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1. Introduction

The perception of ideals was initiated by Kuratowski [1] and Vaidyanathaswamy [2]. A subset I
of the universal set X is said to be an ideal, if there exist two subsets A and B of X satisfying i)
A ∈ I and B ⊂ A then B ∈ I ii)A,B ∈ I implies A ∪ B ∈ I. The notion of minimal structure and
minimal spaces were established by Maki et al. [3]. They have explained the minimal spaces as the
generalisation of classical topological spaces. M is referred as the minimal structure of the space X, if
ϕ,X ∈ M . The spaces (X,MX) is called as the minimal structure space.The introduction of m-open
sets in minimal structures was initialised by Maki et al. [3]. The members of minimal structure are
called m-open sets. Generalised closed sets (briefly g-closed sets)were introduced by Levine [4]. The
notion of αm-open sets was introduced by Min [5]. The idea of m-normal spaces and mg-normal
spaces were established by Noiri et al. [6]. m-regular spaces was elaborately studied by Popa et al. [7].
m-continuous functions and its salient features in minimal structures were instigated by Popa et al. [8].
Singha et al. [9] proved Urysohn’s lemma in minimal structures. An innovative approach on ideals in
minimal spaces was given by Özbakır et al. [10]. They have defined a new type of local function A∗

m

named as minimal local function in ideal minimal spaces. The conception of mIg-normal spaces and
its characterisations were well established by Haining et al. [11]. Also they have proved Urysohn’s
lemma under mIg-normal spaces ideal minimal spaces. A new notion of generalised closed sets, called
mIαg-closed sets and its features in ideal minimal spaces were studied by Parimala et al. [12]. Local
closedness under mIαg-closed sets and few separation axioms under mIαg-closed sets are intended by
Parimala et al. in [13,14]. In this article, few properties of separating sets are studied in ideal minimal
spaces. Two new separations namely mIαg-normal spaces and mIαg-regular spaces are initiated and
their significant properties are established. As an application of mIαg-normal spaces, we have proved
Urysohn’s lemma on mIαg-normal spaces.
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In the present study, Section 2 provides preliminary definitions in minimal structure spaces and
in ideal minimal spaces, Section 3 mIαg-normal spaces and its characterisations in ideal minimal
spaces, Section 4 Urysohn’s lemma under mIαg-normal spaces, Section 5 mIαg-regular spaces in
ideal minimal spaces, and Section 6 conclusion and future work.

2. Preliminary

In the following sequel, the following notations are used.

(i) MSS- minimal structure spaces

(ii) IMS - ideal minimal spaces

Definition 2.1. [8] The interior and closure in an MSS are defined as follows. Let (X,M) be a MSS
and A ⊂ X, then

(a) m-int(A) =∪{K : K ⊆ A,K ∈M}

(b) m-cl(A) =∩{N : A ⊆ N,X −N ∈M}

Proposition 2.2. [8] Properties of m-cl and m-int are listed below.

(a) m-int(X) = X and m-cl(ϕ) = ϕ

(b) m-int(A) ⊆ A and A ⊆ m-cl(A)

(c) If A ∈M , then m-int(A) = A and if X − F ∈M , then m-cl(F ) = F .

(d) If A ⊆ B, then m-int(A) ⊆ m-int(B) and m-cl(A) ⊆ m-cl(B).

Definition 2.3. [10] Let (X,M, I) be an IMS with an ideal I. The power set of X is denoted by
P (X). A mapping (.)∗m is defined from P (X) to itself. For a subset A ⊂ X, the minimum local
function is A∗

m(I,M) = {x ∈ X : Um ∩A /∈ I; for every Um ∈ Um(x)}. The minimal ∗-closure operator
m-cl∗ is defined as m-cl∗(A) = A∪A∗

m. A minimal structure via m-cl∗ is termed as M∗(I,M) (briefly
M∗) and is described as M∗ = {U ⊂ X : m-cl(X − U) = X − U}. The members of M∗(I,M) are
termed as m∗-open sets. The interior of m∗-open sets is denoted by m-int∗.

