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Abstract

In 2005, Ben-El-Mechaiekh, Chebbi, and Florenzano obtained a generalization of Ky Fan's 1984 KKM
theorem on the intersection of a family of closed sets on non-compact convex sets in a topological vector
space. They also extended the Fan-Browder �xed point theorem to multimaps on non-compact convex sets.
Since then several groups of the L-space theorists introduced coercivity families and applied them to L-spaces,
H-spaces, etc. In this article, we show that better forms of such works can be deduced from a general KKM
theorem on abstract convex spaces in our previous works. Consequently, all of known KKM theoretic results
on L-spaces related coercivity families are extended to corresponding better forms on abstract convex spaces.

This article is a continuation of our [38] and a revised and extended version of [34].
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1. Introduction

The KKM theory, �rst named by the author in 1992, was originally devoted to convex subsets of topo-
logical vector spaces mainly by Ky Fan and Granas, and later to the so-called convex spaces by Lassonde, to
c-spaces (or H-spaces) by Horvath and others, to generalized convex (G-convex) spaces mainly by the present
author. Since 2006, we proposed new concepts of abstract convex spaces and (partial) KKM spaces which
are proper generalizations of G-convex spaces and adequate to establish the KKM theory. Consequently we
have obtained a large number of new results in such frame.

Recall that a milestone on the history of the KKM theory was erected by Fan in 1961 [13]. His 1961
KKM Lemma (or the Fan-KKM theorem or the KKMF principle [5]) extended the KKM theorem to arbitrary
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topological vector spaces and was applied to various problems in his subsequent papers. Moreover, his lemma
was extended in 1979 and 1984 [14,15] to his 1984 KKM theorem with a new coercivity (or compactness)
condition for noncompact convex sets; see [21,25].

In 1993, we introduced generalized convex (G-convex) spaces (E,D; Γ) [39] and, in 1998, we derived new
concept of them removing the original monotonicity restriction on them; see [21,25]. Motivated our original
G-convex spaces in 1993, Ben-El-Mechaiekh, Chebbi, Florenzano, and Llinares [3,4] in 1998 introduced L-
spaces (E,Γ) and claimed incorrectly that G-convex spaces are particular to their L-spaces. Since then a
number of authors followed the misconception of [4] and published incorrect obsolete articles even after we
established the KKM theory on abstract convex spaces in 2006�2010.

In 2005, Ben-El-Mechaiekh, Chebbi, and Florenzano [5] obtained a generalization of Ky Fan's 1984 KKM
theorem [15] on the intersection of a family of closed sets on non-compact convex sets in a topological vector
space. They also extended the Fan-Browder �xed point theorem to multimaps on non-compact convex sets.
This type of studies also followed by Chebbi [7,9] and others. In 2011, Chebbi, Gourdel, and Hammami [11]
introduced a generalized coercivity type condition for multimaps de�ned on topological spaces endowed with
a generalized convex structure and extended Fan's KKM theorem.

In our previous work [34] in 2013, we showed that better forms of theorems in [5,7,8,9,11] can be deduced
from a KKM theorem on abstract convex spaces in our sense [23�27]. Moreover, in our recent work [38],
we showed that our KKM theory on abstract convex spaces improves and extends all of typical results on
L-spaces. Since such studies are beyond of L-spaces, we cordially claimed that now is the proper time to
give up the useless study on L-spaces and their variants FC-spaces.

After we have published [34], we found similar articles by the L-space theorists such as Chebbi [8],
Hammami [17], Gourdel-Hammami [16], Chebbi [10] and Altwaijry-Ounaies-Chebbi [1] in the chronological
order. These authors introduce several coercing families and applied them to corresponding KKM theorems,
Fan's matching theorems, Fan-Browder �xed point theorems, minimax inequalities, etc. However, these seem
to be of little use since their terminology and coercivity conditions are not practical.

In our previous work [38] in 2020, which will be called Part I, we recalled the history of relation between
G-convex spaces and L-spaces, and showed that other authors' main works on L-spaces are consequences
of our KKM theory on abstract convex spaces. In fact, the study on the KKM theoretic results related
certain coercing families on particular types of KKM spaces like H-spaces, L-spaces, FC-spaces, etc. are not
necessary, and hence, we concluded that now is the proper time to give up such useless study on L-spaces
and their variants FC-spaces.

