Intuitionistic Fuzzy Magnified Translation of PS-Algebra

Mohsin Khalid ${ }^{1(1)}$, Zafar $^{\text {Iqbal }}{ }^{2}$ (D) Rakib Iqbal 3 (©)

Article History
Received: 11 Jul 2019
Accepted: 04 Jun 2021
Published: 30 Jun 2021
Research Article

Abstract

In this paper, the concepts of intuitionistic fuzzy α-translation (IFAT), intuitionistic fuzzy α-multiplication (IFAM), and intuitionistic fuzzy magnified $\beta \alpha$ translation (IFMBAT) are introduced in the setup of PS-algebra. Some properties of PS-ideal and PS-subalgebra are investigated by applying the concepts of IFAT, IFAM, and IFMBAT. Intersection and union of intuitionistic fuzzy PS-ideals are explained through results and examples.

Keywords - Intuitionistic fuzzy α-translation, intuitionistic fuzzy α-multiplication, intuitionistic fuzzy PSideal, intuitionistic fuzzy PS-subalgebra, intuitionistic fuzzy magnified $\beta \alpha$-translation
Mathematics Subject Classification (2020) - 03B20, 06F99

1. Introduction

Zadeh [1] introduced the idea of fuzzy set in 1965. The deep study of fuzzy subsets and its applications to different mathematical structures developed the fuzzy mathematics. Fuzzy algebra is a significant branch of fuzzy mathematics. Idea of Fuzzy set has been applied to different algebraic structures like groups, rings, modules, vector spaces and topologies. In this way, Iseki and Tanaka [2] introduced the idea of BCK-algebra in 1978. Iseki [3] introduced the idea of BCI-algebra in 1980 and it is clear that the class of BCK-algebra is a proper sub class of the class of BCI-algebra. Lee et al. [4] discussed the fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication of fuzzy subalgebra in BCK/BCI-algebra. Relationship among fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication are also investigated. Ansari and Chandramouleeswaran [5] introduced the notion of fuzzy translation, fuzzy extension and fuzzy multiplication of fuzzy β ideals of β-algebra and investigated some of their properties. Priya and Ramachandran $[6,7]$ introduced the class of PS-algebra. Lekkoksung [8] concentrated on fuzzy magnified translation in ternary hemirings, which is a generalization of BCI / BCK/Q / KU / d-algebra. Senapati et al. [9] have done much work on intuitionistic fuzzy H-ideals in BCK/BCI-algebra. Jana et al. [10] wrote on intuitionistic fuzzy G-algebra. Senapati et al. [11] discussed fuzzy translations of fuzzy H-ideals in BCK/BCI-algebra. Atanassov [12] introduced intuitionistic fuzzy set. Senapati [13] investigated the relationship among intuitionistic fuzzy translation, intuitionistic fuzzy extension and intuitionistic fuzzy multiplication in B-algebra. Kim and Jeong [14] introduced the intuitionistic fuzzy structure of B-algebra. Senapati et al. [15] introduced the cubic subalgebras and cubic closed ideals of B-algebras. Senapati et al. [16] discussed the fuzzy dot subalgebra and fuzzy dot ideal of B-algebras. Priya and Ramachandran [17] worked on fuzzy translation and fuzzy multiplication in PS-algebra. Chandramouleeswaran et al. [18]

[^0]worked on fuzzy translation and fuzzy multiplication in BF/BG-algebra. Jun and Kim [19] worked on intuitionistic fuzzification of the concept of subalgebras and ideals in BCK-algebras.

Purpose of this paper is to introduce the idea of intuitionistic fuzzy α translation (IFAT), intuitionistic fuzzy α multiplication (IFAM) and intuitionistic fuzzy magnified $\beta \alpha$ translation (IFMBAT) in PS-algebra. Some of their properties are investigated in depth by using the idea of intuitionistic fuzzy PS ideal (IFID) and intuitionistic fuzzy PS subalgebra (IFSU).

2. Preliminaries

In this section, we present some basic definitions, that are helpful to understand the paper.
Definition 2.1. [3] An algebra $(Y ; *, 0)$ of type $(2,0)$ is called a BCI-algebra if it satisfies the following conditions:
i. $\left(t_{1} * t_{2}\right) *\left(t_{1} * t_{3}\right) \leq\left(t_{3} * t_{2}\right)$
ii. $t_{1} *\left(t_{1} * t_{2}\right) \leq t_{2}$
iii. $t_{1} \leq t_{1}$
iv. $t_{1} \leq t_{2}$ and $t_{2} \leq t_{1} \Rightarrow t_{1}=t_{2}$
v. $t_{1} \leq 0 \Rightarrow t_{1}=0$, where $t_{1} \leq t_{2}$ is defined by $t_{1} * t_{2}=0, \forall t_{1}, t_{2}, t_{3} \in Y$

Definition 2.2. [1] An algebra $(Y ; *, 0)$ of type (2,0) is called a BCK-algebra if it satisfies the following conditions:
i. $\left(t_{1} * t_{2}\right) *\left(t_{1} * t_{3}\right) \leq\left(t_{3} * t_{2}\right)$
ii. $t_{1} *\left(t_{1} * t_{2}\right) \leq t_{2}$
iii. $t_{1} \leq t_{1}$
iv. $t_{1} \leq t_{2}$ and $t_{2} \leq t_{1} \Rightarrow t_{1}=t_{2}$
v. $0 \leq t_{1} \Rightarrow t_{1}=0$, where $t_{1} \leq t_{2}$ is defined by $t_{1} * t_{2}=0$, for all $t_{1}, t_{2}, t_{3} \in Y$

Definition 2.3. [7] A nonempty set S with a constant 0 and having binary operation $*$ is called PS-algebra if it satisfies the following conditions:

$$
\begin{aligned}
& \text { i. } t_{1} * t_{1}=0 \\
& \text { ii. } t_{1} * 0=0 \\
& \text { iii. } t_{1} * t_{2}=0 \text { and } t_{2} * t_{1}=0 \Rightarrow t_{1}=t_{2}, \forall t_{1}, t_{2} \in Y
\end{aligned}
$$

Definition 2.4. [7] Let S be a nonempty subset of PS-algebra Y, then S is called a PS subalgebra of Y if $t_{1} * t_{2} \in S, \forall t_{1}, t_{2} \in S$.
Definition 2.5. [7] Let Y ba a PS-algebra and I is a subset of Y, then I is called a PS ideal of Y if it satisfies following conditions:
i. $0 \in I$
ii. $t_{2} * t_{1} \in I$ and $t_{2} \in I \rightarrow t_{1} \in I$

Definition 2.6. [6] Let Y be a PS-algebra. A fuzzy set B of Y is called a fuzzy PS ideal of Y if it satisfies the following conditions:
i. $\mu(0) \geq \mu\left(t_{1}\right)$
ii. $\mu\left(t_{1}\right) \geq \min \left\{\mu\left(t_{2} * t_{1}\right), \mu\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$

2.1. Fuzzy and Intuitionistic Fuzzy Logics

Definition 2.7. [1] Let Y be the group of objects denoted generally by t_{1}. Then, a fuzzy set B of Y is defined as $B=\left\{<t_{1}, \mu_{B}\left(t_{1}\right)>\mid t_{1} \in Y\right\}$, where $\mu_{B}\left(t_{1}\right)$ is called the membership value of t_{1} in B and $\mu_{B}\left(t_{1}\right) \in[0,1]$.

