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EXPONENTIAL STABILITY OF A TIMOSHENKO TYPE

THERMOELASTIC SYSTEM WITH GURTIN-PIPKIN

THERMAL LAW AND FRICTIONAL DAMPING

Abdelfeteh FAREH

Laboratory of Operator Theory and PDE’s, University of El Oued, ALGERIA

Abstract. In this paper we consider a linear thermoelastic system of Timo-

shenko type where the heat conduction is given by the linearized law of Gurtin-

Pipkin. An existence and uniqueness result is proved by the use of a semigroup
approach. We establish an exponential stability result without any assumption

on the wave speeds once here we have a fully damped system.

1. Introduction

In the present paper we investigate the well-posedness and the asymptotic be-
havior of the following Timoshenko type system ρ1utt = κ (ux + φ)x in (0, π)× R+,

ρ2φtt = bφxx − κ (ux + φ) + δθ − τφt in (0, π)× R+,
cθt = −qx − δφt in (0, π)× R+,

(1)

where u is the transverse displacement of a beam of length π, φ is the rotation angle
of filament, θ is the temperature variation from an equilibrium reference value and
q is the heat flux. The coefficients ρ1, ρ2, c, κ, τ are positive and present the mass
density, the polar moment of inertia of a cross section, the specific heat constant,
the shear modulus and the intensity of the frictional damping respectively, b = EI
is the product of Young’s modulus of elasticity and the moment of inertia of a cross
section, β and δ are coupling constants that are different from zero but their signs
does not matter in the analysis.

To render the system (1) determined an additional equation relating q and θ is
needed. In the classical theory of thermoelasticity the constitutive equation for the
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heat flux is expressed through Fourier’s law of heat conduction

q = −kθx, (2)

where k > 0 represents the coefficient of the thermal conductivity of the material.
In 1921, Timoshenko [32] introduced a shear deformation and a rotational iner-

tia into the derivation of the vibrating beam theory. He modelled the transverse
vibrations of a beam by the conservative system{

ρutt = (K(ux − φ))x, in (0, L)× (0,∞)
Iρφtt = (EIφx)x +K(ux − φ), in (0, L)× (0,∞).

(3)

In the last three decades, the system (3) has been intensively studied for possible
damping mechanisms. Muñoz Rivera and Racke [25] introduced a thermal damping
by coupling system (3) with the classical heat equation. They proved that the
system  ρ1φtt = k (φx + ψ)x ,

ρ2ψtt = bψxx − k (φx + ψ) + γθx,
cθt = κθxx − γψtx.

(4)

(of course with some boundary and initial conditions), is exponentially stable if and
only if

ρ1
k

=
ρ2
b
. (5)

If (5) does not hold Guesmia et al. [17] established a polynomial decay result pro-
vided that the initial data are regular enough.

Almeida Junior et al. [1] considered the thermal coupling of the system (3) in
shear force  ρ1φtt − κ (φx + ψ)x + σθx = 0 in (0, L)× R+,

ρ2ψtt − bψxx + κ (φx + ψ)− σθ = 0 in (0, L)× R+,
ρ3θt − γθxx + σ (φx + ψ)t = 0 in (0, L)× R+,

(6)

subjected to either the boundary conditions

φ(t, 0) = φ(t, L) = ψ(t, 0) = ψ(t, L) = θ(t, 0) = θ(t, L) = 0, (7)

or

φ(t, 0) = φ(t, L) = ψx(t, 0) = ψx(t, L) = θx(t, 0) = θx(t, L) = 0, (8)

and proved that the solution is exponentially stable if and only if

χ =
κ

ρ1
− b

ρ2
= 0. (9)

Otherwise, when (9) does not hold, the authors showed that the system is poly-
nomially stable with a rate of decay t−1/4 for the boundary conditions (7) and an
optimal rate of decay t−1/2 for the boundary conditions (8). Recently [18] reached
the rate t−1/2 for the boundary conditions (7) and

φx(t, 0) = φx(t, L) = ψ(t, 0) = ψ(t, L) = θx(t, 0) = θx(t, L) = 0.



EXPONENTIAL STABILITY OF TIMOSHENKO SYSTEM WITH G-P THERMAL LAW 97

Alves et al. [2] improve the results of [1] for the case of different wave speeds and
obtained the same rate of decay t−1/2 independently of the boundary conditions.
Later, Alves et al. [3] extended the results of [1] to the non-homogeneous case with
the boundary conditions (7). Precisely, they established an exponential stability
provided that the non-homogeneous wave speeds satisfy the condition

κ (x)

ρ1 (x)
=

b (x)

ρ2 (x)
, x ∈ I ⊂ (0, L) , (10)

in an open subinterval I of (0, L). When (10) does not hold they obtained a
polynomial stability result with a rate of decay depending on the regularity of the
initial data.

Recently, Jorge-Silva and Racke [19] considered (6) with Cattaneo’s law and
proved that there is non exponential stability no matter if (9) holds which confirms
the result of [10].

