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A NEW APPROACH TO THE BI-UNIVALENT ANALYTIC

FUNCTIONS RELATED WITH q-ANALOGUE OF NOOR
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Umuttepe Campus, Kocaeli University, Kocaeli, TURKEY

Abstract. Recently, q-analogue of Noor integral operator and other special

operators became importance in the field of Geometric Function Theory. In
this study, by connecting this operators and the principle of subordination we

introduced an interesting class of bi-univalent functions and obtained coeffi-

cient estimates for this new class.

1. Introduction

Let A indicates the family of analytic functions having form

f(z) = z +

∞∑
n=2

anz
n (1)

in the open unit disk D = {z : |z| < 1, z ∈ C} and let S = {f ∈ A : f is univalent in D} .
According the Koebe one-quarter theorem [6], the image of D under every func-

tion f from S contains a disk of radius 1
4 . That is, every such univalent function

has an inverse f−1 satisfying

f−1 (f (z)) = z (z ∈ D)

and

f
(
f−1 (w)

)
= w

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (2)
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If f and f−1 are univalent, then we say that f is bi-univalent function in D.
The class of bi-univalent functions defined in D is symbolized by Σ.

One can see important examples in the class in [20]. Although the functions
z

1−z , − log(1− z), 1
2 log

(
1+z
1−z .

)
are in Σ, well known Koebe function is not in Σ.

For example, z − z2

2 and z
1−z2 are in S but not in Σ [20].

Given f , g ∈ A, f is said to be subordinate to g, symbolized

f(z) ≺ g(z), (3)

such that there is an analytic function w defined on D with

w(0) = 0 and |w(z)| < 1

fulfilling the following condition:

f(z) = g (w(z)) .

The aforecited subclasses of Σ were constructed and non-sharp estimates on the
first two coefficients |a2| and |a3| in the Taylor-Maclaurin series expansion (1) were
found in several recent studies (see [7], [8], [10], [20] , [21], [22]). In very nearly,
they have been followed by many works (see also [5], [9], [12], [14], [19]).

Now, we give some basic definitions.

Definition 1. [13] For q ∈ (0, 1), the q-derivative of function f ∈ A is defined by

∂qf(z) =
f(qz)− f(z)

(q − 1)z
, z 6= 0 (4)

and

∂qf(0) = f ′(0).

Thus we have

∂qf(z) = 1 +

∞∑
k=2

[k, q] akz
k−1 (5)

where [k, q] is given by

[k, q] =
1− qk

1− q
, [0, q] = 0 (6)

and the q-fractional is defined by

[k, q]! =


k∏

n=1
[n, q] , k ∈ N

1, k = 0
. (7)

Also, the q−generalized Pochhammer symbol for p ≥ 0 is given by

[p, q]k =


k∏

n=1
[p + n− 1, q] , k ∈ N

1, k = 0
. (8)
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As q → 1, then we get [k, q]→ k. Thus, by choosing the function g(z) = zk, while
q → 1, then we obtain

∂qg(z) = ∂qz
k = [k, q] zk−1 = g′(z),

where g′ is the ordinary derivative.
Recently, function F−1

q,µ+1(z) is defined by Arif et al. [4] by

F−1
q,µ+1(z) ∗ Fq,µ+1(z) = z∂qf(z), (µ > −1) (9)

where

Fq,µ+1(z) = z +

∞∑
k=2

[µ+ 1, q]k−1

[k − 1, q]!
zk, z ∈ D. (10)

To the series defined in (10) is convergent absolutely in D , by using the definition
of q-derivative through convolution, let us explain the integral operator ζµq : D→ D
by

ζµq f(z) = F−1
q,µ+1(z) ∗ f(z) = z +

∞∑
k=2

φk−1akz
k, (z ∈ D) (11)

where

φk−1 =
[k, q]!