Definition 2.8. [6] A fuzzy set B of PS-algebra Y is called a fuzzy PS subalgebra of Y if $\mu\left(t_{1} * t_{2}\right) \geq$ $\min \left\{\mu\left(t_{1}\right), \mu\left(t_{2}\right)\right\}, \forall t_{1}, t_{2} \in Y$.

Definition 2.9. [4,5] Let a fuzzy subset B of Y and $\alpha \in\left[0,1-\sup \left\{\mu_{B}\left(t_{1}\right) \mid t_{1} \in Y\right\}\right]$. A mapping $\left(\mu_{B}\right)_{\alpha}^{T} \mid Y \in[0,1]$ is said to be a fuzzy α translation of μ_{B} if it satisfies $\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\mu_{B}\left(t_{1}\right)+\alpha, \forall t_{1}$ $\in Y$.

Definition 2.10. [4,5] Let a fuzzy subset B of Y and $\alpha \in[0,1]$. A mapping $\left(\mu_{B}\right)_{\alpha}^{M} \mid Y \rightarrow[0,1]$ is said to be a fuzzy α multiplication of B if it satisfies $\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha .\left(\mu_{B}\right)\left(t_{1}\right), \forall t_{1} \in Y$.

Definition 2.11. [12] An intuitionistic fuzzy set (IFS) B over Y is an object having the form $B=\left\{\left\langle t_{1}, \mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$, where $\mu_{B}\left(t_{1}\right) \mid Y \rightarrow[0,1]$ and $\nu_{B}\left(t_{1}\right) \mid Y \rightarrow[0,1]$, with the condition $0 \leq \mu_{B}\left(t_{1}\right)+\nu_{B}\left(t_{1}\right) \leq 1, \forall t_{1} \in Y . \mu_{B}\left(t_{1}\right)$ and $\nu_{B}\left(t_{1}\right)$ represent the degree of membership and the degree of non-membership of the element t_{1} in the set B respectively.

Definition 2.12. [12] Let $A=\left\{\left\langle t_{1}, \mu_{A}\left(t_{1}\right), \nu_{A}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ and $B=\left\{\left\langle t_{1}, \mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ are two IFSs on Y. Then, intersection and union of A and B are indicated by $A \cap B$ and $A \cup B$ respectively and are given by

$$
\begin{aligned}
& A \cap B=\left\{\left\langle t_{1}, \min \left(\mu_{A}\left(t_{1}\right), \mu_{B}\left(t_{1}\right)\right), \max \left(\nu_{A}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right)\right\rangle \mid t_{1} \in Y\right\} \\
& A \cup B=\left\{\left\langle t_{1}, \max \left(\mu_{A}\left(t_{1}\right), \mu_{B}\left(t_{1}\right)\right), \min \left(\nu_{A}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right)\right\rangle \mid t_{1} \in Y\right\}
\end{aligned}
$$

Definition 2.13. [14] An IFS $B=\left\{\left\langle t_{1}, \mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ of Y is called an IFSU of Y if it satisfies these two conditions:
i. $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$
ii. $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}, \forall t_{1}, t_{2} \in Y$

Definition 2.14. [19] An IFS $B=\left\{\left\langle t_{1}, \mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ of Y is said to be an IFID of Y if satisfies these conditions:

$$
\begin{aligned}
& \text { i. } \mu_{B}(0) \geq \mu_{B}\left(t_{1}\right), \nu_{B}(0) \leq \nu_{B}\left(t_{1}\right) \\
& \text { ii. } \mu_{B}\left(t_{1}\right) \geq \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\} \\
& \text { iii. } \nu_{B}\left(t_{1}\right) \leq \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\} \text {, for all } t_{1}, t_{2} \in Y
\end{aligned}
$$

Definition 2.15. [8] Let μ be a fuzzy subset of $Y, \alpha \in[0, \mathrm{~T}]$ and $\beta \in[0,1]$. A mapping $\mu_{\beta \alpha}^{M T} \mid Y \rightarrow[0,1]$ is said to be fuzzy magnified $\beta \alpha$ translation of μ if it satisfies $\mu_{\beta \alpha}^{M T}\left(t_{1}\right)=\beta \cdot \mu\left(t_{1}\right)+\alpha$, for all $t_{1} \in Y$.

3. Intuitionistic Fuzzy Translation and Multiplication

For simplicity, we use the notion $B=\left(\mu_{B}, \nu_{B}\right)$ for the IFS $B=\left\{\left\langle t_{1}, \mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$. In this paper, we use $¥=\inf \left\{\nu_{B}\left(t_{1}\right) \mid t_{1} \in Y\right\}$ for any IFS $B=\left(\mu_{B}, \nu_{B}\right)$ of Y.

3.1. Intuitionistic Fuzzy Translation and Multiplication of PS Subalgebra

Definition 3.1. Let $B=\left(\mu_{B}, \nu_{B}\right)$ be an IFS of Y and let $\alpha \in[0, ¥]$. An object of the form $B_{\alpha}^{T}=\left(\left(\mu_{B}\right)_{\alpha}^{T},\left(\nu_{B}\right)_{\alpha}^{T}\right)$ is called an IFAT of B, when $\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\mu_{B}\left(t_{1}\right)+\alpha$ and $\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\nu_{B}\left(t_{1}\right)-\alpha$, for all $t_{1} \in Y$.

Example 3.2. Let $Y=\{0,1,2\}$ be a PS-algebra with the following Cayley table:

$*$	0	1	2
0	0	1	2
1	0	0	1
2	0	2	0

thus $(Y ; *, 0)$ is a PS-algebra. Now, IFS $B=\left(\mu_{B}, \nu_{B}\right)$ is defined as

$$
\begin{gathered}
\mu_{B}\left(t_{1}\right)= \begin{cases}0.2 & \text { if } t_{1} \neq 1 \\
0.4 & \text { if } t_{1}=1,\end{cases} \\
\nu_{B}\left(t_{1}\right)= \begin{cases}0.6 & \text { if } t_{1} \neq 1 \\
0.3 & \text { if } t_{1}=1\end{cases}
\end{gathered}
$$

is an IFSU. Here $\tilde{A}_{4} \nexists=\inf \left\{\nu_{B}\left(t_{1}\right) \mid t_{1} \in Y\right\}=0.3$, choose $\alpha=0.2$, then the mapping $B_{0.2}^{T} \mid Y \rightarrow$ $[0,1]$ is defined as

$$
\left(\mu_{B}\right)_{0.2}^{T}\left(t_{1}\right)= \begin{cases}0.4 & \text { if } t_{1} \neq 1 \\ 0.6 & \text { if } t_{1}=1\end{cases}
$$

and

$$
\left(\nu_{B}\right)_{0.2}^{T}\left(t_{1}\right)= \begin{cases}0.4 & \text { if } t_{1} \neq 1 \\ 0.1 & \text { if } t_{1}=1\end{cases}
$$

which imply that, $\left(\mu_{B}\right)_{0.2}^{T}\left(t_{1}\right)=\mu_{B}\left(t_{1}\right)+0.2$ and $\left(\nu_{B}\right)_{0.2}^{T}\left(t_{1}\right)=\nu_{B}\left(t_{1}\right)-0.2, \forall t_{1} \in Y$ is an intuitionistic fuzzy (0.2) translation.