We recall that the model using Fourier’s law (2) leads to a parabolic equation.
Consequently, the heat propagates with an infinite speed, that is, any thermal dis-
turbance produced at some point in the body has an instantaneous effect elsewhere
in the body. To overcome this physical paradox, many theories were developed.
Green and Naghdi [12–14] expanded three new theories based on an entropy equal-
ity rather than the entropy inequality. They called them thermoelasticity of type
I, type II and type III respectively. In each of these theories the equation for the
heat flux is given by a different constitutive assumption. The constitutive equation
for the heat flux in the type III theory is given by

q = −f1αx − f2θx,

where

α = α0 (x) +

∫ t

0

θ (x, τ) dτ

is the thermal displacement and f1, f2 are two positive constants.
In the framework of the thermoelasticity of type III, Messaoudi and Said-Houari

[24] considered the following Timoshenko type system ρ1φtt −K (φx + ψ)x = 0 in (0, 1)× (0,+∞) ,
ρ2ψtt − bψxx +K (φx + ψ) + βθx = 0 in (0, 1)× (0,+∞) ,
ρ3θtt − δθxx + βψttx + κθtxx = 0 in (0, 1)× (0,+∞) ,

and showed that the solution (φ,ψ, θ) decays exponentially provided that K
ρ1

= b
ρ2
.

The case of non equal speeds was examined by Messaoudi and Fareh [23]. They
established a polynomial rate of decay. Fatori et al. [9] show that the optimal rate
in this case is t−1/2.
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Santos and Almeida Júnior [30] extended the results of [23,24] to the Timoshenko
system with thermoelastic effect acting on a shear force ρ1φtt −K (φx + ψ)x + σθtx = 0 in (0, L)× (0,+∞) ,

ρ2ψtt − bψxx +K (φx + ψ)− σθt = 0 in (0, L)× (0,+∞) ,
ρ3θtt − δθxx + σ (φx + ψ)t − γθtxx = 0 in (0, L)× (0,+∞) .

The second theory proposed to overcome the paradox of infinite speed was de-
veloped by Lord and Shulman [21]. They suggested to replace Fourier’s law (2) by
Cattaneo’s one

τ0qt + q + kθx = 0,

where the positive constant τ0 represents the time lag in the response of the heat
flux to the temperature gradient and is referred to as the thermal relaxation time.
According to this theory, the system becomes fully hyperbolic, as a result the heat
propagates with a finite speed and is viewed as a wave-like propagation rather than
a diffusion phenomenon. A wave-like thermal disturbance is referred to as a second
sound (where the first sound being the usual sound) and a nonclassical theory
predicting the occurrence of such disturbances are known as thermoelasticity with
finite wave speeds or second sound thermoelasticity.

Fernández Sare and Racke [10] considered the following Timoshenko type system
with second sound thermoelasticity

ρ1φtt − k (φx + ψ)x = 0,
ρ2ψtt − bψxx + k (φx + ψ) + δθx = 0,
ρ3θt + γqx + δψtx = 0,
τ0qt + q + κθx = 0,

(11)

and proved that the solution of (11) is no longer exponentially stable even if ρ1k = ρ2
b .

However, the incorporation of the frictional damping µφt into the first equation of
(11) produces an exponential stability independently of the wave speeds [22].

Santos et al. [31] introduced the stability number

χ0 =

(
τ − ρ1

ρ3κ

)(
ρ2 −

bρ1
κ

)
− τρ1δ

2

κρ3
,

and proved that the solution of (11) is exponentially stable provided that χ0 = 0.
It is worth noting that the type III thermoelasticity and the second sound ther-

moelasticity are unable to describe the memory effect which reigns in some materi-
als, particularly at a low temperature. This fact leads to the look for a more general
constitutive assumption relating the heat flux to the thermal memory. Gurtin and
Pipkin [16] assumed that the heat flux depends on the integrated history of the
temperature gradient, and established a general nonlinear theory for which ther-
mal disturbances propagate with a finite speed. In accordance with this theory, the
linearized constitutive equation for q is given by

q = −
∫ t

−∞
k (t− s) θx (x, s) ds, (12)
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where k(s) is the heat conductivity relaxation kernel. The presence of the convolu-
tion term (12) renders the Timoshenko system coupled with the heat equation into
a fully hyperbolic system, which allows the heat to propagate with a finite speed
and admits to describe the memory effect of the heat conduction.

In the context of Gurtin-Pipkin theory Pata and Vuk [26] studied the linear
thermoelastic system {

utt(x, t) = uxx(x, t)− θx(x, t),
θt (x, t) = −utx (x, t)− qx (x, t) ,

where the heat flux q is given by (12). They proved, under some assumptions on
µ (s) = −k′ (s), that the solution of the system decays exponentially. Fatori and
Muñoz Rivera [8] considered the system{

utt − auxx + αθx = 0 in (0, L)× R+

θt − k ∗ θxx + αuxt = 0 in (0, L)× R+,

where

(k ∗ θxx) (t) =
∫ t

0

k (t− τ) θxx (τ) dτ,

and established an exponential decay result provided that the kernel k is positive
definite and decays exponentially.

Concerning Timoshenko systems coupled with the heat equation in the frame-
work of Gurtin-Pipkin’s theory, Dell’Oro an Pata [7] analyzed the following system

ρ1φtt − κ (φx + ψ)x = 0,
ρ2ψtt − bψxx + κ (φx + ψ) + δθx = 0,

ρ3θt −
1

β

∫ ∞

0

g (s) θxx (t− s) ds+ δψtx = 0,
(13)

and proved that the semigroup associated with the solution of the system (13) is
exponentially stable if and only if

χg =

[
ρ1
ρ3κ

− β

g (0)

] [ρ1
κ

− ρ2
b

]
− β

g (0)

ρ1δ
2

ρ3κb
= 0.