Theorem 2.4. [10] In an MSS (X,M), let I, J be two ideals on X. P,Q ⊂ X. Then,

(a) P ⊂ Q⇒ P ∗
m ⊂ Q∗

m

(b) P ∗
m ∪Q∗

m ⊂ (P ∪Q)∗m

(c) (P ∗
m)∗m ⊂ P ∗

m

(d) P ∗
m = m-cl(P ∗

m) ⊂ m-cl(P )

(e) I ⊂ J ⇒ P ∗
m(J) ⊂ P ∗

m(I)

Remark 2.5. [10] The MSS (X,M) is said to exhibit the property [U ] if the union of any number of
m-open sets is an m-open set and the property [I] if the intersection of finite number of m-open sets
is an m-open set.

Remark 2.6. [10] If (X,M) has the property [U ], then (b) of Theorem 2.4. can be stated as
P ∗
m ∪Q∗

m = (P ∪Q)∗m.

Proposition 2.7. [10] Significant features of m-cl∗ are as follows. Let P1, P2 ⊆ X. Then,

(a) m-cl∗(P1) ∪m-cl∗(P2) ⊆ m-cl∗(P1 ∪ P2)

(b) If P1 ⊆ P2, then m-cl∗(P1) ⊆ m-cl∗(P2).
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(c) When A ⊆ X, then A ⊆ m-cl∗(A).

(d) m-cl∗(ϕ) = ϕ and m-cl∗(X) = X

Definition 2.8. In an MSS (X,M, I), let A be a non empty subset of X. A is defined to be an

(a) m∗-closed set [10] if A∗
m is a subset of A. (A∗

m ⊂ A).

(b) minimal generalised closed set (mg-closed) [3] if m-cl(A) ⊆ U , A ⊆ U and U is an m-open set.

(c) minimal α-open set (αm-open set) [5] if A ⊆ m-int(m-cl(m-int(A))). The complement of αm-open
set is called an αm-closed set.

(d) minimal ideal α generalised closed set (mIαg-closed set) [12] if A∗
m ⊆ U whenever A ⊆ U and U

is an αm-open set.

Proposition 2.9. [5] In an MSS (X,MX) if a subset A is an m-open set, then it is an αm-open set.

Definition 2.10. [5] α-closure and α-interior of a set A are defined as follows:

(a) αm-cl(A) = ∩{F : A ⊆ F , F is αm-closed in X}

(b) αm-int(A) = ∪{U : U ⊆ A, U is αm-open in X}
Let (X,M, I) be an IMS, then we have the following theorems.

Proposition 2.11. [12] When I = {ϕ}, then an mIαg-closed set (mIαg-open set) is an mg-closed
set (mg-open set).

Proposition 2.12. [12] An m∗-closed set in an IMS is an mIαg-closed set.

Theorem 2.13. [12] The necessary and sufficient condition for a subset to be an mIαg-closed set in
(X,M, I) is that every αm open set in X is an m∗-closed set.

Theorem 2.14. [12] Theorem 3.4(d), in an IMS X a subset A is an mIαg-closed set if and only if
every m open set is an m∗-closed set.

Proof. Obvious, since every m open set is an αm open set.

Theorem 2.15. [12] Consider A ⊆ X, then A is mIαg-open if S ⊆ m-int∗(A), S is αm-closed and
S ⊆ A. Sufficiency is also true.

Definition 2.16. [6] An MSS (X,M) is called m-normal (resp.mg-normal) if for every pair of m-
closed subsets (resp. mg-closed subsets) A and B such that A ∩ B = ϕ, there exists m-open sets U
and V such that U ∩ V = ϕ and A ⊂ U , B ⊂ V .

Definition 2.17. [7] An MSS (X,M) is termed to be a m-regular space if for every m-closed set F
and an element x /∈ F , there are m-open sets U and V such that x ∈ U , F ⊆ V and also U ∩ V = ϕ.

Definition 2.18. [15] A m-T1 space we mean, for all distinct points x1, x2 ∈ X there exists an
m-open set X such that x1 ∈ X, but x2 /∈ X and an m-open set Y such that x1 /∈ Y , x2 ∈ Y .

Theorem 2.19. [7] Consider an m-T1 space (X,M, I) with I = {ϕ} then the following statements
below given are equivalent.

(a) (X,M, I) is an m-regular space.

(b) For every m-open set V such that x ∈ X, there exists an m-open set U of X satisfying x ∈ U ⊆ m-
cl(U) ⊆ V .

Proposition 2.20. [16] Every m-closed set is an mIαg-closed set. (Every m-open set is an mIαg-
open set.)

Proposition 2.21. [16] Every mg-closed set is an mIαg-closed set.