Theorem 3.3. Let B be an IFSU of Y and $\alpha \in[0, ¥]$. Then, IFAT B_{α}^{T} of B is an IFSU of Y.
Proof. Assume that, $t_{1}, t_{2} \in Y$. Then,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) & =\mu_{A}\left(t_{1} * t_{2}\right)+\alpha \\
& \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) & =\nu_{B}\left(t_{1} * t_{2}\right)-\alpha \\
& \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

Hence, IFAT B_{α}^{T} of B is an IFSU of Y.
Theorem 3.4. Let B be an IFS of Y such that IFAT B_{α}^{T} of B is an IFSU of Y for some $\alpha \in[0, ¥]$. Then, B is an IFSU of Y.

Proof. Let $B_{\alpha}^{T}=\left(\left(\mu_{B}\right)_{\alpha}^{T},\left(\nu_{B}\right)_{\alpha}^{T}\right)$ be an IFSU of Y for some $\alpha \in[0, ¥]$ and $t_{1}, t_{2} \in Y$. So, we have

$$
\begin{aligned}
\mu_{B}\left(t_{1} * t_{2}\right)+\alpha & =\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{B}\left(t_{1} * t_{2}\right)-\alpha & =\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\mu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B is an IFSU of Y.

Definition 3.5. Let B be an IFS of Y and $\alpha \in[0,1]$. An object having the form $B_{\alpha}^{M}=\left(\mu_{B}\right)_{\alpha}^{M},\left(\nu_{B}\right)_{\alpha}^{M}$ is called an IFAM of B. If $\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha . \mu_{B}\left(t_{1}\right)$ and $\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha . \nu_{B}\left(t_{1}\right)$, for all $t_{1} \in Y$.
Example 3.6. Let $Y=\{0,1,2\}$ be a PS-algebra with the following Cayley table:

$*$	0	1	2
0	0	1	2
1	0	0	1
2	0	2	0

thus $(Y ; *, 0)$ is a PS-algebra. Now IFS $B=\left(\mu_{B}, \nu_{B}\right)$ is defined as

$$
\begin{aligned}
& \mu_{B}\left(t_{1}\right)= \begin{cases}0.5 & \text { if } t_{1} \neq 1 \\
0.4 & \text { if } t_{1}=1,\end{cases} \\
& \nu_{B}\left(t_{1}\right)= \begin{cases}0.2 & \text { if } t_{1} \neq 1 \\
0.3 & \text { if } t_{1}=1\end{cases}
\end{aligned}
$$

is an IFSU, choose $\alpha=0.2$, then the mapping $B_{(0.2)}^{M} \mid Y \rightarrow[0,1]$ is defined by

$$
\left(\mu_{B}\right)_{0.2}^{M}\left(t_{1}\right)= \begin{cases}0.10 & \text { if } t_{1} \neq 1 \\ 0.08 & \text { if } t_{1}=1\end{cases}
$$

and

$$
\left(\mu_{B}\right)_{0.2}^{M}\left(t_{1}\right)= \begin{cases}0.04 & \text { if } t_{1} \neq 1 \\ 0.06 & \text { if } t_{1}=1\end{cases}
$$

which imply that, $\left(\mu_{B}\right)_{0.2}^{M}\left(t_{1}\right)=\mu_{B}\left(t_{1}\right) \cdot(0.2),\left(\nu_{B}\right)_{0.2}^{M}\left(t_{1}\right)=\nu_{B}\left(t_{1}\right) \cdot(0.2), \forall t_{1} \in Y$ is an intuitionistic fuzzy (0.2) multiplication.
Theorem 3.7. Let IFS $B=\left(\mu_{B}, \nu_{B}\right)$ of Y and $\alpha \in[0,1]$, if the IFAM B_{α}^{M} of B be an IFSU of Y. Then, B is an IFSU of Y.

Proof. Assume that, B_{α}^{M} of B is an IFSU of Y for some $\alpha \in[0,1]$. Now, for all $t_{1}, t_{2} \in Y$, we have

$$
\begin{aligned}
\mu_{B}\left(t_{1} * t_{2}\right) \cdot \alpha & =\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right) \cdot \alpha, \mu_{B}\left(t_{2}\right) \cdot \alpha\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\} \cdot \alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{B}\left(t_{1} * t_{2}\right) \cdot \alpha & =\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right) \cdot \alpha, \nu_{B}\left(t_{2}\right) \cdot \alpha\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\} \cdot \alpha
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B is an IFSU of Y.

Theorem 3.8. Let IFS $B=\left(\mu_{B}, \nu_{B}\right)$ of Y is an IFSU of Y and $\alpha \in[0,1]$, then IFAM B_{α}^{M} of B is an IFSU of Y.

Proof. Suppose that, $B=\left(\mu_{B}, \nu_{B}\right)$ be an IFSU of Y. Then, for all $t_{1}, t_{2} \in Y$, we have

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) & =\alpha \cdot \mu\left(t_{1} * t_{2}\right) \\
& \geq \alpha \cdot \min \left\{\left(\mu_{B}\right)\left(t_{1}\right),\left(\mu_{B}\right)\left(t_{2}\right)\right\} \\
& =\min \left\{\alpha \cdot \mu_{B}\left(t_{1}\right), \alpha \cdot \mu_{B}\left(t_{2}\right)\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) & =\alpha \cdot \nu\left(t_{1} * t_{2}\right) \\
& \leq \alpha \cdot \max \left\{\left(\nu_{B}\right)\left(t_{1}\right),\left(\nu_{B}\right)\left(t_{2}\right)\right\} \\
& =\max \left\{\alpha \cdot \nu_{B}\left(t_{1}\right), \alpha \cdot \nu_{B}\left(t_{2}\right)\right\} \\
& =\max \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B_{α}^{M} is an IFSU of Y.

