6

N = 15 1.2232× 101 1.2232× 101 5.3935× 10−6

By using algorithm which described above, this problem is solved for l = 0.00001 and n = 7, 9, 11, 13, 15.
In Table (3.2) calculate the exact solution, approximate solution and relative error. These results show that
the method behave smoothly over the interval 0 ≤ x ≤ 1. There is no oscillation are observed. It is worth
noting that the results obtained from this method are more accurate and precise than the methodology in
literature. Moreover, this method is forth-order precise except for few estimation of l and h when truncation
error is high.
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Figure 2: Numerical solution of problem 2, for h=0.1, l=0.00001, n=7

4. Summary and Conclusion

In this paper, we developed the forth order parallel splitting technique for getting more accurate results of
two dimensional parabolic PDEs. This paper start from the general introduction of PDEs, some explanation
of FD schemes, heat equation and their applications are discussed. Finally, a new method has been developed
for numerical solution of the second order di�usion equation with nonlocal integral conditions. The results
obtained by using this new technique are highly accurate, when compared to the exact solution. This method
is time e�cient due to availability of real arithmetic only. This method can be extended in to the higher
space dimensions.
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