[µ+ 1, q]k−1
. (12)

From (11), one can readily have the identity

[µ+ 1, q]ζµq f(z) = [µ, q]ζµ+1
q f(z) + qµz∂q(ζ

µ+1
q f(z)). (13)

We can state that

ζ0
qf(z) = z∂qf(z), ζ ′qf(z) = f(z) (14)

also

lim
q→1−

ζµq f(z) = z +

∞∑
k=2

k!

(µ+ 1)k−1

akz
k. (15)

This means that, by taking q → 1−, the operator defined in equation (11) reduces
to the famous Noor integral operator given in ( [15]). Moreover, for more detailed
knowledge on the coefficient estimates of analytic bi-univalent functions given by
q-analogue of differential and integral operators, see the work of [1], [2], [3], [4], [16],
[17].

In this study, utilizing by the aforementioned works we introduce a general new
subclass =µ,qΣ (ξ, τ , θ; k) of the function class Σ and obtain estimates of the coeffi-
cients |a2| and |a3| for functions in our new class =µ,qΣ (ξ, τ , θ; k). Also through this
paper, f, g are given by (1) and (2) and ζµq is q−analogue of Noor integral operator.
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2. The class =µ,qΣ (ξ, τ , θ; k)

Definition 2. Let k : D→ C be a convex univalent function such that

k(0) = 1, k(z) = k(z), (z ∈ D;R(k(z)) > 0). (16)

For f ∈ Σ, the function f is said to be in the class of ∈ =µ,qΣ (ξ, τ , θ; k) if the

following conditions are satisfied:

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
≺ k(z) cos θ + i sin θ, (z ∈ D),

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
≺ k(w) cos θ + i sin θ, (w ∈ D) (17)

where ξ ≥ 1, τ 6= 0, θ ∈ (−π2 ,
π
2 ).

Remark 3. Choosing

k(z) =
1 +Az
1 + Bz

, (−1 ≤ B < A ≤ 1) (18)

in the class =µ,qΣ (ξ, τ , θ; k), we have =µ,qΣ (ξ, τ , θ;A,B) and defined as

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
≺ 1 +Az

1 + Bz
cos θ + i sin θ, (z ∈ D),

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
≺ 1 +Aw

1 + Bw
cos θ + i sin θ, (w ∈ D) (19)

where θ ∈ (−π2 ,
π
2 ), ξ ≥ 1.

Remark 4. Choosing

k(z) =
1 + (1− 2γ)z

1− z
, (0 ≤ γ < 1) (20)

in the class=µ,qΣ (ξ, τ , θ; k), we have =µ,qΣ (ξ, τ , θ, γ) and defined as

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])}
> γ cos θ, (z ∈ D),

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])}
> γ cos θ, (w ∈ D) (21)

where θ ∈ (−π2 ,
π
2 ), ξ ≥ 1.

In the case of k(z) = 1+(1−2γ)z
1−z , (0 ≤ γ < 1), by choosing different values instead

of parameters, we obtain different subclasses:
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1. Upon setting q → 1−, it is simply to see that f ∈ Σ is in

=µ,1Σ (ξ, τ , θ, γ) = =µΣ(ξ, τ , θ, γ)

if the following inequalities hold:

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)ζ

µf(z)

z
+ ξ(ζµf(z))′ − 1

])}
> γ cos θ, (z ∈ D),

R

{
eiθ
(

1 +
1

τ

[
(1− ξ)ζ

µg(w)

w
+ ξ(ζµg(w))′ − 1

])}
> γ cos θ, (w ∈ D). (22)

2. Upon setting q → 1−and for τ = 1, it is simply to see that f ∈ Σ is in

=µ,1Σ (ξ, 1, θ, γ)

if the following inequalities hold:

R

{
eiθ
[
(1− ξ)ζ

µf(z)

z
+ ξ(ζµf(z))′

]}
> γ cos θ, (z ∈ D),

R

{
eiθ
[
(1− ξ)ζ

µg(w)

w
+ ξ(ζµg(w))′

]}
> γ cos θ, (w ∈ D). (23)