3.2. Intuitionistic Fuzzy Translation and Multiplication of PS Ideal

In this section, intuitionistic fuzzy α translation of IFID, intuitionistic fuzzy α multiplication of IFID, union and intersection of intuitionistic fuzzy translation of IFID are investigated through some results.
Theorem 3.9. If IFAT B_{α}^{T} of B is an intutionistic fuzzy PS ideal, then it fulfills the condition $\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) \geq\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)$ and $\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) \leq\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)$.
Proof. Let IFAT B_{α}^{T} of B is an intutionistic fuzzy PS ideal. Then,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) & =\mu_{B}\left(t_{1} *\left(t_{2} * t_{1}\right)\right)+\alpha \\
& \geq \min \left\{\mu_{B}\left(t_{2} *\left(t_{1} *\left(t_{2} * t_{1}\right)\right)\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\mu_{B}(0)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}(0),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) & =\nu_{B}\left(t_{1} *\left(t_{2} * t_{1}\right)\right)-\alpha \\
& \leq \max \left\{\nu_{B}\left(t_{2} *\left(t_{1} *\left(t_{2} * t_{1}\right)\right)\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\nu_{B}(0)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}(0),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)
\end{aligned}
$$

Hence, $\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) \geq\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)$ and $\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} *\left(t_{2} * t_{1}\right)\right) \leq\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)$.
Theorem 3.10. If B is an IFID of Y, then IFAT B_{α}^{T} of B is an IFID of Y, for all $\alpha \in[0, ¥]$.
Proof. Let B be an IFID of Y and $\alpha \in[0, ¥]$. Then, $\left(\mu_{B}\right)_{\alpha}^{T}(0)=\mu_{B}(0)+\alpha \geq \mu_{B}\left(t_{1}\right)+\alpha=\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)$ and $\left(\nu_{B}\right)_{\alpha}^{T}(0)=\nu_{B}(0)-\alpha \leq \nu_{B}\left(t_{1}\right)-\alpha=\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)$. Therefore,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right) & =\mu_{B}\left(t_{1}\right)+\alpha, \\
& \geq \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\mu_{B}\left(t_{1} * t_{2}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right) & =\nu_{B}\left(t_{1}\right)-\alpha, \\
& \leq \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\nu_{B}\left(t_{1} * t_{2}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

for all $t_{1}, t_{2} \in Y$ and $\alpha \in[0, ¥]$. Hence, B_{α}^{T} of B is an IFID of Y.
Theorem 3.11. If B is an intutionistic fuzzy set of Y, such that IFAT B_{α}^{T} of B is an IFID of Y, for all $\alpha \in[0, ¥]$. Then, B is an IFID of Y.

Proof. Suppose B_{α}^{T} is an IFID of Y, where $\alpha \in[0, ¥]$ and $t_{1}, t_{2} \in Y$ then,

$$
\begin{gathered}
\mu_{B}(0)+\alpha=\left(\mu_{B}\right)_{\alpha}^{T}(0) \geq\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\mu_{B}\left(t_{1}\right)+\alpha \\
\nu_{B}(0)-\alpha=\left(\nu_{B}\right)_{\alpha}^{T}(0) \leq\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\nu_{B}\left(t_{1}\right)-\alpha
\end{gathered}
$$

which imply, $\mu_{B}(0) \geq \mu_{B}\left(t_{1}\right)$ and $\nu_{B}(0) \leq \nu_{B}\left(t_{1}\right)$ now,

$$
\begin{aligned}
\mu_{B}\left(t_{1}\right)+\alpha & =\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right) \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1} * t_{2}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{B}\left(t_{1}\right)-\alpha & =\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right) \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1} * t_{2}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1}\right) \geq \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1}\right) \leq \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B is an IFID of Y.

Theorem 3.12. Let B be an IFID of Y for some $\alpha \in[0, ¥]$. Then, IFAT B_{α}^{T} of B is an IFSU of Y.
Proof. Assume that, $t_{1}, t_{2} \in Y$, then

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) & =\mu_{B}\left(t_{1} * t_{2}\right)+\alpha \\
& \geq \min \left\{\mu_{B}\left(t_{2} *\left(t_{1} * t_{2}\right)\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\mu_{B}(0), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) & =\nu_{B}\left(t_{1} * t_{2}\right)-\alpha \\
& \leq \max \left\{\nu_{B}\left(t_{2} *\left(t_{1} * t_{2}\right)\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\nu_{B}(0), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\}
\end{aligned}
$$

Hence, B_{α}^{T} is an IFSU of Y.
Theorem 3.13. If IFAT B_{α}^{T} of B is an IFID of Y and $\alpha \in[0, ¥]$, then B is an IFSU of Y.
Proof. Suppose that, B_{α}^{T} of B is an IFID of Y. Since

$$
\begin{aligned}
\left(\mu_{B}\right)\left(t_{1} * t_{2}\right)+\alpha & =\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2} *\left(t_{1} * t_{2}\right)\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}(0),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha
\end{aligned}
$$

then $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$. Similarly, since

$$
\begin{aligned}
\left(\nu_{B}\right)\left(t_{1} * t_{2}\right)-\alpha & =\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1} * t_{2}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2} *\left(t_{1} * t_{2}\right)\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}(0),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{2}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha
\end{aligned}
$$

then $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$. Hence, B is an IFSU of Y.
Theorem 3.14. Intersection of any two intuitionistic fuzzy translations of an intuitionistic fuzzy PS ideal B of Y is an intuitionistic fuzzy PS ideal of Y.

Proof. Suppose, B_{α}^{T} and B_{β}^{T} are intuitionistic fuzzy translations of intuitionistic fuzzy PS ideal B of Y, where $\alpha, \beta \in[0, ¥]$ and $\alpha \leq \beta$, as we know that, B_{α}^{T} and B_{β}^{T} are intuitionistic fuzzy PS ideals of Y. Then,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\alpha}^{T} \cap\left(\mu_{B}\right)_{\beta}^{T}\right)\left(t_{1}\right) & =\min \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta}^{T}\left(t_{1}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{1}\right)+\beta\right\} \\
& =\mu_{B}\left(t_{1}\right)+\alpha \\
& =\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\alpha}^{T} \cap\left(\nu_{B}\right)_{\beta}^{T}\right)\left(t_{1}\right) & =\max \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta}^{T}\left(t_{1}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{1}\right)-\beta\right\} \\
& =\nu_{B}\left(t_{1}\right)-\alpha \\
& =\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\alpha}^{T} \cap B_{\beta}^{T}$ is an intuitionistic fuzzy PS ideal of Y.
Theorem 3.15. Union of any two intuitionistic fuzzy translations of an IFID B of Y is an IFID of Y.