Closely related to Timoshenko’s beam theory, Raposo [29] investigated the lami-
nated Timoshenko system ρ1utt − κ (ux − ψ)x + αut = 0 in (0, L)× R+,

ρ2(s− ψ)tt − b(s− ψ)xx + κ (ψ − ux) + β(s− ψ)t = 0 in (0, L)× R+,
ρ2stt − bsxx + 3κ(ψ − ux) + 4δs+ 4γst = 0 in (0, L)× R+,

(14)
and obtained an exponential stability result. Regarding the damping by the heat
conduction, Liu and Zhao [20] showed that the laminated beam coupled with the
heat equation modelled via Fourier’s law of the heat conduction is exponentially
stable provided that the wave speeds are equal. Apalara [4] obtained the same result
by coupling the laminated beam with the heat equation moddeled via Cattaneo’s
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law, provided that the equal wave speeds is replaced by a relation between the
coefficients of the system. Choucha et al. [5] added a distributed delay and proved
the exponential and the polynomial stability for the equal and the non-equal wave
speeds respectively. They also kept the same results in the presence of a viscoelastic
damping and a distributed delay [6].

In view of the aforementioned studies we can summarized the stability results
for Timoshenko systems coupled with thermal effects as follows:

i) A fully damped Timoshenko system with parabolic thermal effects is expo-
nentially stable regardless any restriction on the wave speeds.

ii) A Timoshenko system damped only by thermal effects is exponentially sta-
ble if and only if the coefficients of the system satisfy a stability condition
(equal wave speeds, in the case of the classical parabolic heat equation).

To the best of my knowledge there is no results concerning the fully damped
Timoshenko system with hyperbolic thermal dissipation. One can expected that
this leads to an exponential stability. In the present paper we give a positive answer
to this concern.

It should be noted here, that replacing the parabolic heat conduction by a hyper-
bolic type one is not obviously profitable, first, because the system becomes fully
hyperbolic and therefore it loses the exponential decay reached with one dissipa-
tion when (5) holds, (see [10, 28]), secondly, because the dissipative effects due to
the hyperbolic type heat conduction are generally weaker than those induced by
Fourier’s law.

In the present paper we consider the fully damped case of (13) and prove the
exponential stability of the solution without any condition. The importance of our
result manifested from the fact that the case of equal speeds is purely mathematical,
since it is physically never satisfied [15]. Therefore, the stability result obtained
without any restriction on the coefficients is more realistic than that obtained with
a stability condition.

Note that the presence of the convolution term in the constitutive equation for
q renders the family operators mapping the initial value (u0, u1, φ0, φ1, θ0) into the
solution (u, φ, θ) not match the semigroup properties. This is due to the fact that
the solution value of θ at time t depends on the whole function up to time t.

In order to overcome this difficulty we introduce the new variables

θt(x, s) = θ(x, t− s), s ≥ 0,

and

η(x, s) = ηt(x, s) =

∫ s

0

θt(x, τ)dτ, s ≥ 0,

which denote the past history and the summed past history of θ up to t, respectively.
Clearly ηt (x, s) satisfies the boundary conditions

η(0, s) = η(π, s) = 0.
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Moreover, we assume that k (∞) = 0 and η(x, 0) = lim
s−→0+

ηt(x, s) = 0, then

q = −
∫ t

−∞
k (t− s) θx (x, s) ds =

∫ ∞

0

k′ (s) ηtx (x, s) ds.

Further, we have

ηt(x, s) = θ − ηs(x, s). (15)

Setting µ (s) = −k′ (s) , the system (1) and equations (12), (15) become
ρ1utt = κ (uxx + φx)− βθx in (0, π)× R+,
ρ2φtt = bφxx − κ (ux + φ) + δθ − τφt in (0, π)× R+,

cθt =

∫ ∞

0

µ (s) ηtxx (s) ds− βuxt − δφt in (0, π)× R+,

ηtt (s) = θ − ηts (s) in (0, π)× R+ × R+.

(16)

The system (16) is complemented with the boundary conditions

u(0, t) = u(π, t) = φx(0, t) = φx(π, t) = θ(0, t) = θ(π, t) = 0,
η(0, s) = η(π, s) = 0,∀t ∈ R+, η(x, 0) = 0, ∀x ∈ (0, π),

(17)

and the initial data

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , φ (x, 0) = φ0 (x) ,
φt (x, 0) = φ1 (x) , θ (x, 0) = θ0 (x) , η

0 (x, s) = η0 (x, s) .
(18)

Regarding the memory kernel µ, we assume the following set of hypotheses:
(h1) µ ∈ C (R+) ∩ L1 (R+) ,
(h2) µ (s) ≥ 0, µ′ (s) ≤ 0 ∀s ≥ 0,
(h3)

∫∞
0
µ (s) ds = k0 > 0,

(h4) there exists ξ > 0, such that µ′ (s) ≤ −ξµ (s) , ∀s ≥ 0.
The rest of the paper is organized as follows: in Section 2, we introduce some

functional preliminaries. Section 3 is devoted to the proof of an existence and
uniqueness result. In Section 4, we state and prove our stability result.

2. Functional Setting

Let A = −D2 be the operator defined over L2 (0, π) . It is well known that the
operator A with the Dirichlet boundary conditions is a self-adjoint and positive
operator with domain D (A) = H2 ∩H1

0 . Thus, it is possible to define the powers
Aα of A for α ∈ R, and the Hilbert space Vα = D

(
Aα/2

)
endowed with the inner

product

⟨u, v⟩α =
〈
Aα/2u,Aα/2v

〉
and the associated norm denoted by ∥u∥α . In particular, V0 = L2, V−1 = H−1,
V1 = H1

0 and 〈
A1/2u,A1/2v

〉
= ⟨Du,Dv⟩ , ∀u, v ∈ H1

0 .

