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Bünyamin Şahina, Abdulgani Şahinb
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Abstract. The Grigorchuk group was first introduced by R. Grigorchuk in 1980. Also the Basilica group
was introduced in 2002 by R. Grigorchuk and A. Zuk. In the following years, it was shown that these groups
have deep connections with profinite group theory and complex dynamics. These groups have been proven
to provide the self-similarity property, reflecting the fractalness of some limit objects associated with them.
The Schreier graph codifies the intangible structure of a group. It establishes an equivalence relationship
created by cosets. The Schreier graphs of the Grigorchuk group and the Basilica group are a combination
of cycles arranged in a tree-like form due to the recursive expression of the generators of these groups. In
this work, we study the Hosoya polynomial of these graphs and try to characterize them.

1. Introduction

The Hosoya polynomial of a graph was presented in 1988 by H. Hosoya [8]. The concept distance is
one of the basic elements used in graph theory. This important concept has gained a wide place among
the applications of graph theory in other disciplines. Hosoya polynomial is also defined with the help
of this important concept. The main contribution of the Hosoya polynomial is that it provides important
information for graph invariants defined with the help of the concept of distance. The value at point 1 of
the first derivative of the Hosoya polynomial of a graph gives us the Wiener index, which is an important
topological index [5]. The Hosoya polynomial has gained an important place in chemical graph theory
studies [4].

In this work, we study the Hosoya polynomial of Schreier graphs associated with the motion of two
automorphism groups of a binary rooted tree. These are the Grigorchuk group and the Basilica group. The
Tutte polynomial of these graphs was calculated in 2010 [3]. The Grigorchuk group was first introduced by
R. Grigorchuk in 1980. It gives a fairly simple solution to the Burnside problem and the first example of a
finitely generated group of intermediate growth, see [7]. Also the Basilica group was introduced in 2002 by
R. Grigorchuk and A. Zuk [6]. To the work of V. Nekrashevych, it was seen that this group can be defined
as the iterated monodromy group of the complex polynomial z2

− 1 [9]. Thus, a compact limit space that
is homeomorphic to the Basilica fractal can be associated with it. It is also the first example of amenable
group that does not belong to subexponentially amenable groups [2]. It is proved that these groups are very
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closely related to complex dynamics and profinite group theory [1]. These groups provide a self-similarity
property that reflects the fractalness of some limit objects associated with them [9].

We are here doing some calculations over the Schreier graphs of the Grigorchuk group and the Basilica
group. Moreover, we reckon the Wiener index of some these graphs. We carry out these calculations
by deleting the loops in the graphs. The Schreier graph codifies the intangible structure of a group. It
establishes an equivalence relationship created by cosets. The Schreier graphs of the Grigorchuk group and
the Basilica group are a combination of cycles formed in a tree-like way. Because the recursive expressions
of the generators of these groups cause these graphs to have a cactus structure.

2. Preliminaries

Definition 2.1. ([5]) Let G = (V,E) be connected and distance-based graph. The distance d(u, v) between any two
vertices u and v is the minimum of the lenghts of paths between u and v. The topological diameter d(G) of a graph G
(i.e. the longest topological distance in G) is defined as

d(G) = max
u,v∈V(G)

{d(u, v)}.

Definition 2.2. ([10]) Let Dk = {(u, v)| u, v ∈ V(G) and d(u, v) = k} be a set and we denote the number of elements
of Dk by |Dk| i.e. d(G, k) = |Dk|, k ≥ 0.

Let d(G, k), k ≥ 0, be the number of vertex pairs at distance k. The Hosoya polynomial of G is defined as follows:

H(G, y) =

d(G)∑
k=0

d(G, k)yk

where d(G, 0) = n such that n is the number of vertices in G.