Proof. Suppose B_{α}^{T} and B_{β}^{T} are intuitionistic fuzzy translations of an IFID B of Y, where $\alpha, \beta \in$ $[0, ¥]$ and $\alpha \leq \beta$, as we know that, B_{α}^{T} and B_{β}^{T} are intuitionistic fuzzy PS ideals of Y. Then,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\alpha}^{T} \cup\left(\mu_{B}\right)_{\beta}^{T}\right)\left(t_{1}\right) & =\max \left\{\left(\mu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta}^{T}\left(t_{1}\right)\right\} \\
& =\max \left\{\mu_{B}\left(t_{1}\right)+\alpha, \mu_{B}\left(t_{1}\right)+\beta\right\} \\
& =\mu_{B}\left(t_{1}\right)+\beta \\
& =\left(\mu_{B}\right)_{\beta}^{T}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\alpha}^{T} \cup\left(\nu_{B}\right)_{\beta}^{T}\right)\left(t_{1}\right) & =\min \left\{\left(\nu_{B}\right)_{\alpha}^{T}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta}^{T}\left(t_{1}\right)\right\} \\
& =\min \left\{\nu_{B}\left(t_{1}\right)-\alpha, \nu_{B}\left(t_{1}\right)-\beta\right\} \\
& =\nu_{B}\left(t_{1}\right)-\beta \\
& =\left(\nu_{B}\right)_{\beta}^{T}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\alpha}^{T} \cup B_{\beta}^{T}$ is an intuitionistic fuzzy PS ideal of Y.
Theorem 3.16. Let B be an IFS of Y such that IFAM B_{α}^{M} of B is an IFID of Y for $\alpha \in(0,1]$, then B is an IFID of Y.

Proof. Suppose that, B_{α}^{M} is an IFID of Y for $\alpha \in(0,1]$ and $t_{1}, t_{2} \in Y$. Then, $\alpha \cdot \mu_{B}(0)=\left(\mu_{B}\right)_{\alpha}^{M}(0)$ $\geq\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha \cdot \mu_{B}\left(t_{1}\right)$, so $\mu_{B}(0) \geq \mu_{B}\left(t_{1}\right)$ and $\alpha \cdot \nu_{B}(0)=\left(\nu_{B}\right)_{\alpha}^{M}(0) \leq\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha \cdot \nu_{B}\left(t_{1}\right)$, so $\nu_{B}(0) \leq \nu_{B}\left(t_{1}\right)$. Since

$$
\begin{aligned}
\alpha \cdot \mu_{B}\left(t_{1}\right) & =\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\min \left\{\alpha \cdot \mu_{B}\left(t_{1} * t_{2}\right), \alpha \cdot \mu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\mu_{B}\left(t_{1}\right) \geq \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}$. Similarly, since

$$
\begin{aligned}
\alpha \cdot \nu_{B}\left(t_{1}\right) & =\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\max \left\{\alpha \cdot \nu_{B}\left(t_{1} * t_{2}\right), \alpha \cdot \nu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\nu_{B}\left(t_{1}\right) \leq \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}$. Hence, B is an IFID of Y.
Theorem 3.17. If B is an IFID of Y, then IFAM B_{α}^{M} of B is an IFID of Y, for all $\alpha \in(0,1]$.
Proof. Let B be an IFID of Y and $\alpha \in(0,1]$, we have

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{M}(0) & =\alpha \cdot \mu_{B}(0) \\
& \geq \alpha \cdot \mu_{B}\left(t_{1}\right) \\
& =\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{M}(0) & =\alpha \cdot \nu_{B}(0) \\
& \leq \alpha \cdot \nu_{B}\left(t_{1}\right) \\
& =\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right) & =\alpha \cdot \mu_{B}\left(t_{1}\right) \\
& \geq \alpha \cdot \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\} \\
& =\min \left\{\alpha \cdot \mu_{B}\left(t_{1} * t_{2}\right), \alpha \cdot \mu_{B}\left(t_{2}\right)\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right) & =\alpha \cdot \nu_{B}\left(t_{1}\right) \\
& \leq \alpha \cdot \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\} \\
& =\max \left\{\alpha \cdot \nu_{B}\left(t_{1} * t_{2}\right), \alpha \cdot \nu_{B}\left(t_{2}\right)\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

Hence, B_{α}^{M} of B is an IFID of $Y, \forall \alpha \in(0,1]$.
Theorem 3.18. Let B be an IFID of Y and $\alpha \in[0,1]$. Then, IFAM B_{α}^{M} of B is an IFSU of Y.
Proof. Suppose that, $t_{1}, t_{2} \in Y$, we have

$$
\begin{aligned}
\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) & =\alpha \cdot \mu_{B}\left(t_{1} * t_{2}\right) \\
& \geq \alpha \cdot \min \left\{\mu_{B}\left(t_{2} *\left(t_{1} * t_{2}\right)\right), \mu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \min \left\{\mu_{B}(0), \mu_{B}\left(t_{2}\right)\right\} \\
& \geq \alpha \cdot \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\} \\
& =\min \left\{\alpha \cdot \mu_{B}\left(t_{1}\right), \alpha \cdot m u_{B}\left(t_{2}\right)\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) & =\alpha \cdot \nu_{B}\left(t_{1} * t_{2}\right) \\
& \leq \alpha \cdot \max \left\{\nu_{B}\left(t_{2} *\left(t_{1} * t_{2}\right)\right), \nu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \max \left\{\nu_{B}(0), \nu_{B}\left(t_{2}\right)\right\} \\
& \leq \alpha \cdot \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\} \\
& =\max \left\{\alpha \cdot \nu_{B}\left(t_{1}\right), \alpha \cdot \nu_{B}\left(t_{2}\right)\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\}
\end{aligned}
$$

Hence, B_{α}^{M} is an IFSU of Y.
Theorem 3.19. If the IFAM B_{α}^{M} of B is an IFID of Y, for $\alpha \in(0,1]$. Then, B is an intuitionistic fuzzy PS-subalgebra of Y.

Proof. Assume that, B_{α}^{M} of B is an IFID of Y. Since

$$
\begin{aligned}
\alpha \cdot\left(\mu_{B}\right)\left(t_{1} * t_{2}\right) & =\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2} *\left(t_{1} * t_{2}\right)\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\alpha}^{M}(0),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\min \left\{\alpha \cdot \mu_{B}\left(t_{1}\right), \alpha \cdot \mu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$. Similarly, since

$$
\begin{aligned}
\alpha \cdot\left(\nu_{B}\right)\left(t_{1} * t_{2}\right) & =\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1} * t_{2}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2} *\left(t_{1} * t_{2}\right)\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\alpha}^{M}(0),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{2}\right)\right\} \\
& =\max \left\{\alpha \cdot \nu_{B}\left(t_{1}\right), \alpha \cdot \nu_{B}\left(t_{2}\right)\right\} \\
& =\alpha \cdot \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$. Hence, B is an IFSU of Y.
Theorem 3.20. Intersection of any two intuitionistic fuzzy multiplications of an IFID B of Y is an IFID of Y.