As a continuation of our [38], the present Part II is a revised and extended version of [34] and shows that
some previous or new results generalize or improve corresponding ones in [1, 8, 10, 16, 17].

This article is organized as follows:
Section 2 is a routine preliminary on terminology of abstract convex spaces. Here we introduce the KKM

maps with respect to a multimap, KC-maps [resp. KO-maps], and (partial) KKM spaces. We add a typical
general form of the KKM theorem for abstract convex spaces. In Section 3, we begin with a routine diagram
showing typical subclasses of abstract convex spaces. Moreover, various subclasses and examples of abstract
convex spaces are given for applications of all theorems in this article.

Section 4 is to generalize the coercing families in [5, 8, 11, 16. 17]. We show that such coercing families
can be uni�ed by our condition [I]. In Sections 5�7, we show that better forms of main theorems in the works
on L-spaces can be deduced from a KKM theorem on abstract convex spaces in the sense of [23-27]. Section
5 deals with the KKM type results, and Section 6 with the Fan-Browder type �xed point theorems. Section
7 deals with improvements of minimax inequalities due to the L-space theorists.

Finally, in Section 8, some historical remarks related to L-spaces will be given.

2. Abstract convex spaces

Since 2006 we have introduced the concepts of abstract convex spaces, KKM spaces, and partial KKM
spaces; see our recent works [27-33] and the references therein.
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De�nition 2.1. An abstract convex space (E,D; Γ) consists of a topological space E, a nonempty set D,
and a multimap Γ : 〈D〉 ( E with nonempty values ΓA := Γ(A) for A ∈ 〈D〉, where 〈D〉 is the set of all
nonempty �nite subsets of D.

For any D′ ⊂ D, the Γ-convex hull of D′ is denoted and de�ned by

coΓD
′ :=

⋃
{ΓA | A ∈ 〈D′〉} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to D′ if, for any N ∈ 〈D′〉, we have
ΓN ⊂ X, that is, coΓD

′ ⊂ X.
When D ⊂ E, a subset X of E is said to be Γ-convex if coΓ(X ∩D) ⊂ X; or equivalently, X is Γ-convex

relative to D′ := X ∩D.
The space is denoted (E ⊃ D; Γ) when E ⊃ D and (E; Γ) when E = D.

De�nition 2.2. Let (E,D; Γ) be an abstract convex space and Z a topological space. For a multimap
F : E ( Z with nonempty values, if a multimap G : D ( Z satis�es

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ 〈D〉,

then G is called a KKM map with respect to F . A KKM map G : D ( E is a KKM map with respect to the
identity map 1E.

A multimap F : E ( Z is called a KC-map [resp. a KO-map] if, for any closed-valued [resp. open-valued]
KKM map G : D ( Z with respect to F , the family {G(y)}y∈D has the �nite intersection property. In this
case, we denote F ∈ KC(E,Z) [resp. F ∈ KO(E,Z)].

Some remarks and examples on KC-maps and KO-maps can be seen in [23, 24]. In this article, we need
only the fact that any continuous function s : E → Z belongs to KC(E,Z).

De�nition 2.3. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement 1E ∈
KC(E,E); that is, for any closed-valued KKM map G : D ( E, the family {G(y)}y∈D has the �nite
intersection property. The KKM principle is the statement 1E ∈ KC(E,E) ∩ KO(E,E); that is, the same
property also holds for any open-valued KKM map.

An abstract convex space is called a (partial) KKM space if it satis�es the (partial) KKM principle,
respectively.

Example 2.1. Consider the following related four conditions for a multimap G : D ( Z from a set D into
a topological space Z:

(a)
⋂

y∈DG(y) 6= ∅ implies
⋂

y∈DG(y) 6= ∅.

(b)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is intersectionally closed-valued).

(c)
⋂

y∈DG(y) =
⋂

y∈DG(y) (G is transfer closed-valued).

(d) G is closed-valued.