The Grigorchuk group and the Basilica group are a self-similar group of automorphisms of the rooted
binary tree generated by some elements which are the trivial and the non-trivial permutations in the
symmetric group on 2 elements Sym(2) [3]. The Schreier graphs of these groups are recursively constructed
within the framework of certain rules, see [3] for more detailed information. The symbol Γn indicates the
Schreier graphs of the Grigorchuk group, for n = 1, 2, 3, . . . , as seen in Figure 1 [3]. The symbol Bn indicates
the Schreier graphs of the Basilica group, for n = 1, 2, 3, . . . , as seen in Figures 2 and 4 [3].

Figure 1: Some the Schreier graphs of the Grigorchuk group

Figure 2: Some the Schreier graphs of the Basilica group
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Figure 3: Some the Schreier graphs of the Basilica group

Figure 4: Some the Schreier graphs without loops of the Grigorchuk group

Since many calculations are inconclusive for graphs containing loops, we will consider the graphs
obtained by deleting loops from these graphs, as seen in Figures 4 and 5.

The graphs Γ∗n and B∗n contain the values specified in the table below.

d(Γ∗1) = 1 d(Γ∗2) = 3 d(Γ∗3) = 7 d(Γ∗4) = 15 d(Γ∗5) = 31
d(B∗1) = 1 d(B∗2) = 3 d(B∗3) = 6 d(B∗4) = 10 d(B∗5) = 16
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Figure 5: Some the Schreier graphs without loops of the Basilica group

3. Main Results

In this section, we will compute the Hosoya polynomials of the graphs Γ∗n and B∗n, (n = 1, 2, 3, . . . ).

For Γ∗1:

D0 = {v1, v2} ⇒ |D0| = d(Γ∗1, 0) = 2,

D1 = {(v1, v2)} ⇒ |D1| = d(Γ∗1, 1) = 1,

⇒ H(Γ∗1, y) = 2y0 + 1y1

H(Γ∗1, y) = 2 + y (1)

For Γ∗2:

D0 = {v1, v2, v3, v4} ⇒ |D0| = d(Γ∗2, 0) = 4,

D1 = {(v1, v2), (v2, v3), (v3, v4)} ⇒ |D1| = d(Γ∗2, 1) = 3,

D2 = {(v1, v3), (v2, v4)} ⇒ |D2| = d(Γ∗2, 2) = 2,

D3 = {(v1, v4)} ⇒ |D3| = d(Γ∗2, 3) = 1,
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⇒ H(Γ∗2, y) = 4y0 + 3y1 + 2y2 + 1y3

H(Γ∗2, y) = 4 + 3y + 2y2 + y3

For Γ∗3:

D0 = {v1, v2, v3, v4, v5, v6, v7, v8} ⇒ |D0| = d(Γ∗3, 0) = 8,

D1 = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v7), (v7, v8)} ⇒ |D1| = d(Γ∗3, 1) = 7,

D2 = {(v1, v3), (v2, v4), (v3, v5), (v4, v6), (v5, v7), (v6, v8)} ⇒ |D2| = d(Γ∗3, 2) = 6,

D3 = {(v1, v4), (v2, v5), (v3, v6), (v4, v7), (v5, v8)} ⇒ |D3| = d(Γ∗3, 3) = 5,

D4 = {(v1, v5), (v2, v6), (v3, v7), (v4, v8)} ⇒ |D4| = d(Γ∗3, 4) = 4,

D5 = {(v1, v6), (v2, v7), (v3, v8)} ⇒ |D5| = d(Γ∗3, 5) = 3,

D6 = {(v1, v7), (v2, v8)} ⇒ |D6| = d(Γ∗3, 6) = 2,

D7 = {(v1, v8)} ⇒ |D7| = d(Γ∗3, 7) = 1,

⇒ H(Γ∗3, y) = 8y0 + 7y1 + 6y2 + 5y3 + 4y4 + 3y5 + 2y6 + 1y7

H(Γ∗3, y) = 8 + 7y + 6y2 + 5y3 + 4y4 + 3y5 + 2y6 + y7

Theorem 3.1. The Hosoya polynomial of the Schreier graphs of the Grigorchuk group is defined as

H(Γ∗n, y) =

2n∑
i=1

iy2n
−i, (2)

where n = 1, 2, 3, . . . .