Proof. Suppose that, B_{α}^{M} and B_{β}^{M} are intuitionistic fuzzy multiplications of IFID B of Y, where $\alpha, \beta \in[0,1]$ and $\alpha \leq \beta$, as we know that B_{α}^{M} and B_{β}^{M} are IFIDs of Y. Then,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\alpha}^{M} \cap\left(\mu_{B}\right)_{\beta}^{M}\right)\left(t_{1}\right) & =\min \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta}^{M}\left(t_{1}\right)\right\} \\
& =\min \left\{\mu_{B}\left(t_{1}\right) \cdot \alpha, \mu_{B}\left(t_{1}\right) \cdot \beta\right\} \\
& =\mu_{B}\left(t_{1}\right) \cdot \alpha \\
& =\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\alpha}^{M} \cap\left(\nu_{B}\right)_{\beta}^{M}\right)\left(t_{1}\right) & =\max \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta}^{M}\left(t_{1}\right)\right\} \\
& =\max \left\{\nu_{B}\left(t_{1}\right) \cdot \alpha, \nu_{B}\left(t_{1}\right) \cdot \beta\right\} \\
& =\nu_{B}\left(t_{1}\right) \cdot \alpha \\
& =\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\alpha}^{M} \cap B_{\beta}^{M}$ is IFID of Y.
Theorem 3.21. Union of any two intuitionistic fuzzy multiplications of an IFID B of Y is an IFID of Y.

Proof. Suppose that, B_{α}^{M} and B_{β}^{M} are intuitionistic fuzzy multiplications of an IFID B of Y, where $\alpha, \beta \in[0,1]$ and $\alpha \leq \beta$ and B_{α}^{M} and B_{β}^{M} are IFIDs of Y. Then,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\alpha}^{M} \cup\left(\mu_{B}\right)_{\beta}^{M}\right)\left(t_{1}\right) & =\max \left\{\left(\mu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta}^{M}\left(t_{1}\right)\right\} \\
& =\max \left\{\mu_{B}\left(t_{1}\right) \cdot \alpha, \mu_{B}\left(t_{1}\right) \cdot \beta\right\} \\
& =\mu_{B}\left(t_{1}\right) \cdot \beta \\
& =\left(\mu_{B}\right)_{\beta}^{M}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\alpha}^{M} \cup\left(\nu_{B}\right)_{\beta}^{M}\right)\left(t_{1}\right) & =\min \left\{\left(\nu_{B}\right)_{\alpha}^{M}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta}^{M}\left(t_{1}\right)\right\} \\
& =\min \left\{\nu_{B}\left(t_{1}\right) \cdot \alpha, \nu_{B}\left(t_{1}\right) \cdot \beta\right\} \\
& =\nu_{B}\left(t_{1}\right) \cdot \beta \\
& =\left(\nu_{B}\right)_{\beta}^{M}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\alpha}^{M} \cup B_{\beta}^{M}$ is IFID of Y.

3.3. Intuitionistic Fuzzy Magnified $\beta \alpha$ Translation

In this section, the notion of intuitionistic fuzzy magnified $\beta \alpha$ translation IFMBAT is presented and investigated.

Definition 3.22. Let $B=\left(\mu_{B}, \nu_{B}\right)$ be an IFS of Y and $\alpha \in[0, ¥], \beta \in[0,1]$. An object having the form $B_{\beta \alpha}^{M T}=\left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T},\left(\nu_{B}\right)_{\beta \alpha}^{M T}\right\}$ is said to be an IFMBAT of B if it satisfies $\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)=\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha$ and $\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)=\beta . \nu_{B}\left(t_{1}\right)-\alpha, \forall t_{1} \in Y$.
Example 3.23. Let $Y=\{0,1,2\}$ be a PS-algebra defined in example 2.1. A IFS $B=\left(\mu_{B}, \nu_{B}\right)$ of Y is defined as:

$$
\begin{aligned}
& \mu_{B}\left(t_{1}\right)= \begin{cases}0.3 & \text { if } t_{1} \neq 2 \\
0.5 & \text { if } t_{1}=2\end{cases} \\
& \nu_{B}\left(t_{1}\right)= \begin{cases}0.6 & \text { if } t_{1} \neq 2 \\
0.4 & \text { if } t_{1}=2\end{cases}
\end{aligned}
$$

is an IFSU and $¥=\inf \left\{\nu_{B}\left(t_{1}\right) \mid t_{1} \in Y\right\}=0.4$, choose $\alpha=0.1 \in[0, ¥]$ and $\beta=0.3 \in[0,1]$, then the mapping $B_{(0.3)(0.1)}^{M T} \mid Y \rightarrow[0,1]$ is given as

$$
\left(\mu_{B}\right)_{(0.3)(0.1)}^{M T}\left(t_{1}\right)= \begin{cases}(0.3)(0.3)+(0.1)=0.19 & \text { if } t_{1} \neq 2 \\ (0.3)(0.5)+(0.1)=0.25 & \text { if } t_{1}=2\end{cases}
$$

and

$$
\left(\nu_{B}\right)_{(0.3)(0.1)}^{M T}\left(t_{1}\right)= \begin{cases}(0.3)(0.6)-(0.1)=0.08 & \text { if } t_{1} \neq 2 \\ (0.3)(0.4)-(0.1)=0.02 & \text { if } t_{1}=2\end{cases}
$$

which imply that, $\left(\mu_{B}\right)_{(0.3)(0.1)}^{M T}\left(t_{1}\right)=(0.3) \cdot \mu_{B}\left(t_{1}\right)+0.1$ and $\left(\nu_{B}\right)_{(0.3)(0.1)}^{M T}\left(t_{1}\right)=(0.3) \cdot \nu_{B}\left(t_{1}\right)-0.1, \forall t_{1}$ $\in Y$. Hence, $B_{(0.3)(0.1)}^{M T}$ is an intuitionistic fuzzy magnified (0.3)(0.1) translation.
Theorem 3.24. Let B be an intuitionistic fuzzy subset of Y, such that $\alpha \in[0, ¥], \beta \in[0,1]$ and a mapping $B_{\beta \alpha}^{M T} \mid Y \rightarrow[0,1]$ is IFMBAT of B, if B is IFSU of Y. Then, $B_{\beta \alpha}^{M T}$ is IFSU of Y.

Proof. Let B be an IFS of $Y, \alpha \in[0, ¥], \beta \in[0,1]$ and a mapping $B_{\beta \alpha}^{M T} \mid Y \rightarrow[0,1]$ is IFMBAT of B. Suppose B is an IFSU of Y. Then,

$$
\begin{aligned}
\mu_{B}\left(t_{1} * t_{2}\right) & \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\} \\
\nu_{B}\left(t_{1} * t_{2}\right) & \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right) & =\beta \cdot \mu_{B}\left(t_{1} * t_{2}\right)+\alpha \\
& \geq \beta \cdot \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha, \beta \cdot \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& \geq \min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right) & =\beta \cdot \nu_{B}\left(t_{1} * t_{2}\right)-\alpha \\
& \leq \beta \cdot \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha, \beta \cdot \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& \leq \max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}
\end{aligned}
$$

Hence, IFMBAT $B_{\beta \alpha}^{M T}$ is an IFSU of Y.
Theorem 3.25. Let B be an IFS of Y, such that $\alpha \in[0, ¥], \beta \in[0,1]$ and a mapping $B_{\beta \alpha}^{M T} \mid Y \rightarrow$ $[0,1]$ is IFMBAT of B, if $B_{\beta \alpha}^{M T}$ is IFSU of Y. Then, B is an IFSU of Y.