From the de�nition of KC-maps, we have a whole intersection property of the Fan type under certain
`coercivity' conditions. The following is given in [28, 30-33]:

Theorem 2.1. Let (E,D; Γ) be an abstract convex space, Z a topological space, F ∈ KC(E,Z), and G :
D ( Z a multimap such that

(1) G is a KKM map w.r.t. F ; and
(2) there exists a nonempty compact subset K of Z such that either
(i) K ⊃

⋂
{G(y) | y ∈M} for some M ∈ 〈D〉; or
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(ii) for each N ∈ 〈D〉, there exists a Γ-convex subset LN of E relative to some D′ ⊂ D such that
N ⊂ D′, F (LN ) is compact, and

K ⊃ F (LN ) ∩
⋂
{G(y) | y ∈ D′}.

Then we have
F (E) ∩K ∩

⋂
{G(y) | y ∈ D} 6= ∅.

Furthermore,
(α) if G is transfer closed-valued, then F (E) ∩K ∩

⋂
{G(y) | y ∈ D} 6= ∅; and

(β) if G is intersectionally closed-valued, then
⋂
{G(y) | y ∈ D} 6= ∅.

Remark 2.1. 1. The coercivity (ii) is originated from S. Y. Chang [6] in 1989.
2. Taking K instead of K, we may assume K is closed and the closure notations in (i) and (ii) can be

erased.
3. In [33], we showed that a particular form of Theorem 2.1 for F = 1E uni�es several important KKM

type theorems appeared in history.
4. Many particular forms of Theorem 2.1 have equivalent formulations or lead many KKM theoretic

results.

3. Various subclasses and examples of abstract convex spaces

The following diagram for triples (E,D; Γ) on abstract convex spaces is well known:

Simplex =⇒ Convex subset of a t.v.s. =⇒ Convex space =⇒ H-space

=⇒ G-convex space =⇒ φA-space =⇒ KKM space

=⇒ Partial KKM space =⇒ Abstract convex space.

Example 3.1. We introduce typical subclasses of KKM spaces. Some details can be seen in [25] and the
references therein.

(1) Simplex �- The 1929 KKM theorem [19] was for the triple (∆n, V ; co), where ∆n is the standard
n-simplex with vertices A = {ei}ni=0, V the set of vertices and co : 〈V 〉( ∆n the convex hull operation.

(2) Convex subsets of a t.v.s. �- The 1961 KKM lemma of Ky Fan (so called the KKMF theorem) [13]
was for the triple (Y ⊃ X; co), where X is an arbitrary set in a topological vector space Y .

Moreover, every nonempty convex subsetX of a topological vector space is a convex space [in the following
sense in (3)] with respect to any nonempty subset D of X, and the converse is not true.

(3) A convex space (X,D) = (X,D; Γ) is a triple where X is a subset of a vector space, D ⊂ X such that
coD ⊂ X, and each ΓA is the convex hull of A ∈ 〈D〉 equipped with the Euclidean topology; see [25]. Note
that (X,D) can be represented by (X,D; Γ) where Γ : 〈D〉( X is the convex hull operator. If X = D is
convex, then X = (X,X) becomes a convex space in the sense of Lassonde [20].

(4) A triple (X,D; Γ) is called an H-space by Park in 1992 if X is a topological space, D a nonempty
subset of X, and Γ = {ΓA} a family of contractible (or, more generally, ω-connected) subsets of X indexed
by A ∈ 〈D〉 such that ΓA ⊂ ΓB whenever A ⊂ B ∈ 〈D).

If D = X , we denote (X; Γ) instead of (X,X; Γ), which is called a c-space by Horvath [18] or an H-space
by Bardaro and Ceppitelli in 1988.

(5) A generalized convex space or a G-convex space (X,D; Γ) is an abstract convex space such that for
each A ∈ 〈D〉 with the cardinality |A| = n+ 1, there exists a continuous function φA : ∆n → Γ(A) such that
J ∈ 〈A〉 implies φA(∆J) ⊂ Γ(J), where ∆J the face of ∆n corresponding to J ∈ 〈A〉; see [21, 25].

When X = D, a G-convex space is called an L-space; see [4].