For α1 > α2 the injection Vα1
↪→ Vα2

is continuous.
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Furthermore, we introduce the weighted Hilbert space

M1=L
2
µ

(
(0,+∞) ;H1

0 (0, π)
)

with the inner product

⟨η, ζ⟩M1
=

∫ ∞

0

µ (s) ⟨η (s) , ζ (s)⟩1 ds

and the norm

∥η∥2M1
=

∫ ∞

0

µ (s) ∥Dη (s)∥2 ds.

We shall also need to define the spaces

M0=L
2
µ

(
(0,+∞) ;L2 (0, π)

)
and

K=H1
µ

(
(0,+∞) ;H1

0 (0, π)
)

= {η/η, ηs ∈ M1} .

The following lemma will be useful in the proof of our main result.

Lemma 1. Let v ∈ L2 (0, π) be given and

v =
1

π

∫ π

0

v (x) dx

the mean value of v. Then,

∥Dv∥−1 = ∥v − v∥ . (19)

Proof. We have

∥Dv∥−1 = sup
∥Dψ∥=1

|⟨Dv,ψ⟩| = sup
∥Dψ∥=1

|⟨v,Dψ⟩| ≤ ∥v∥ .

Let ψ (x) = 1
∥v∥

∫ x
0
v (y) dy, then ∥Dψ∥ = 1 and

|⟨Dv,ψ⟩| = ∥v∥ ≤ ∥Dv∥−1 .

Therefore,

∥Dv∥−1 = ∥v∥ .
Suppose that v = 0, then

∥Dv∥−1 = ∥v − v∥ .
If v ̸= 0, then

∥Dv∥−1 = ∥D (v − v)∥−1 = ∥v − v∥ .
□
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3. Well Posedness

In this section we prove that the problem determined by (16)-(18) has a unique
solution. The main tools of the proof are the Lumer-Phillips and the Lax-Milgram
theorems. First we need to rewrite the problem in the semigroups setting.

Let H be the Hilbert space

H =H1
0 × L2 ×H1

∗ × L2
∗ × L2 ×M1

endowed with the inner product

⟨U,U∗⟩ = κ

∫ π

0

(ux + φ) (u∗x + φ∗) dx+ ρ1

∫ π

0

vv∗dx+ b

∫ π

0

φxφ
∗
xdx

+ρ2

∫ π

0

ϕϕ∗dx+ c

∫ π

0

θθ∗dx+

∫ ∞

0

∫ π

0

µ (s) ηx (s) η
∗
x (s) dxds

and the associated norm

∥U∥2H = κ ∥ux + φ∥2 + ρ1 ∥v∥
2
+ b ∥φx∥

2
+ ρ2 ∥ϕ∥

2
+ c ∥θ∥2 + ∥η∥2M1

.

We note that by virtue of the inequalities

u2x ≤ 2 (ux + φ)
2
+ 2φ2,

(ux + φ)
2 ≤ 2u2x + 2φ2,

the above norm in H is equivalent to the usual norm. Therefore, we use either of
the norms indifferently.

To rewrite the system (16) in the semigroup setting we introduce the new vari-
ables v = ut and ϕ = φt, then the system (16) becomes

ut = v

vt =
κ
ρ1

(uxx (x, t) + φx (x, t))−
β
ρ1
θx (x, t)

φt = ϕ
ϕt =

b
ρ2
φxx (x, t)− κ

ρ2
(ux (x, t) + φ (x, t)) + δ

ρ2
θ (x, t)− τ

ρ2
ϕ (x, t)

θt (x, t) =
1
c

∫∞
0
µ (s) ηtxx (x, s) ds−

β
c vx (x, t)−

δ
cϕ (x, t)

ηtt (x, s) = θ (x, t)− ηtt (x, s)

and the problem (16)–(18) rewritten{
d

dt
U = AU, t > 0,

U (0) = U0,
(20)
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where, A is the operator defined by

AU =



v
κ

ρ1
uxx +

κ

ρ1
φx −

β

ρ1
θx

ϕ
b

ρ2
φxx −

κ

ρ2
ux −

κ

ρ2
φ+

δ

ρ2
θ − τ

ρ2
ϕ

1

c

∫ ∞

0

µ (s) ηxx (s) ds−
β

c
vx −

δ

c
ϕ

θ − ηs


with domain

D (A) :=

 U ∈ H;u, φ ∈ H2, v, θ ∈ H1
0 , ϕ ∈ H1

∗ , η ∈ H1
µ

(
(0,+∞) ;H1

0

)
,∫ ∞

0

µ (s) ηxx (s) ds ∈ L2, η (0) = 0

 .

Before stating the main result of this section let us recall the following theorems.

Theorem 1. (Lumer-Phillips) [27,33] Let A : D(A) ⊂ H −→H be a densely defined
operator. Then A generates a C0-semigroup of contractions on H if and only if

i) A is dissipative;
ii) there exists a constant λ > 0 such that λI −A is onto.

Theorem 2. [33] Let A : D(A) ⊂ H −→H be the infinitesimal generator of a
C0-semigroup {S(t); t ≥ 0}. Then, for each ξ ∈ D (A) and each t ≥ 0, we have
S(t)ξ ∈ D(A) and the mapping

S : [0,+∞[ −→ H
t −→ S(t)ξ

is of class C1 on [0,+∞[ and satisfies

d

dt
(S (t) ξ) = AS (t) ξ = S (t)Aξ.

Our main result reads as follows:

Theorem 3. Suppose that µ satisfies the hypotheses (h1)-(h4), then for any U0 =

(u0, u1, φ0, φ1, θ0, η0)
T ∈ H the problem (20) has a unique solution U ∈ C ((0,+∞) ;H).