Proof. We will make the proof of the theorem by the induction method on n. Firstly, it is clear that the
expression is H(Γ∗1, y) = y + 2 for n = 1 and it is obvious. It follows from the equation (1). Then, for n = k,
let us assume that the expression, i.e. the equation

H(Γ∗k, y) = y2k
−1 + 2y2k

−2 + 3y2k
−3 + · · · + 2k−1y2k

−2k−1
+ 2ky2k

−2k

H(Γ∗k, y) = y2k
−1 + 2y2k

−2 + 3y2k
−3 + · · · + 2k−1y2k

−2k−1
+ 2k,

is true. The correctness of the expression will now be shown for n = k + 1. For n = 1, 2, 3, . . . Γ∗n has a linear
shape formed by alternating bridges and 2-cycles. Moreover, for n = 1, 2, 3, . . . there are 2n vertices and
3.2n−1

− 2 edges in Γ∗n and the diameter of Γ∗n is equal to 2n
− 1. It means that there are 2k+1

2 bridges among
the edges in Γ∗k+1 and the remaining (3.2n−1

− 2 − 2k+1

2 ) edges in Γ∗k+1 are two by two parallel. For n = k + 1,
there must be 2k+1 terms in the expansion of the expression. Therefore by the concept of distance in graphs
and the definition of the Hosoya polynomial, for n = k + 1 it is obtained that

H(Γ∗k+1, y) = y2k+1
−1 + 2y2k+1

−2 + 3y2k+1
−3 + · · · + 2ky2k+1

−2k
+ 2k+1.

Thus the proof is completed.

Proposition 3.2. The Wiener index of the Schreier graphs of the Grigorchuk group is defined as

W(Γ∗n) =

2n∑
i=1

i(2n
− i),

where n = 1, 2, 3, . . . .
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Proof. By applying the equation (2), The Wiener index of the Schreier graphs of the Grigorchuk group is
obtained. It is reckoned as the first derivative of the polynomial of H(Γ∗n, y) at y = 1, i.e.,(

H(Γ∗n, y)
)′

=
( 2n∑

i=1

iy2n
−i
)′

=

2n∑
i=1

i(2n
− i)y2n

−i−1,

(
H(Γ∗n, 1)

)′
=

2n∑
i=1

i(2n
− i) = W(Γ∗n).

So the proof is completed.

Now let us give a few examples of calculating the Hosoya polynomials of B∗n. According to the definition
of the Hosoya polynomial, the following results are obtained by applying the method applied in the above
calculations.

For n = 1,
H(B∗1, y) = 2 + y.

For n = 2,
H(B∗2, y) = 4 + 3y + 2y2 + y3.

For n = 3,
H(B∗3, y) = 8 + 8y + 8y2 + 6y3 + 3y4 + 2y5 + y6

For n = 4,

H(B∗4, y) = 16 + 18y + 24y2 + 24y3 + 17y4 + 14y5 + 11y6 + 6y7 + 3y8 + 2y9 + y10.

For n = 5,

H(B∗5, y) = 32+36y+49y2+62y3+62y4+64y5+55y6+42y7+36y8+30y9+18y10+14y11+11y12+6y13+3y14+2y15+y16.

Conclusion 3.3. In the calculations for the Hosoya polynomial of the Schreier graphs of the Basilica group, as can be
seen in the examples given above, the following can be stated: in the expansion of polynomials to be obtained for each
n, although some values such as the number of terms, the degree of the terms, some of its beginning and last terms are
known a general characterization of these polynomials is not possible in this way. Because there is no clarity for the
coefficients of the polynomials. However, it is predicted that this problem can be solved by conducting a study on the
array of the shape of the graph obtained for each n as different from the method followed here. This prediction stands
as an open problem.
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