Proof. Let B be an intuitionistic fuzzy subset of Y, where $\alpha \in[0, ¥], \beta \in[0,1]$ and a mapping $B_{\beta \alpha}^{M T} \mid Y \rightarrow[0,1]$ is IFMBAT of B. Let $B_{\beta \alpha}^{M T}=\left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T},\left(\nu_{B}\right)_{\beta \alpha}^{M T}\right\}$ is an IFSU of Y, we have

$$
\begin{aligned}
\beta \cdot \mu_{B}\left(t_{1} * t_{2}\right)+\alpha & =\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& =\min \left\{\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha, \beta \cdot \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\beta \cdot \min \left\{\mu_{B}\left(t_{2}\right), \mu_{B}\left(t_{1}\right)\right\}+\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\beta \cdot \nu_{B}\left(t_{1} * t_{2}\right)-\alpha & =\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& =\max \left\{\beta \cdot \nu_{B}\left(t_{2}\right)-\alpha, \beta \cdot \nu_{B}\left(t_{1}\right)-\alpha\right\} \\
& =\beta \cdot \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{1}\right)\right\}-\alpha
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1} * t_{2}\right) \geq \min \left\{\mu_{B}\left(t_{1}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{\nu_{B}\left(t_{1}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B is an IFSU of Y.

Theorem 3.26. If B is an IFID of Y, then IFMBAT $B_{\beta \alpha}^{M T}$ of B is an IFID of Y, for all $\alpha \in[0, ¥]$ and $\beta \in(0,1]$.

Proof. Suppose that $B=\left(\mu_{B}, \nu_{B}\right)$ be an IFID of Y. Then,

$$
\begin{aligned}
\left(\mu_{B}\right)_{\beta \alpha}^{M T}(0) & =\beta \cdot \mu_{B}(0)+\alpha \\
& \geq \beta \cdot \mu_{B}\left(t_{1}\right)+\alpha \\
& =\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\nu_{B}\right)_{\beta \alpha}^{M T}(0) & =\beta \cdot \nu_{B}(0)-\alpha \\
& \leq \beta \cdot \nu_{B}\left(t_{1}\right)-\alpha \\
& =\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)
\end{aligned}
$$

Moreover, since

$$
\begin{aligned}
\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) & =\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha \\
& \geq \beta \cdot \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha \\
& =\min \left\{\beta \cdot \mu_{B}\left(t_{1} * t_{2}\right)+\alpha, \beta \cdot \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \geq \min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$ and $\forall \alpha \in[0, ¥], \beta \in(0,1]$. Similarly, since

$$
\begin{aligned}
\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) & =\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha \\
& \leq \beta \cdot \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha \\
& =\max \left\{\beta \cdot \nu_{B}\left(t_{1} * t_{2}\right)-\alpha, \beta \cdot \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) & =\max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}
\end{aligned}
$$

then $\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \leq \max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$ and $\forall \alpha \in[0, ¥], \beta \in(0,1]$. Hence, $B_{\beta \alpha}^{M T}$ of B is an IFID of Y.

Theorem 3.27. If B is an intuitionistic fuzzy set of Y, such that IFMBAT $B_{\beta \alpha}^{M T}$ of B is an IFID of Y, for all $\alpha \in[0, ¥]$ and $\beta \in(0,1]$. Then, B is an IFID of Y.

Proof. Suppose that IFMBAT $B_{\beta \alpha}^{M T}$ is an IFID of Y for some $\alpha \in[0, ¥], \beta \in(0,1]$ and $t_{1}, t_{2} \in Y$, then

$$
\begin{aligned}
\beta \cdot \mu_{B}(0)+\alpha & =\left(\mu_{B}\right)_{\beta \alpha}^{M T}(0) \\
& \geq\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \\
& =\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\beta \cdot \nu_{B}(0)-\alpha & =\left(\nu_{B}\right)_{\beta \alpha}^{M T}(0) \\
& \leq\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \\
& =\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha
\end{aligned}
$$

which imply that, $\mu_{B}(0) \geq \mu_{B}\left(t_{1}\right)$ and $\nu_{B}(0) \leq \nu_{B}\left(t_{1}\right)$. Now, we have

$$
\begin{aligned}
\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha & =\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \\
& \geq \min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& =\min \left\{\beta \cdot \mu_{B}\left(t_{1} * t_{2}\right)+\alpha, \beta \cdot \mu_{B}\left(t_{2}\right)+\alpha\right\} \\
& =\beta \cdot \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}+\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha & =\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right) \\
& \leq \max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1} * t_{2}\right),\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{2}\right)\right\} \\
& =\max \left\{\beta \cdot \nu_{B}\left(t_{1} * t_{2}\right)-\alpha, \beta \cdot \nu_{B}\left(t_{2}\right)-\alpha\right\} \\
& =\beta \cdot \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}-\alpha
\end{aligned}
$$

which imply that, $\mu_{B}\left(t_{1}\right) \geq \min \left\{\mu_{B}\left(t_{1} * t_{2}\right), \mu_{B}\left(t_{2}\right)\right\}$ and $\nu_{B}\left(t_{1}\right) \leq \max \left\{\nu_{B}\left(t_{1} * t_{2}\right), \nu_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence, B is an IFID of Y.

Theorem 3.28. Intersection of any two IFMBATs $B_{\beta \alpha}^{M T}$ of an IFID B of Y is an IFID of Y.
Proof. Suppose that, $B_{\beta \alpha}^{M T}$ and $B_{\dot{\beta} \dot{\alpha}}^{M T}$ are two IFMBATs of IFID B of Y, where $\alpha, \dot{\alpha} \in[0, ¥]$ and $\beta, \dot{\beta} \in(0,1]$. Assume $\alpha \leq \dot{\alpha}$, and $\beta=\dot{\beta}$, then by Theorem 3.26, $B_{\beta \alpha}^{M T}$ and $B_{\dot{\beta} \dot{\alpha}}^{M T}$ are IFIDs of Y.