3. Upon setting q → 1−, for τ = 1 and ξ = 1, it is simply to see that f ∈ Σ is
in

=µ,1Σ (1, 1, θ, γ) = =µΣ(θ, γ)

if the following inequalities hold:

R
{
eiθ(ζµf(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(ζµg(w))′

}
> γ cos θ, (w ∈ D). (24)

4. Upon setting q → 1−, for τ = 1 and µ = 1, it is simply to see that f ∈ Σ
is in

=1,1
Σ (ξ, 1, θ, γ) = =Σ(ξ, θ, γ)

if the following inequalities hold:

R

{
eiθ
[
(1− ξ)f(z)

z
+ ξ(f(z))′

]}
> γ cos θ, (z ∈ D),

R

{
eiθ
[
(1− ξ)g(w)

w
+ ξ(g(w))′

]}
> γ cos θ, (w ∈ D). (25)

5. Upon setting q → 1− ,for τ = 1, ξ = 1 and µ = 0, it is simply to see that
f ∈ Σ is in

=0
Σ(1, 1; γ) = =Σ(γ)

if the following inequalities hold:

R
{
eiθ(z∂f(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(w∂g(w))′

}
> γ cos θ, (w ∈ D). (26)
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6. Upon setting q → 1−, for τ = 1, ξ = 1 and µ = 1, it is simply to see that
f ∈ Σ is in

=1,1
Σ (1, 1, θ, γ) = =Σ(θ, γ)

if the following inequalities hold:

R
{
eiθ(f(z))′

}
> γ cos θ, (z ∈ D),

R
{
eiθ(g(w))′

}
> γ cos θ, (w ∈ D). (27)

We state that

=Σ(ξ0, γ) = BΣ(α, λ) (see [10])

=Σ(0, γ) = HΣ(α, λ) (see [20]).

We need the following lemma to derive our main result.

Lemma 5. [18] Let the function k(z) defined with

k(z) =

∞∑
n=1

Bnzn

be convex in D. Assume also that the function Ψ(z) given by

Ψ(z) =

∞∑
n=1

cnz
n

is holomorphic in D. If Ψ(z) ≺ k(z), (z ∈ D), then

|cn| ≤ |B1| , (n ∈ N). (28)

Now, we give our general results involving the new class =µ,qΣ (ξ, τ , θ; k).

Theorem 6. Let f ∈ =µ,qΣ (ξ, τ , θ; k), (ξ ≥ 1, θ ∈ (−π2 ,
π
2 ) and τ 6= 0, with

k(z) = 1 +B1z +B2z
2 + · · · . (29)

Then

|a2| ≤ min

{
|τB1| cos θ

(1 + ξq)φ1

, 2

√
|τB1| cos θ

(1 + ξq + ξq2)φ2

}
(30)

and

|a3| ≤
|τB1| cos θ

(1 + ξq + ξq2)φ2

. (31)

Proof. According the inequality (17), we can write that

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq f(z)

z
+ ξ∂q(ζ

µ
q f(z))− 1

])
= r(z) cos θ + i sin θ, (z ∈ D)

eiθ
(

1 +
1

τ

[
(1− ξ)

ζµq g(w)

w
+ ξ∂q(ζ

µ
q g(w))− 1

])
= s(w) cos θ + i sin θ , (w ∈ D) (32)
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where r(z) ≺ k(z) and s(w) ≺ k(w) have the following series expansions

r(z) = 1 + r1z + r2z
2 + ... (33)

s(w) = 1 + s1w + s2w
2 + ... (34)

respectively: By equating the coefficients of the two equations in (32), we have

eiθ
1

τ
(1 + ξq)φ1a2 = r1 cos θ ... (35)

eiθ
1

τ
(1 + ξq + ξq2)φ2a3 = r2 cos θ ... (36)

and

− eiθ 1

τ
(1 + ξq)φ1a2 = s1 cos θ ... (37)

eiθ
1

τ

[
(1 + ξq + ξq2)φ2

(
2a2

2 − a3

)]
= s2 cos θ .... (38)

From (35) and (37), we have

r1 = −s1 ... (39)

and

a2
2 =

(r2
1 + s2

1)e−2iθ cos2 θ

2
[

1
τ (1 + ξq)φ1

]2 ... (40)

Also from (36) and (38), we get

a2
2 =

(r2 + s2)e−iθ cos θ

2(1 + ξq + ξq2)φ2

τ .... (41)

Due to the fact r, s ∈ h(D), by virtue of Lemma 5, we obtain

|rk| =

∣∣∣∣r(k)(0)

k!