Definition 2.22. [8] Let (X,MX) and (Y,MY ) be two MSS. The function f : (X,MX) → (Y,MY )
is defined to be an m-continuous function, if for x ∈ X and V ∈ M(f(x)), there exist U ∈ M(x)
satisfying f(U) ⊆ V .
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3.mIαg-Normal Spaces

Definition 3.1. mIαg-normal space we mean, if for every pair of mIαg closed sets K1, K2 such that
K1 ∩K2 = ϕ, there exists at least a pair of m-open sets U and V of X such that U ∩V = ϕ satisfying
A ⊆ U and B ⊆ V .

Theorem 3.2. An mIαg-normal space is an m-normal space (mg-normal space).

Proof. Obvious, since every m-closed set(mg-closed set) is an mIαg set with references to Propo-
sition 2.20., and Proposition 2.21. The example given below shows that the converse of the above
theorem is not true.

Example 3.3. (X,M, I) be an IMS with X = {a, b, c, d}, M = {ϕ,X, {b}, {a, b}, {a, c, d}} and I =
{ϕ, {a}, {c}, {a, c}} and M c = {X,ϕ, {a, c, d}, {c, d}, {b}}. Here X is an m-normal space. Since for
the disjoint mIαg-closed sets {a} and {c} there does not exists disjoint m open sets containing them,
X is not an mIαg-normal space.

Theorem 3.4. In an IMS (X,M, I) the equivalent statements on mIαg-normal-spaces are given
below.

(a) (X,M, I) is an mIαg-normal space.

(b) For each mIαg-closed set K and an mIαg-open set F such that K ⊆ F , there exists an m-open
set U ⊆ X such that K ⊆ U ⊆ m-cl(U) ⊆ F .

Proof.
(a) ⇒ (b): Assume K be an mIαg-closed set and F be an mIαg-open set such that K ⊂ F . Then
X − F is an mIαg-closed set. Therefore K ∩ (X − F ) = ϕ. Referring the hypothesis (a), for a pair of
disjoint m-open sets U and V such that K ⊆ U and X − F ⊆ V and U ∩ V = ϕ. But U ⊆ (X − V )
implies m-cl(U) ⊆ (X − V ). Hence K ⊆ U ⊆ m-cl(U) ⊆ (X − V ) ⊆ F which proves (b).

(b) ⇒ (a): Let K and F be two disjoint mIαg-closed sets such that K ⊆ (X − F ). Hypothesis (b) of
this theorem infers the existence of the m-open subset U of X such that K ⊆ U ⊆ m-cl(U) ⊆ (X−F ).
Let V = X −m-cl(U), since m-cl(U) is a m-closed set V is m-open. These U and V are the m-open
sets which contains K and F which proves (a).

Corollary 3.5. In an IMS (X,M, I) the statements below given are equivalent.

(a) (X,M, I) is an mIαg-normal space.

(b) For every mIαg-closed set A and mIαg-open set B such that A ⊆ B, there exists an αm-open
set U ⊆ X satisfies A ⊆ U ⊆ αm-cl(U) ⊆ B).

Proof. By referring Proposition 2.9., every m-open set is an αm-open set. Apply this result in
Theorem 3.4., the proof follows.

Corollary 3.6. In an IMS (X,M, I) the following statements are equivalent on mg-normal spaces
when I = {ϕ}.

(a) Consider (X,M, I) be an mg-normal space

(b) For a pair of mg-closed set A and an mg-open set B such that A ⊆ B, there exists an m-open set
U ⊆ X satisfies A ⊆ U ⊆ m-cl(U) ⊆ B.

Proof. When I = {ϕ}, Proposition 2.11., infers that every mIαg-open set is an mg-open set. Apply
this result in Theorem 3.4., the proof follows.

Theorem 3.7. In an IMS (X,M, I) the following statements are equivalent.

(a) (X,M, I) is an mIαg-normal space.
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(b) For every pair of mIαg closed subsets A and B of X, there corresponds an m-open set U of X
satisfies A ⊆ U , then m-cl(U) ∩B = ϕ.

(c) For every pair of mIαg-closed subsets A and B such that A∩B = ϕ, there corresponds an m-open
set U satisfying A ⊆ U and an m-open set V satisfying B ⊆ V then m-cl(U) ∩ m-cl(V ) is an
empty set.