(6) A space having a family {φA}A∈〈D〉 or simply a φA-space (X,D; {φA}A∈〈D〉) consists of a topological
space X, a nonempty set D, and a family of continuous functions φA : ∆n → X (that is, singular n-simplices)
for A ∈ 〈D〉 with the cardinality |A| = n+ 1.
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Example 3.2. In our previous work [37] and others, we listed known concrete examples of KKM spaces
other than the subclasses in the diagram as follows:

(1) Hyperconvex metric spaces of Aronszajn and Panitchpakdi (1956)

(2) Hyperbolic metric spaces � Kirk (1982), Reich and Shafrir (1990)

(3) Topological semilattices � Horvath and Llinares-Ciscar (1996)

(4) E-convex spaces � Youness (1999)

(5) Bayoumi's KKM spaces � Bayoumi (2003)

(6) Γ-convex spaces � Zafarani (2004)

(7) R-tree � Kirk and Panyanak (2007)

(8) Horvath's convex space � Horvath (2008)

(9) B-spaces � Briec and Horvath (2008)

(10) Connected linearly ordered spaces � Park (2007)

(11) Extended long line L∗ � Park (2008)

(12) Complete continuous midpoint metric spaces � Horvath (2009)

(13) Metric spaces with global nonpositive curvature (NPC) � Niculescu-Roventa (2009)

(14) R-KKM spaces � Sankar Raj and Somasundaram (2012)

(15) KKM spaces of Chaipunya-Kumam � Chaipunya and Kumam (2015)

(16) Complete �nite dimensional Riemannian manifolds � Park (2019)

All theorems in this article can be applied to these spaces.

4. Generalizations of various coercing families

In this section, we obtain generalizations of coercing families considered by Ben-El-Mechaiekh et al. [5],
Chebbi-Gourdel-Hammami [11], Chebbi [8], Hammami [17], and Gourdel-Hammami [16].

Let us begin with the following particular form of the condition (ii) in Theorem 2.1 with sG : D ( Z
instead of G : D ( Z:

[I] ([34]) Let (E,D; Γ) be an abstract convex space, G : D ( E a multimap, Z a topological space, and
s : E → Z a continuous map such that

(C) there exists a nonempty compact subset K of Z such that, for each N ∈ 〈D〉, there exists a compact
Γ-convex subset LN of E relative to some D′ ⊂ D such that N ⊂ D′ and

s(LN ) ∩
⋂
y∈D′

sG(y) ⊂ K.

Note that s ∈ KC(E,Z).
Under the situation of [I], we have the following:

Proposition 4.1. If (E,D; Γ) is a (partial) KKM space, then so is the abstract convex space (Z,D; sΓ),
where sΓ : 〈D〉( Z.

Proof. Let G′ : D ( Z be a closed-valued KKM map, that is, for any A ∈ 〈D〉, sΓ(A) ⊂ G′(A) or
Γ(A) ⊂ (s−1G′)(A). Then s−1G′ : D ( E is a closed-valued KKM map on the partial KKM space
(E,D; Γ). Hence {s−1G′(a)}a∈D has the �nite intersection property and so does the family {G′(a)}a∈D.

Note that the above proof also works for open-valued KKM maps on KKM spaces.

Proposition 4.2. The set s(LN ) is a compact sΓ-convex subset of (Z,D; sΓ).

Proof. Since LN is compact and s is continuous, s(LN ) is compact. Since LN is Γ-convex relative to some
D′ ⊂ D such that N ⊂ D′, for any A ∈ 〈D′〉, we have Γ(A) ⊂ LN and hence sΓ(N) ⊂ s(LN ). Therefore,
s(LN ) is sΓ-convex relative to D′ ⊂ D.
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In 2011, Chebbi et al. [11] introduced the notion of coercing family in L-spaces for a given map as follows:

[II] ([11]) Let D be an arbitrary set in an L-space (E,Γ), Z a topological space, and s : E → Z a continuous
map. A family {(Ca,K)}a∈E is said to be L-coercing for a map F : D ( Z with respect to s if

(i) K is a compact subset of Z;
(ii) for each N ∈ 〈D〉, there exists a compact L-convex set LN in E containing N such that

x ∈ LN ⇒ Cx ∩D ⊂ LN ∩D;

(iii) {x ∈ E | s(x) ∈
⋂

y∈Cx∩D F (y)} ⊂ s−1(K).