∣∣∣∣ ≤ |B1| ,

|sk| =

∣∣∣∣s(k)(0)

k!

∣∣∣∣ ≤ |B1| , (k ∈ N). (42)

If we apply (42) and Lemma 5 for coefficients r1, r2, s1 and s2, from (40) and (41),
we have

|a2|2 ≤
|τB1|2 cos2 θ

|(1 + ξq)φ1|
2 (43)

and

|a2|2 ≤
|τB1| cos θ

|(1 + ξq + ξq2)φ2|
. (44)
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Thus, we obtain desired result for |a2| .
Next, in order to find the bound on the coefficient |a3|, if we subtract (38), from

(36), then we get

a3 − a2
2 =

e−iθ(r2 − s2)τ cos θ

2(1 + ξq + ξq2)φ2

. (45)

By substituting A2
2 from (41) into (45), it is obtained that

a3 =
e−2iθ(r2

1 + s2
1)τ2 cos2 θ

2(1 + ξq)2φ2
1

+
e−iθ(r2 − s2)τ cos θ

2(1 + ξq + ξq2)φ2

. (46)

Taking absolute value of the equation (46), we get

|a3| ≤
cos2 θ |τB1|2

(1 + ξq)2φ2
1

+
cos θ |τB1|

(1 + ξq + ξq2)φ2

(47)

Thus,

|a3| ≤
cos θ |τB1|

(1 + ξq + ξq2)φ2

.

�

3. Corollaries and Consequences

According the Remark 1 and Remark 2, choosing

k(z) =
1 +Az
1 + Bz

, (−1 ≤ B < A ≤ 1)

and

k(z) =
1 + (1− 2γ)z

1− z
(0 ≤ γ < 1)

in Theorem 6, Corollaries 7, 8, and 9 can be readily deduced, respectively.

Corollary 7. If f ∈ =µ,qΣ (ξ, θ, τ ;A,B), (θ ∈ (−π2 ,
π
2 ), ξ ≥ 1, τ 6= 0,−1 ≤ B < A ≤

1), then we have

|a2| ≤ min

{
|τ | (A− B) cos θ

(1 + ξq)φ1

,

√
|τB| (A− B) cos θ

(1 + ξq + ξq2)φ2

}
and

|a3| ≤
(A− B) |τ | cos θ

(1 + ξq + ξq2)φ2

.

Corollary 8. If f ∈ =µΣ(ξ, θ, γ), (θ ∈ (−π2 ,
π
2 ), ξ ≥ 1, 0 ≤ γ < 1), then we have

|a2| ≤ min

{
2τ(1− γ) cos θ

(1 + ξ)φ1

,

√
2 |τ | (1− γ) cos θ

(1 + 2ξ)φ2

}
and

|a3| ≤
2τ(1− γ) cos θ

((1 + 2ξ)φ2

.
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When θ = 0 in Corollary 8, we obtain a new result:

Corollary 9. If f ∈ =µΣ(ξ, γ), (ξ ≥ 1, 0 ≤ γ < 1), then we have

|a2| ≤

√
2(1− γ)

(1 + 2ξ)φ2

and

|a3| ≤
2τ(1− γ)

((1 + 2ξ)φ2

.

Corollary 10. If f ∈ =Σ(γ), then we have

|a2| ≤

√
2(1− γ)

3φ2

and

|a3| ≤
2(1− γ)

3φ2

.
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