Proof.
(a) ⇒ (b): Consider a pair of mIαg-closed subsets A, B such that A∩B = ϕ then A ⊆ (X−B) where
X − B is an mIαg-open set. Referring Theorem 3.4., there corresponds an m-open set U such that
A ⊆ U ⊆ m-cl(U) ⊆ X − B. Therefore, m-cl(U) and B are disjoint sets. Hence, U is the required
m-open set that satisfies (b).

(b) ⇒ (c): Hypothesis (b) of this theorem implies thatm-cl(U) and B are disjointmIαg-closed subsets
of X. Therefore, there exists an m-open set V containing B such that m-cl(U) ∩m-cl(V ) = ϕ which
proves (c).

(c) ⇒ (a): Hypothesis (c) proves (a).

Corollary 3.8. In an IMS (X,M, I) the statements given below are equivalent when I = {ϕ}.

(a) The IMS X is an mg-normal space.

(b) All pairs of subsets of X consisting mg closed sets A, B there corresponds an m-open set U of X
such that A ⊆ U , then m-cl(U) and B are disjoint sets.

(c) Every pair of mg-closed sets A, B of X such that A ∩B = ϕ there corresponds an m-open set U
such that A ⊆ U and an m-open set V such that B ⊆ V then m-cl(U) and m-cl(V ) are disjoint
sets.

Proof. When I = {ϕ}, every mIαg-open set is an mg-open set by Proposition 2.11. Apply this
result in Theorem 3.7., we get the proof.

Theorem 3.9. Let (X,M, I) be an mIαg-normal space. If A and B are mIαg-closed sets that
containing no common elements, then there exists a pair of m-open sets U and V such that U ∩V = ϕ
and satisfies m-cl∗(A) ⊆ U and m-cl∗(B) ⊆ V .

Proof. Consider a pair of mIαg-closed sets A and B. Referring Theorem 3.7 (3)., there exist m-
open sets U and V such that A ⊂ U and B ⊂ V satisfying m-cl(U) ∩ m-cl(V ) = ϕ. As A is an
mIαg-closed set, we have A∗

m ⊆ U and also A ⊆ U . Therefore, A ∪ A∗
m = m-cl∗(A) ⊆ U . Similarly,

m-cl∗(B) ⊆ V .

Corollary 3.10. Let (X,M, I) be an mIαg-normal space with I = {ϕ} and A and B are mg-closed
sets of X and A∩B = ϕ, then there are disjoint m-open sets U and V such that m-cl∗(A) is contained
in U and m-cl∗(B)is contained in V .

Proof. When I = {ϕ}, referring Proposition 2.11., we know that every mIαg-open set is an mg-open
set. Apply this result in Theorem 3.9., we get the proof.

Theorem 3.11. Let (X,M, I) be an mIαg-normal space. If A and B are mIαg-closed and mIαg-
open sets respectively and also A ⊂ B, then there corresponds an m-open set U such that A ⊆ m-
cl∗(A) ⊆ U ⊆ m-int∗(B) ⊆ B.

Proof. Suppose that A is an mIαg-closed set and B is an mIαg-open set such that A ⊆ B. Then,
A∩ (X −B) = ϕ. That is, A and X −B are disjoint mIαg-closed sets. Referring Theorem 3.9., there
exist disjointm-open sets K1 and K2 such thatm-cl∗(A) ⊆ K1 andm-cl∗(X−B) ⊆ K2. Also, X−(m-
int∗(B)) = m-cl∗(X−B) ⊆ K2. So m-cl∗(X−B) ⊆ K2 implies that X−K2 ⊆ m-int∗(B). Also, since
K1 and K2 are disjoint m-open sets, we get A ⊆ m-cl∗(A) ⊆ K1 ⊆ (X −K2) ⊆ m-int∗(B) ⊆ B.
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Corollary 3.12. Let (X,M, I) be anmg-normal space and I = {ϕ}. For eachmg-closed subset A and
anmg-open subset U containing A there exists anm-open subset V such that A ⊆ m-cl∗(A) ⊆ V ⊆ m-
int∗(U) ⊆ U .

Proof. Let I = {ϕ}. With reference to Proposition 2.11., every mIαg-open set is an mg-open set.
Apply this result in Theorem 3.11., we get the proof.

4.Urysohn’s Lemma on mIαg-Normal Spaces

Theorem 4.1. The necessary and sufficient condition for an IMS (X,M, I) to be an mIαg-normal
space is that, for every pair of mIαg-closed sets A and B and A ∩ B = ϕ, it is possible to define a
m-continuous mapping f : X → [0, 1] such that f(A) = {0} and f(B) = {1}.
Proof.