Moreover, if U0 = (u0, u1, φ0, φ1, θ0, η0)
T ∈ D (A) then the solution U satisfies

U ∈ C ((0,+∞) ;D (A)) ∩ C1 ((0,+∞) ;H) .

Proof. First, we prove that A is dissipative. Indeed, for every U ∈ D (A) we have

⟨AU,U⟩ = κ

∫ π

0

(vx + ϕ) (ux + φ) dx+

∫ π

0

(κuxx + κφx − βθx) vdx+ b

∫ π

0

ϕxφxdx

+

∫ π

0

(bφxx − κux − κφ+ δθ − τϕ)ϕdx
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+

∫ π

0

(∫ ∞

0

µ (s) ηtxx (s) ds− βvx − δϕ

)
θdx

+

∫ π

0

∫ ∞

0

µ (s)
(
θx − ηtxs

)
ηx (s) dsdx,

= −τ
∫ π

0

ϕ2dx− 1

2

∫ ∞

0

µ (s)
d

ds
∥ηx (s)∥

2
ds.

For the second term in the right-hand side, we have∫ ∞

0

µ(s)
d

ds
∥ηx(s)∥2ds = µ(s)∥ηx(s)∥2

∣∣∞
0

−
∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

Since µ (s) ∥ηx (s) ∥2 and µ (s) ∥ηxs (s) ∥2 belong to L1 (R+) and ηx(0) = 0, hence

lim
s→0

µ(s)∥ηx(s)∥2 = lim
s→0

µ(s)

∥∥∥∥∫ s

0

ηxs(τ)dτ

∥∥∥∥2 ,
≤ lim sup

s→0

(∫ s

0

µ(s)1/2 ∥ηxs(τ)∥ dτ
)2

.

The Cauchy-Schwarz inequality, leads to

lim
s→0

µ(s)∥ηx(s)∥2 ≤ lim sup
s→0

s

∫ s

0

µ(τ) ∥ηxs(τ)∥
2
dτ = 0.

Therefore,∫ ∞

0

µ(s)
d

ds
∥ηx(s)∥2ds = lim

s→∞
µ(s)∥ηx(s)∥2 −

∫ ∞

0

µ′(s)∥ηx(s)∥2ds.

The left-hand side of the last equation is bounded, and from (h2) both terms on
the right-hand side are positive. Then, the limit in the right hand side exists and
is finite, and therefore equals zero. Thus,

⟨AU,U⟩ = −τ
∫ π

0

ϕ2dx+
1

2

∫ ∞

0

µ′(s)∥ηx(s)∥2ds ≤ 0,

which proves the dissipativeness of A. Next, we show that A is maximal. Let

U∗ = (u∗, v∗, φ∗, ϕ∗, θ∗, η∗)
T ∈ H, and find U = (u, v, φ, ϕ, θ, η)

T ∈ D (A) such
that

(I −A)U = U∗, (21)

which reads in components
u− v = u∗, (22)

ρv − κuxx − κφx + βθx = ρ1v
∗, (23)

φ− ϕ = φ∗, (24)

(ρ2 + τ)ϕ− bφxx + κux + κφ− δθ = ρ2ϕ
∗, (25)

cθ −
∫ ∞

0

µ (s) ηtxx (s) ds+ βvx + δϕ = cθ∗, (26)

η − θ + ηs = η∗. (27)



106 A. FAREH

Solving equation (27) gives

η (s) =
(
1− e−s

)
θ +

∫ s

0

ey−sη∗ (y) dy. (28)

Substituting (22), (24) and (28) into (23), (25) and (26) we get
κuxx + κφx − βθx − ρ1u = −ρ1 (u∗ + v∗) ,

bφxx − κux − (κ+ ρ2 + τ)φ+ δθ = − (ρ2 + τ)φ∗ − ρ2ϕ
∗,

cµθxx − cθ − βux − δφ = − (cθ∗ + βu∗ + δφ∗)−
∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
ds

(29)
where,

cµ =

∫ ∞

0

µ (s)
(
1− e−s

)
ds

is a positive constant. The last term in the right-hand side of the third equation of
(29) belongs to H−1. Indeed, let ψ ∈ H1

0 such that ∥ψx∥ ≤ 1, then∣∣∣∣〈∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
ds, ψ

〉∣∣∣∣ = ∣∣∣∣〈∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗x (y) dy

)
ds, ψx

〉∣∣∣∣
≤

∫ ∞

0

µ (s) e−s
(∫ s

0

ey ∥η∗x (y)∥ dy
)
ds

=

∫ ∞

0

ey ∥η∗x (y)∥
∫ ∞

y

µ (s) e−sdsdy

≤
∫ ∞

0

µ (y) ey ∥η∗x (y)∥
∫ ∞

y

e−sdsdy

=

∫ ∞

0

µ (y) ∥η∗x (y)∥ dy <∞.

At this point we multiply the equations (29)1,(29)2 and (29)3 by ũ, φ̃ and θ̃ respec-
tively, integrating over (0, π) and summing up, we obtain

B
(
U, Ũ

)
= L

(
Ũ
)
, (30)

where

B
(
U, Ũ

)
:= κ

∫ π

0

uxũxdx− κ

∫ π

0

φxũdx+ β

∫ π

0

θxũdx+ ρ1

∫ π

0

uũdx

+ b

∫ π

0

φxφ̃xdx+ κ

∫ π

0

uxφ̃dx+ (κ+ ρ2 + τ)

∫ π

0

φφ̃dx

− δ

∫ π

0

θφ̃dx+ cµ

∫ π

0

θxθ̃xdx+ c

∫ π

0

θθ̃dx+ β

∫ π

0

uxθ̃dx+ δ

∫ π

0

φθ̃dx,
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and

L
(
Ũ
)
:= ρ1

∫ π

0

(u∗ + v∗) ũdx+ (ρ2 + τ)

∫ π

0

φ∗φ̃dx− ρ2

∫ π

0

ϕ∗φ̃dx

+

∫ π

0

(cθ∗ + βu∗ + δφ∗) θ̃dx+

∫ π

0

θ̃

∫ ∞

0

µ (s)

(∫ s

0

ey−sη∗xx (y) dy

)
dsdx.