Here Cx is an L-compact subset of E for each x ∈ D. Note that (E,D; Γ) is a G-convex space, contrary
to the intention of the so-called L-space theorists.

Proposition 4.3. [II] =⇒ [I].

Proof. Under the situation of [II], note that (E ⊃ D; Γ) is a G-convex space and hence a (partial) KKM
space. Let G := s−1F : D ( E and, for any N ∈ 〈D〉, we have a compact Γ-convex subset LN of E
containing N . Choose an x ∈ LN and let D′ := (Cx ∩D)∪N ⊂ LN ∩D by (ii) (and Remark 1 in [7]). Then
LN is Γ-convex relative to D′ ⊂ D containing N . Moreover, by (iii),

x ∈
⋂
y∈D′

G(y) ⊂
⋂

y∈Cx∩D
s−1F (y) ⊂ s−1(K).

Hence
s(x) ∈ s(LN ) ∩

⋂
y∈D′

sG(y) ⊂ K.

Therefore [I] holds.

Motivated by [5], we de�ne the following:

[III] Let (E,D; Γ) be an abstract convex space and Z a topological space. We say that a map F : D ( Z
has a coercing family {(Di,Ki)}i∈I if and only if

(1) for each i ∈ I, Ki is a compact subset of Z and Di ⊂ D such that, for each N ∈ 〈D〉, there exist a
compact subset Li

N of E that is Γ-convex relative to Di ∪N ;
(2) for each i ∈ I, there exists k ∈ I with

⋂
y∈Dk

F (y) ⊂ Ki.

Proposition 4.4. [III] =⇒ [I].

Proof. Let G : D ( E and s : E → Z be given in [I] and let F = sG : D ( Z. Choose any i ∈ I by [III](1),
we have Ki and Di such that, for each N ∈ 〈D〉, there exists a compact Γ-convex subset LN := Li

N of E
relative to D′ = Di ∪N . By [III](2), we have a k ∈ I such that⋂

y∈Dk

F (y) =
⋂

y∈Dk

sG(y) ⊂ Ki.

Since i was arbitrary, we may assume k = i and K = Ki. Moreover, since D′ = Dk ∪N , we have⋂
y∈D′

sG(y) ⊂ K =⇒ s(LN ) ∩
⋂
y∈D′

sG(y) ⊂ K.

Hence the coercivity condition [I] holds.
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The de�nition [III] improves the following coercivity in the sense of Ben-El-Mechaiekh, Chebbi, and
Florenzano [[5], De�nition 2.1]:

[IV] ([5]) Consider a subset X of a Hausdor� topological vector space E and a topological space Z. A family
{(Di,Ki)}i∈I of pairs of sets is said to be coercing for a map F : X ( Z if and only if:

(i) for each i ∈ I, Di is contained in a compact convex subset of X, and Ki is a compact subset of Z;
(ii) for each i, j ∈ I, there exists k ∈ I such that Di ∪Dj ⊂ Dk;
(iii) for each i ∈ I, there exists k ∈ I with

⋂
x∈Dk

F (x) ⊂ Ki.

If I is a singleton, the family is called a single coercing family. Note that (E,X; co) is a G-convex space
and that (ii) will be shown redundant.

Remark 4.1. In [5], it is noted that the condition (iii) holds if and only if the `dual' map Φ : Z ( X of F ,
de�ned by Φ(z) = X \ F−(z), z ∈ Z veri�es

(iii)′ ∀i ∈ I, ∃k ∈ I, ∀z ∈ Z \Ki, Φ(z) ∩ Ck 6= ∅.

In [5], there are given several deep examples of condition (iii)′ related to an exceptional family, an escaping
sequence, an attracting trajectory, and others.

Remark 4.2. In [11], it is shown that L-coercing families in [II] contain coercing families in the sense of
[IV].