Necessary Part: Consider a mIαg-normal space (X,M, I) and let A,B ⊂ X be a pair of mIαg-closed
sets such that A∩B = ϕ. As B is an mIαg-closed set, X −B is mIαg-closed and also A ⊂ (X −B).
Here, A is an mIαg-closed set and X − B is an mIαg-open set in X. Referring Theorem 3.4., there
exists an m-open set namely U1/2 satisfies A ⊆ U1/2 ⊆ m-cl(U1/2) ⊆ (X − B). With reference to
Theorem 2.19., U1/2 is a mIαg-open set. That is, U1/2 and X −B are the mIαg-open sets such that
A ⊆ U1/2 and m-cl(U1/2) ⊆ (X −B), where A and m-cl(U1/2) are mIαg-closed sets. Therefore, with
reference to Theorem 3.4., there exist m-open sets U1/4 and U3/4 such that

A ⊆ U1/4 ⊆ m-cl(U1/4) ⊆ U1/2 and m-cl(U1/2) ⊆ U3/4 ⊆ m-cl(U3/4) ⊆ (X −B)

Continuing in this way, for every rational number in the open interval (0, 1) of the form t = m
2n , n =

1, 2, 3, .... and m = 1, 2, 3, ...2n−1, we obtain m-open sets of the form Ut such that for each s < t,

A ⊆ Us ⊆ m-cl(Us) ⊆ Ut ⊆ m-cl(Ut) ⊆ (X −B)

Let us denote the set of all rational number by Q. Also, Q(x) = {t : t ∈ Q and x ∈ Ut}, this set
contains no number less than 0, since no x is in Ut for t < 0 and it contains every number greater
than 1. Let us define f : X → [0, 1] as f(x) = 1, if x /∈ Ut and f(x) = inf{t : t ∈ Q and x ∈ Ut}. For
each x ∈ B, x /∈ X − B implies x /∈ Ut. Therefore, f(B) = {1}. For each x ∈ A, x ∈ Ut and t ∈ Q.
By definition f(x) = inf{t : t ∈ Q and x ∈ Ut} = infQ = 0. Hence, f(A) = 0. To prove f is an
m-continuous mapping, let the intervals of the form [0, a) and (b, 1] where a, b ∈ (0, 1) forms an open
subbase in the space [0, 1]. Therefore our aim is to prove that f−1([0, a)) and f−1((b, 1]) are m-open
sets in X. To prove f−1([0, a)) is an m-open set in X. Let x ∈ Ut for some t < a, then by definition
f(x) = inf{s : s ∈ Q and x ∈ Us} = r ≤ t < a. That is, f(x) < a. Thus 0 ≤ f(x) < a. Conversely,
if f(x) = 0, then x ∈ Ut for all t ∈ Q, hence x ∈ Ut for some t < a. If 0 < f(x) < a, by definition of
we have f(x) = {s : s ∈ Q and x ∈ Ut} < a. Since a < 1 we get f(x) = t for some t < a and hence
x ∈ Ut for some t < a. Therefore, we conclude that 0 ≤ f(x) < a if and only if x ∈ Ut for some t < a.
Hence, f−1([0, a)) = ∪{Ut; t ∈ Q and x ∈ Ut} which is an m-open set of X. To prove f−1((b, 1]) is an
m-open set in X. We need to prove X − f−1([0, b]) is an m-open subset of X. For that we have to
prove 0 ≤ f(x) ≤ b if and only if x ∈ Ut for all t > b to get union of m-open subsets Ut. Let x ∈ X
such that 0 ≤ f(x) ≤ b when t > b, It is evident that f(x) < t implies x ∈ Ut for t > b. Conversely,
let x ∈ Ut for all t > b, then by definition f(x) = inf{t : t ∈ ψ and x ∈ Ut} ≤ t. Since t > b, f(x) ≤ b
for all t > b. From the definition of f , it is clear that f(x) ≥ 0. Therefore, we get 0 ≤ f(x) ≤ b if
and only if x ∈ Ut for all t > b. Also, t > b implies that there is r ∈ Q such that t > r > b. then
m − cl(Ut) ⊆ Ut. Consequently, we have ∩{Ut; t ∈ Q and t > b}=∩{m-cl(Ut); r ∈ Q and r > b}.
Therefore, f−1([0, b]) = {x : 0 ≤ f(x) ≤ b} = ∩{Ut; t ∈ Q and t > b}=∩{m-cl(Ut; r ∈ ψ and r > b)}.
Since, f−1((0, 1]) = f−1(X − ([0, b]))=X − f−1([0, b]) = ∪{X −m-cl(Ut); r ∈ Q and r > b}, which is
m-open in X. Therefore, f : X → [0, 1] is m-continuous.