Clearly, B (·, ·) is a bounded bilinear form over W = H1
0 × H1

∗ × H1
0 and L is a

bounded linear form. Furthermore, we have

B (U,U) = κ

∫ π

0

u2xdx− κ

∫ π

0

φxudx+ β

∫ π

0

θxudx+ ρ1

∫ π

0

u2dx+ b

∫ π

0

φ2
xdx

+κ

∫ π

0

uxφdx+ (κ+ ρ2 + τ)

∫ π

0

φ2dx− δ

∫ π

0

θφdx+ cµ

∫ π

0

θ2xdx

+c

∫ π

0

θ2dx+ β

∫ π

0

uxθdx+ δ

∫ π

0

φθdx,

B(U,U) = κ

∫ π

0

(ux + φ)
2
dx+ ρ1

∫ π

0

u2dx+ b

∫ π

0

φ2
xdx

+ (ρ2 + τ)

∫ π

0

φ2dx+ cµ

∫ π

0

θ2xdx+ c

∫ π

0

θ2dx.

Therefore, there exists a positive constant α such that

B (U,U) ≥ α ∥U∥2 .

Thus, B (·, ·) is coercive and by means of the Lax-Milgram theorem, the problem
(30) has a unique solution

(u, φ, θ) ∈ W.

Moreover, taking
(
ũ, φ̃, θ̃

)
= (ũ, 0, 0) in (30) we get

κ

∫ π

0

uxũxdx =

∫ π

0

(κφx − βθx − ρ1u+ ρ1 (u
∗ + v∗)) ũdx, ∀ũ ∈ H1

0 . (31)

Using standard arguments of elliptic equations we infer that

u ∈ H2(0, π) ∩H1
0 (0, π),

with

κuxx = −κφx + βθx + ρ1u− ρ1 (u
∗ + v∗) ,

which solves (29)1. Similarly, by choosing
(
ũ, φ̃, θ̃

)
= (0, φ̃, 0) , we obtain

b

∫ π

0

φxφ̃xdx = −
∫ π

0

(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗) φ̃dx, ∀φ̃ ∈ H1

∗ .
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Let Ψ ∈ H1
0 (0, π) and set

Ψ̃ (x, t) = Ψ (x, t)−
∫ π

0

Ψ(x, t) dx.

Clearly Ψ̃ ∈ H1
∗ (0, π) . Plugging Ψ̃ in (31) and recalling that

κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗ ∈ L2

∗ (0, π) ,

we arrive at

b

∫ π

0

φxΨxdx =

∫ π

0

(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ
∗)Ψdx, ∀Ψ ∈ H1

0 (0, π).

Thus, by virtue of the theory of elliptic equations, φ ∈ H2 (0, π) ∩H1
∗ (0, π) with

φxx =
−1

b
(κ (ux + φ) + (ρ2 + τ) (φ− φ∗)− δθ − ρ2ϕ

∗) .

Then, φ solves (29)2.
Substituting u, φ, θ just obtained in (22), (24) and (28), we infer that

v ∈ H1
0 (0, π), ϕ ∈ H1

∗ (0, π) and η ∈ H1
µ

(
(0,+∞) ;H1

0 (0, π)
)
.

Moreover, (26) implies that∫ ∞

0

µ (s) ηtxx (s) ds ∈ L2 (0, π) .

Finally we have

ηs (s) = e−sθ + η∗ (s)−
∫ s

0

ey−sη∗ (y) dy ∈ M0

and η (0) = 0, which proves that the solution U of (21) belongs to D (A) . Hence,
Lumer-Phillips theorem ensures that the problem (20) has a unique solution U (x, t) =
eAtU0 (x) . This completes the proof of Theorem 3. □

4. Asymptotic Behavior

In this section we establish an exponential rate of decay for the solution of the sys-
tem (16)-(18). The following Lemma gives a sufficient condition for a C0−semigroup
in order to be exponentially stable.

Lemma 2. [11] Let S(t) be a contraction semigroup on H, and let A be its infini-
tesimal generator. If the operator iβI −A is bounded below as β ∈ R, that is there
exists λ > 0 such that

inf
β∈R

∥(iβI −A)U∥ ≥ λ ∥U∥ , ∀U ∈ D (A) ,

then S (t) is exponentially stable.

The main result of this paper reads as follows:
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Theorem 4. Assume that the memory kernel µ satisfies the hypotheses (h1)–(h5).
Then the semigroup S(t) = eAt associated to the problem (16)-(18) is exponentially
stable.