Therefore,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\beta \alpha}^{M T} \cap\left(\mu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\right)\left(t_{1}\right) & =\min \left\{\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\mu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)\right\} \\
& =\min \left\{\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha, \beta \cdot \mu_{B}\left(t_{1}\right)+\dot{\alpha}\right\} \\
& =\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha \\
& =\left(\mu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\beta \alpha}^{M T} \cap\left(\nu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\right)\left(t_{1}\right) & =\max \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\nu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)\right\} \\
& =\max \left\{\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha, \beta \cdot \nu_{B}\left(t_{1}\right)-\dot{\alpha}\right\} \\
& =\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha \\
& =\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\beta \alpha}^{M T} \cap B_{\dot{\beta} \dot{\alpha}}^{M T}$ is IFID of Y.
Theorem 3.29. Union of any two IFMBATs $B_{\beta \alpha}^{M T}$ of an IFID B of Y is an IFID of Y.
Proof. Suppose that, $B_{\beta \alpha}^{M T}$ and $B_{\dot{\beta} \dot{\alpha}}^{M T}$ are two IFMBATs of IFID B of Y, where $\alpha, \dot{\alpha} \in[0, ¥]$ and $\beta, \dot{\beta} \in(0,1]$. Assume $\alpha \leq \dot{\alpha}$, and $\beta=\dot{\beta}$, then by Theorem 3.26, $B_{\beta \alpha}^{M T}$ and $B_{\dot{\beta} \dot{\alpha}}^{M T}$ are IFIDs of Y. Therefore,

$$
\begin{aligned}
\left(\left(\mu_{B}\right)_{\beta \dot{\alpha}}^{M T} \cup\left(\mu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\right)\left(t_{1}\right) & =\max \left\{\left(\mu_{B}\right)_{\beta \dot{\alpha}}^{M T}\left(t_{1}\right),\left(\mu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)\right\} \\
& =\max \left\{\beta \cdot \mu_{B}\left(t_{1}\right)+\alpha, \dot{\beta} \cdot \mu_{B}\left(t_{1}\right)+\dot{\alpha}\right\} \\
& =\dot{\beta} \cdot \mu_{B}\left(t_{1}\right)+\dot{\alpha} \\
& =\left(\mu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left(\nu_{B}\right)_{\beta \alpha}^{M T} \cup\left(\nu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\right)\left(t_{1}\right) & =\min \left\{\left(\nu_{B}\right)_{\beta \alpha}^{M T}\left(t_{1}\right),\left(\nu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)\right\} \\
& =\min \left\{\beta \cdot \nu_{B}\left(t_{1}\right)-\alpha, \dot{\beta} \cdot \nu_{B}\left(t_{1}\right)-\dot{\alpha}\right\} \\
& =\dot{\beta} \cdot \nu_{B}\left(t_{1}\right)-\dot{\alpha} \\
& =\left(\nu_{B}\right)_{\dot{\beta} \dot{\alpha}}^{M T}\left(t_{1}\right)
\end{aligned}
$$

Hence, $B_{\beta \alpha}^{M T} \cup B_{\dot{\beta} \dot{\alpha}}^{M T}$ is IFID of Y.

4. Conclusion

In this paper, IFAT, IFAM and IFMBAT of PS-algebra are discussed with the help of subalgebras and ideals. Moreover, IFMBAT of PS-algebra is studied, which gave us new line of thought to apply PS-algebra on some other sets. For future work, PS-algebra can be applied on interval valued intuitionistic fuzzy magnified translation, neutrosophic cubic magnified translation and T-neutrosophic cubic magnified translation.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338-353.
[2] K. Iseki, S. Tanaka, An Introduction to the Theory of BCK-Algebras, Mathematica Japonica 23 (1978) 1-20.
[3] K. Iseki, On BCI-Algebras, Mathematics Seminar Notes 8 (1980) 125-130.
[4] K. J. Lee, Y. B. Jun, M. I. Doh, Fuzzy Translations and Fuzzy Multiplications of BCK/BCIAlgebras, Communications of the Korean Mathematical Society 24(3) (2009) 353-360.
[5] M. A. A. Ansari, M. Chandramouleeswaran, Fuzzy Translations of Fuzzy β-Ideals of β-Algebras, International Journal of Pure and Applied Mathematics 92(5) (2014) 657-667.
[6] T. Priya, T. Ramachandran, A Note on Fuzzy PS-Ideals in PS-Algebra and Its Level Subsets, International Journal of Advanced Mathematical Sciences 2(2) (2014) 101-106.
[7] T. Priya, T. Ramachandran, Classification of PS-Algebras, International Journal of Innovative Science, Engineering and Technology 1(7) (2014) 193-199.
[8] S. Lekkoksung, On Fuzzy Magnifed Translation in Ternary Hemirings, International Mathematical Forum 7(21) (2012) 1021-1025.
[9] T. Senapati, M. Bhowmik, M. Pal, Atanassov's Intuitionistic Fuzzy Translations of Intuitionistic Fuzzy H-Ideals in BCK/BCI-Algebras, Notes on Intuitionistic Fuzzy Sets 19(1) (2013) 32-47.
[10] C. Jana, T. Senapati, M. Bhowmik, M. Pal, On Intuitionistic Fuzzy G-Subalgebras, Fuzzy Information and Engineering 7 (2015) 195-209.
[11] T. Senapati, M. Bhowmik, M. Pal, B. Davvaz, Fuzzy Translations of Fuzzy H-Ideals in BCK/BCIAlgebras, Journal of the Indonesian Mathematical Society 21 (2015) 45-58.
[12] K. T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Studies in Fuzziness and Soft Computing, Vol. 35, Physica-Verlag, Heidelberg, New York, 1999.
[13] T. Senapati, Translation of Intuitionistic Fuzzy B-Algebras, Fuzzy Information and Engineering 7 (2015) 389-404.
[14] Y. H. Kim, T. E. Jeong, Intuitionistic Fuzzy Structure of B-Algebras, Journal of Applied Mathematics and Computing 22 (2006) 491-500.
[15] T. Senapati, C. S. Kim, M. Bhowmik, M. Pal, Cubic Subalgebras and Cubic Closed Ideals of B-Algebras, Fuzzy Information and Engineering 7 (2015) 129-149.
[16] T. Senapati, M. Bhowmik, M. Pal, Fuzzy Dot Subalgebras and Fuzzy Dot Ideals of B-Algebras, Journal of Uncertain Systems 8 (2014) 22-30.
[17] T. Priya, T. Ramachandran, Fuzzy Translation and Fuzzy Multiplication on PS-Algebras, International Journal of Innovation in Science and Mathematics 2(5) (2014) 485-489.
[18] M. Chandramouleeswaran, P. Muralikrishna, S. Srinivasan, Fuzzy Translation and Fuzzy Multiplication in BF/BG-Algebras, Indian Journal of Science and Technology, 6 (9) (2013), 5216-5219.
[19] Y. B. Jun, K. H. Kim, Intuitionistic Fuzzy Ideals in BCK-Algebras, International Journal of Mathematics and Mathematical Sciences 24(12) (2000) 839-849.

[^0]: ${ }^{1} \mathrm{mk} 4605107 @$ gmail.com (Corresponding Author); ${ }^{2}$ zafar.iqbal@math.uol.edu.pk.com; ${ }^{3}$ rakibiqbal2012@gmail.com
 ${ }^{1,2}$ Department of Mathematics and Statistics, Faculty of Sciences, University of Lahore, Lahore, Pakistan
 ${ }^{3}$ Department of Mathematics, Mathematics Faculty, University of Management and Technology, Lahore, Pakistan