Sufficient Part: Consider a pair of mIαg-closed sets A and B such that A ∩ B = ϕ. Referring the
sufficient condition, there exists an m-continuous mapping f : X → [0, 1] satisfying f(A) = {0} and
f(B) = {1}. Moreover, U = f−1([0, 1/2)) and V = f−1((1/2, 1]) are disjoint m-open subsets of X.
Clearly A ⊂ U and B ⊂ V . Hence, X is an mIαg-normal space.
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5.mIαg-Regular Spaces

Definition 5.1. An IMS (X,M, I) is referred to be an mIαg-regular space, if for every pair consisting
a point x ∈ X and an m-closed set B such that x /∈ B there exists at least one pair of mIαg-open
sets U and V with U ∩ V = ϕ satisfying x ∈ U and B ⊂ V .

Example 5.2. Consider an IMS (X,M, I) with X = {a, b, c}, M = {ϕ,X, {b}, {a, b}, {b, c}} M c =
{X,ϕ, {a, c}, {c}, {a}} and the ideal I = {ϕ, {b}}. Here mIαg closed sets are the elements of the power
set P (X) and X is mIαg-regular.

Theorem 5.3. If (X,M, I) is an mIαg-regular space, then it is an m-regular space, but the converse
of this theorem may not be true.

Proof. Obvious, since every m-closed set is an mIαg-closed set.

Example 5.4. In Example 4.2., X is an mIαg-regular space, but not a m-regular space, since for the
point x = a ∈ X and an m-closed set B = {c}, there does not exist m-open sets containing x and B.

Theorem 5.5. In an IMS (X,M, I), if every m-open set is m∗-closed, then the minimal space is an
mIαg-regular space.

Proof. Suppose every m-open subset of X is m∗-closed, then by Theorem 2.11., every subset of X is
an mIαg-open set. If B is an m-closed set such that x /∈ B, then {x} and B are the two mIαg-open
sets such that {x} ∩B = ϕ and also x ∈ {x} and B ⊆ B. Therefore, X is an mIαg-regular space.

Definition 5.6. A subset K of (X,M, I) is termed as an mIαg-neighbourhood of B ⊆ X, if there
exists an mIαg-open set U such that B ⊆ U ⊆ K.

Definition 5.7. A subset K of (X,M, I) is termed to be an mIαg-closed neighbourhood of B ⊆ X,
if there exists an mIαg-closed set U such that B ⊆ U ⊆ K.

Theorem 5.8. In an IMS (X,M, I) the following are statements equivalent.

(a) (X,M, I) is an mIαg-regular space.

(b) For each m-open se)t U and let x ∈ U , there corresponds an mIαg-open set V satisfying x ∈ V ⊆
m-cl∗(V ) ⊂ U .

(c) For each m-closed set A, ∩Ai = A where Ai are mIαg-closed neighbourhoods of A.

(d) For any set A and an m-open set B such that A ∩ B contains at least one element, there exists
an mIαg-open set U such that A ∩ U ̸= ϕ and m-cl∗(U) ⊆ B.

(e) For any non empty set A and an m-closed set B such that A and B are disjoint, there exists
atleast a pair of mIαg-open sets U , V satisfies A ∩ U ̸= ϕ and B ⊆ V .

Proof.
(a) ⇒ (b): Consider an m-open set V and let x ∈ V . Hence X−V is m-closed such that x /∈ (X−V ).
Since X is anmIαg-regular space, there exists a pair ofmIαg-open sets U andW such that U∩W = ϕ
satisfying x ∈ U and X − V ⊆ W . Observing Theorem 2.8., X − V is αm closed. Theorem 2.14.,
infers that X − V ⊆ m-int∗(W ). Therefore, X − (m-int∗(W )) ⊆ V . Hence, U ∩ W = ϕ implies
U ∩m-int∗(W ) = ϕ and so m-cl∗(U) ⊆ X − (m-int∗(W )). Which implies x ∈ U ⊆ m-cl∗(U) ⊆ V .