Here we show that [IV] is a particular case of the coercivity [III] for abstract convex spaces:

Proposition 4.5. [IV] =⇒ [III].

Proof. Since each Di is contained in a compact convex subset of X ⊂ E by [IV](i) and E is a Hausdor�
topological vector space, for each N ∈ 〈X〉, there exists a compact convex subset Li

N of E containing Di∪N ;
see Lassonde [20]. Therefore, Condition [III](1) holds. Since [IV](iii) is the same to [III](2), all requirements
of [III] are satis�ed.

Note that Condition [IV](ii) is redundant for [III]. Note that all of [I]�[IV] are examples of the coercivity
(ii) in Theorem 2.1.

From now on we add up new things not treated in [34].
In 2006, Chebbi [8] introduced the following generalized form of [IV] where H-spaces are c-spaces due to

Horvath [18]:

[V] ([8]) Let (X,Γ) be an H-space and Y a topological space. A family {(Ci,Ki)}i∈I is said to be H-coercing
for a correspondence F : X → Y if and only if:

(i) For each i ∈ I, Ci is an H-compact subset of X and Ki is a compact subset of Y ;
(ii) For each i, j ∈ I, there exists k ∈ I such that Ci ∪ Cj ⊆ Ck;
(iii) For each i ∈ I, there exists k ∈ I such that:⋂

x∈Ck

F (x) ⊆ Ki.

Proposition 4.6. [I] ⇐= [III] ⇐= [V] ⇐= [IV].

The following was adopted by Hammami [17] in 2007 and Gourdel-Hammami [16] in 2007, and originated
from Chebbi-Gourdel-Hammami [11] in 2011:

[VI] ([17]) Let Z be an arbitrary set of an L-space (X,Γ), Y a topological space, and s : X → Y a continuous
map. A family {(Ca,K)}a∈X is said to be L-coercing for a correspondence F : Z ( Y with respect to s if
and only if:
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(i) K is a quasi-compact subset of Y ,
(ii) for each A ∈ 〈Z〉, there exists a quasi-compact L-convex set DA in X containing A such that:

x ∈ DA =⇒ Cx ∩ Z ⊂ DA ∩ Z,

(iii) {y ∈ Y | y ∈
⋃

z∈s−1(y)

⋂
x∈Cz∩Z F (x)} ⊂ K.

Note that (X,Z; Γ) is a G-convex space.
Hammami [17] added: For more explanation of the L-coercivity and to see that this coercivity can't be

compared to the coercivity in the sense of Ben-El-Mechaiekh, Chebbi and Florenzano in [5], see [11].
However, we note the following:

Proposition 4.7. [I] ⇐= [II] ⇐⇒ [VI].

Therefore all coercing families due to the L-space theorists are consequences of Theorem 2.1(ii). Moreover,
Conditions [II], [IV], [V], and [VI] are stated for G-convex spaces, and hence their inventors �- Chebbi-
Gourdel-Hammami [11], Ben-El-Mechaiekh - Chebbi-Florenzano [5], Chebbi [8], Hammami [17], and Gourdel-
Hammami [16] are all ignorant of G-convex spaces. This is a proper evidence that they did not seriously
read any works on G-convex spaces.

5. Generalization of the KKM principle

In this section, we deduce generalized better forms of KKM type theorems on the L-spaces in [1, 5, 7, 8,
10, 11, 16, 17] from our KKM Theorem 2.1 on abstract convex spaces.

In fact, the following includes a large number of results on L-spaces:

Theorem 5.1. ([34]) Let (E,D; Γ) be an abstract convex space, Z an arbitrary topological space and G :
D ( Z a closed-valued multimap. Suppose that there exists a continuous map s : E → Z such that:

(1) the multimap R : D ( E de�ned by R(y) := s−1(G(y)) is KKM;
(2) the coercivity condition [I] holds for R instead of G.

Then we have K ∩
⋂

y∈DG(y) 6= ∅.