Proof. The proof will be done by a contradiction argument. Suppose that the
assertion is false. Then there exist a sequence (λn) ⊂ R and a sequence (Un) ⊂
D (A) , of unit norm

κ ∥Dun + φn∥
2
+ ρ1 ∥vn∥

2
+ b ∥Dφn∥

2
+ ρ2 ∥ϕn∥

2
+ c ∥θn∥2

+

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds = 1,

such that
lim

n−→∞
∥(iλnI −A)Un∥ = 0,

which reads in components as

iλnun − vn −→ 0 in H1
0 , (32)

iρ1λnvn − κD2un − κDφn + βDθn −→ 0 in L2, (33)

iλnφn − ϕn −→ 0 in H1
∗ , (34)

iρ2λnϕn − bD2φn + κDun + κφn + τϕn − δθn −→ 0 in L2
∗, (35)

icλnθn −
∫ ∞

0

µ (s)D2ηn (s) ds+ βDvn + δϕn −→ 0 in L2, (36)

iλnηn − θn +Dsηn −→ 0 in M1. (37)

Note that since the norm in H is equivalent to the usual norm, then there exists
γ > 0 such that for any U ∈ D (A) of unit norm, we have

∥Dun∥2+∥vn∥2+∥φn∥
2
+∥Dφn∥

2
+∥ϕn∥

2
+∥θn∥2+

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds = γ.

(38)
First we have

Re ⟨(iλnI −A)Un, Un⟩ = τ

∫ π

0

ϕ2ndx− 1

2

∫ ∞

0

µ′(s)∥Dηn(s)∥2ds −→ 0.

Thus,
∥ϕn∥ −→ 0 (39)

and

∥ηn∥
2
M1

≤ −1

ξ

∫ ∞

0

µ′(s)∥Dηn(s)∥2ds −→ 0. (40)

Moreover, from (34) we have

φn ∼ 1

λn
ϕn −→ 0 in L2. (41)

The injection L2 ↪→ H−1 is continuous, hence (33) holds in H−1 instead of L2 and

iρ1λnvn ∼ κD2un + κDφn − βDθn in H−1.
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On the other hand we have∥∥κ (D2un +Dφn
)
− βDθn

∥∥
−1

= sup
∥Dψ∥≤1

∣∣〈κ (D2un +Dφn
)
− βDθn, ψ

〉∣∣ ,
≤ ∥κ (Dun + φn)− βθn∥ . sup

∥Dψ∥≤1

∥Dψ∥,

≤ κ ∥Dun + φn∥+ |β| ∥θn∥ ≤
√
2.

Therefore,

|λn| ∥vn∥−1 ≤ C1, (42)

for a positive constant C1 independent of n ∈ N.
Similarly, we get∥∥∥∥∫ ∞

0

µ (s)D2ηn (s) ds

∥∥∥∥
−1

≤
∫ ∞

0

µ (s) ∥Dηn (s)∥ ds,

≤

√∫ ∞

0

µ (s) ds

(∫ ∞

0

µ (s)

∫ π

0

|Dηn|
2
(s) dxds

)1/2

,

then ∥∥∥∥∫ ∞

0

µ (s)D2ηn (s) ds

∥∥∥∥
−1

≤

√∫ ∞

0

µ (s) ds ∥ηn∥M1
−→ 0.

Note that (36) holds with H−1 instead of L2, hence

∥icλnθn + βDvn∥−1 −→ 0 . (43)

Since

∥Dvn∥−1 = sup
∥Dψ∥≤1

|⟨Dvn, ψ⟩| ≤ ∥vn∥ <∞,

Dvn is bounded in H−1, then

∥cλnθn∥−1 ≤ C2,

for a positive constant C2 independent of n ∈ N.
Next, we need to show that ∥θn∥ −→ 0. Exploiting the continuous embedding of
M1 into M0, (37) holds in M0 instead of M1. Let (ξn) be the sequence ξn = sθn.
Clearly ξn ∈ M0. Indeed, from (h2), µ(s) goes to zero exponentially fast, then∫ ∞

0

s2µ (s)

∫ π

0

|θn|2 dxds = ∥θn∥2
∫ ∞

0

s2µ (s) ds = C3 <∞.

Multiplying (37) by ξn in M0 we get

⟨iλnηn, ξn⟩0 − ⟨θn, ξn⟩0 + ⟨Dsηn, ξn⟩0 −→ 0. (44)

For the first term we have

|⟨iλnηn, ξn⟩0| = |λn|
∫ ∞

0

sµ (s)

∫ π

0

ηnθndxds.
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Then, using Hölder inequality we get

|⟨iλnηn, ξn⟩0| ≤ |λn| ∥θn∥−1

∫ ∞

0

sµ (s) ∥Dηn (s)∥ ds,

≤ |λn| ∥θn∥−1

√∫ ∞

0

s2µ (s) ds

∫ ∞

0

µ (s) ∥Dηn (s)∥
2
ds,

≤ C2

√
C3 ∥ηn∥1 −→ 0.

From (h4) we infer that lim
s→+∞

s2µ(s) = 0, then, again (h4) and integration by parts

yield

−
∫ ∞

0

s2µ′ (s) ds = 2

∫ ∞

0

sµ (s) ds = C4 <∞.

For the third term of (44) we have,

|⟨Dsηn, ξn⟩0| =
∣∣∣∣∫ ∞

0

sµ (s)
d

ds

∫ π

0

ηnθndxds

∣∣∣∣ ,
=

∣∣∣∣∫ ∞

0

µ (s)

∫ π

0

ηnθndxds+

∫ ∞

0

sµ′ (s)

∫ π

0

ηnθndxds

∣∣∣∣ ,
then,

|⟨Dsηn, ξn⟩0| ≤ ∥θn∥
[∫ ∞

0

µ (s) ∥ηn∥ ds−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds
]
,

≤
∫ ∞

0

µ (s) ∥ηn∥ ds−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds.