(b) ⇒ (c): Let A be an m-closed set and x /∈ A then X − A is an m-open set containing x. By
hypothesis (b), there exists an mIαg-open set V satisfying x ∈ V ⊆ m-cl∗(V ) ⊆ (X − A). Thus,
A ⊆ X − (m-cl∗(V )) ⊆ (X − V ). Since X − (m-cl∗(V )) is mIαg-open, we get X − V is mIαg-closed
neighbourhood of A and x /∈ (X−V ). This shows that A is the intersection of allmIαg neighbourhood
of A.
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(c) ⇒ (d): Assume a non empty set A and an m-closed set B such that A ∩ B ̸= ϕ. Consider an
element x of A ∩ B then, X − B is m-closed and x /∈ (X − B). Observing the hypothesis (c), there
exists an mIαg-closed neighbourhood V of X − B such that, x /∈ V . Let (X − V ) ⊆ G ⊆ V and G
be an mIαg-open then, U = (X − V ) is an mIαg-open set satisfying x ∈ U and A ∩ U ̸= ϕ. Further,
X −G is mIαg-closed and m-cl∗(U) = m-cl∗(X − V ) ⊆ m-cl∗(X −G) ⊆ B.

(d) ⇒ (e): Consider a non empty set A and m-closed set B, A ∩ B contains no element. X − B is
an m-open set and so A ∩ (X − B) ̸= ϕ. Observing hypothesis (d), there exists an mIαg-open set U
such that the sets A and U contains at least one common element. Also, U ⊆ m-cl∗(U) ⊆ (X − B).
Assume that V = X − (m-cl∗(U)). Then, U and V are mIαg-open sets satisfying B ⊆ X − (m-
cl∗(U) = V ⊆ (X − U)) which implies (e).

(e) ⇒ (a): Let A be an m-closed set and x /∈ A. Let the set B = {x}. Then there exist disjoint
mIαg-open sets U and V such that {x} ∩ U = B ∩ U ̸= ϕ and A ⊆ V . Thus, x ∈ U .

Definition 5.9. A subset K of (X,M, I) is referred as an mg-neighbourhood of set B ⊆ X, if there
exists an mg-open set U such that B ⊆ U ⊆ K.

Definition 5.10. A subset K of (X,M, I) is referred as an mg-closed neighbourhood of set B ⊆ X,
if there exists an mg-closed set U such that B ⊆ U ⊂ K.

Corollary 5.11. Let (X,M, I) be an IMS such that I = {ϕ}. Then, the following statements on
mg-regular spaces are equivalent.

(a) (X,M, I) is an mg-regular space.

(b) Let U be an m-open set containing x, then there exists an mg-open set V satisfying x ∈ V ⊆ m-
cl∗(V ) ⊆ U .

(c) For any m-closed set A, ∩Ai = A where Ai are mg-closed neighbourhoods of A.

(d) For any set A and an m-open set B, A∩B is non empty, then there exists an mg-open set U such
that A ∩ U ̸= ϕ and m-cl∗(U) ⊆ B.

(e) For any non empty set A and an m-closed set B such that A and B are disjoint, then there exists
disjoint mg-open sets U , V satisfies A ∩ U is non empty and B ⊆ V

Proof. When I = {ϕ}, observing Theorem 2.10., we have inferred that every mIαg-open set is
mg-open set. Apply this result in Theorem 5.8., the proof follows.

If I = {ϕ} in Theorem 2.18., then we have the following Corollary.

Corollary 5.12. If (X,M, I) is an m-T1 space with I = {ϕ} then the statements given below are
equivalent.

(a) (X,M, I) is an m-regular space.

(b) Consider an m-open set V and let x ∈ X, there exists an mIαg-open set U of X such that
x ∈ U ⊆ m-cl(U) ⊆ V .

Proof. Observing Theorem 2.19., every m-closed set is an mIαg-closed set, the proof is obvious by
Theorem 2.18.

6. Conclusion

In this work, we discussed about two separations calledmIαg-normal andmIαg-regular spaces in ideal
minimal spaces. The famous separation lemma called Urysohn’s has been proved under mIαg-normal
spaces. Few equivalent statements on mIαg-normal and mIαg-regular spaces were established. In
future, this work will be extended to discuss about Tietze extension theorem and Hausdorff spaces in
ideal minimal spaces.
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