Using the Cauchy-Schwarz and Poincaré’s inequalities we conclude that∫ ∞

0

µ (s) ∥ηn∥ ds ≤

√∫ ∞

0

µ (s) ds

√∫ ∞

0

µ (s) ∥ηn∥ ds,

≤

√∫ ∞

0

µ (s) ds ∥ηn∥0 ,

≤ CP

√∫ ∞

0

µ (s) ds ∥ηn∥1 −→ 0

and

−
∫ ∞

0

sµ′ (s) ∥ηn∥ ds =
∫ ∞

0

s
√
−µ′ (s)

√
−µ′ (s) ∥ηn∥ ds

≤
(
−
∫ ∞

0

s2µ′ (s) ds

)1/2 (
−
∫ ∞

0

µ′ (s) ∥ηn∥
2
ds

)1/2

≤
(
−C4CP

∫ ∞

0

µ′ (s) ∥Dηn∥
2
ds

)1/2

−→ 0.
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Thus, (44) is reduced to

∥θn∥2
∫ ∞

0

sµ (s) ds = ⟨θn, ξn⟩0 −→ 0,

that is,

∥θn∥2 =
2 ⟨θn, ξn⟩0

C4
−→ 0. (45)

Removing the terms that tend to 0 from (35), then multiplying by φn we obtain

iρ2λn ⟨ϕn, φn⟩+ b ∥Dφn∥
2
+ κ ⟨Dun, φn⟩ −→ 0 . (46)

We point out that

⟨Dun, φn⟩ ≤ ∥Dun∥ ∥φn∥ −→ 0

and

iλn ⟨ϕn, φn⟩ ∼ ∥φn∥
2 −→ 0.

Therefore,

∥Dφn∥ −→ 0. (47)

Multiplying (32) by ρ1vn and (33) by un we get

iρ1λn ⟨un, vn⟩ − ρ1 ∥vn∥
2 −→ 0, (48)

and

iρ1λn ⟨vn, un⟩+ κ ∥Dun∥2 −→ 0. (49)

Adding (48) to the complex conjugate of (49), we get

κ ∥Dun∥2 − ρ1 ∥vn∥
2 −→ 0. (50)

Combining (38), (39), (40), (41), (45),(47), and (50) we obtain(
1 +

ρ1
κ

)
∥vn∥2 → γ. (51)

We complete the proof by showing that (51) leads to a contradiction.
Since A−1Dvn is bounded in H1

0 (recall that A = −D2), from (43) we have〈
icλnθn + βDvn, A

−1Dvn
〉
=

〈
icλnθn, A

−1Dvn
〉
+ β ∥Dvn∥2−1 −→ 0. (52)

On the other hand, from (45) we have∣∣〈icλnθn, A−1Dvn
〉∣∣ = ∣∣∣〈icλnθn, A−1/2vn

〉∣∣∣
≤ c |λn|

∥∥∥A−1/2vn

∥∥∥ ∥θn∥ = c |λn| ∥vn∥−1 ∥θn∥

≤ cC1 ∥θn∥ −→ 0.

Thus, (52) leads to

∥Dvn∥−1 −→ 0.

From (19) we infer that

∥vn − vn∥ = ∥Dvn∥−1 −→ 0.
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Therefore,

∥vn − vn∥2 = ∥vn∥2 − π |vn|2 −→ 0. (53)

The comparison of (51) and (53) leads to

|vn| −→
√

κγ

π (κ+ ρ1)
.

Thus, there exists a subsequence (vn) that converges to v, such that

|v| =
√

κγ

π (κ+ ρ1)
. (54)

Using (53) again we conclude that there exists a subsequence of (vn) which converges
to v in L2(0, π). Exploiting the continuous embedding of L2(0, π) into H−1(0, π),
one can deduce that

vn −→ v, in H−1(0, π). (55)

At this point we distinguish two cases. Suppose that (λn) is unbounded, then we
can choose a subsequence (λn) such that |λn| −→ ∞ and from (42) we have

vn −→ 0 in H−1(0, π).

From the uniqueness of the limit we conclude that v = 0, which is incompatible
with (54).
Conversely, assume that (λn) is bounded, again, there exists a subsequence (λn)

that converges to some λ ∈ R. In this case we have

lim
n−→∞

∥(iλI −A)Un∥ = 0,

and (32)-(37) hold with λ instead of λn. In particular

iλun − vn −→ 0 in H1
0 (0, π).

Since (un) is bounded in H1
0 (0, π), we conclude that there exists v∗ ∈ H1

0 (0, π) and
a subsequence (vn) that converges weakly to v∗ in H1

0 (0, π). From the uniqueness
of the limit we infer that v∗ = v, which is in contradiction with v∗ ∈ H1

0 (0, π),
since v is a non-zero constant function, and therefore cannot be in H1

0 (0, π). This
completes the proof of Theorem 4. □
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with respect to boundary conditions in thermoelastic Timoshenko systems, Z. Angew. Math.

Phys., 67 (2016), 70. https://doi.org/ 10.1007/s00033-016-0662-y

[3] Alves, M. S., Jorge Silva, M. A., Ma, T. F., Muñoz Rivera, J. E., Non-homogeneous
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[31] Santos, M. L., Almeida Jünior, D. S., Muñoz Rivera, J. E., The stability number of the

Timoshenko system with second sound, J. Differential Equations, 253 (2012), 2715–2733.

https://doi.org/10.1016/j.jde.2012.07.012.
[32] Timoshenko, S. P., On the correction for shear of the differential equation for trans-

verse vibrations of bars of Prismatic bars, Dubl. Philos. Mag., 41 (1921), 744–746.

https://doi.org/10.1080/14786442108636264
[33] Vrabie, I. I., C0-Semigroups and Applications, Elsevier Science B.V., Amesterdam, 2003.


	1. Introduction
	2. Functional Setting
	3. Well Posedness
	4. Asymptotic Behavior
	References