Proof. We apply Theorem 2.1 with F = s.
(1) Since s−1G is a closed-valued KKM map, Condition (1) implies ΓA ⊂ R(A) = s−1G(A) and sΓA ⊂

sR(A) = G(A) for all A ∈ 〈D〉. Therefore G is a KKM map w.r.t. s.
(2) Condition (2) implies (ii) in Theorem 2.1 with F = s and G = sR. Therefore, by the case (ii) of

Theorem 2.1, we have

s(E) ∩K ∩
⋂
y∈D

sR(y) 6= ∅.

This implies the conclusion.

The main theorem of [[11], Theorem 1] and others are the particular case of Theorem 5.1 under the
assumption of [II] as follows:

Corollary 5.1. ([11, 16, 17]) Let D be an arbitrary set in the L-space (E; Γ), Z an arbitrary topological space
and F : D ( Z a map with quasi-compactly closed values. Suppose that there exists a continuous function
s : E → Z such that:

(1) the map R : D ( E de�ned by R(y) = s−1(F (y)) is KKM;
(2) there exists an L-coercing family for F with respect to s as in [II].

Then K ∩
⋂

x∈D F (x) 6= ∅.

The main theorem [[5], Theorem 3.1.] of [5] is the particular case s = 1Y of Theorem 5.1 under the
assumption of [IV] as follows:
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Corollary 5.2. ([5]) Let E be a Hausdor� topological vector space, Y a convex subset of E, X a non-empty
subset of Y , and F : X ( Y a KKM map with compactly closed (in Y ) values. If F admits a coercing family
in the sense of [IV], then

⋂
x∈X F (x) 6= ∅.

Remark 5.1. From the above corollaries, we notice the following:
1. The quasi-compactly closed sets are compactly closed sets in modern usage and can be replaced by

mere closed sets by adopting compactly generated extension (like k-spaces) of the original topology.
2. Our proofs are based on Theorem 2.1 and di�erent from that of [5, 7].
3. In view of [III], condition (ii) in [IV] of a coercing family is redundant.
4. The existence of a coercing family [IV] is simply equivalent to that of a single coercing family.
5. In Corollaries 5.1 and 5.2, F can be transfer closed-valued or intersectionally closed-valued.
6. As was noted in [5], if the coercing family is single, then Corollary 5.2 reduces to the 1984 KKM

theorem of Fan [[15], Theorem 4] which in turn generalizes the KKMF principle.

We add up some more consequences of Theorem 5.1
As in [17], for any correspondence F : X ( Y , let F ∗ : Y ( X be the `dual' correspondence of F

de�ned, for all y ∈ Y, by F ∗(y) = X \ F−1(y), where F−1(y) = {x ∈ X | y ∈ F (x)}.
The following consequence [[16], Theorem 1.2] of Corollary 5.1 was used in order to generalize Fan's

minimax inequality:

Corollary 5.3. ([16]) Let (X; Γ) be an L-space, Y an arbitrary topological space and F, G : X ( Y be two
correspondences satisfying:

(a) for every x ∈ X, F (x) is strongly compactly closed,
(b) for every x ∈ X, G(x) ⊂ F (x),
(c) there exists a continuous function s : X → Y such that:

1. for every x ∈ X, s(x) ∈ G(x),
2. for every x ∈ X, S∗(x) where S is de�ned by S(x) = s−1(G(x)) is L-convex,
3. there exists an L-coercing family {(Cx,K)}x∈X for F with respect to s.

Then
⋂

x∈Z F (x) 6= ∅.

Proof. By replacing the topology of X by the strongly compactly generated one, F has simply closed values.
In order to apply Corollary 5.1, it su�ces to show that the correspondence R : X ( X de�ned by R(x) =
s−1(F (x)) is KKM. Let A ∈ 〈X〉 and z ∈ Γ(A), then by (c.1), s(z) ∈ G(Γ(A)). One can check that Condition
(c.2) can be equivalently rewritten as S(Γ(A)) ⊂ S(A). Moreover, by (c.1), for all B ⊂ X, B ⊂ S(B), in
particular Γ(A) ⊂ S(Γ(A)). Hence we obtain Γ(A) ⊂ S(A). By construction, S ⊂ R, which implies that R
is KKM.

The following main result of Chebbi [[8], Theorem 3.1] is the particular case of Corollary 5.3 since H-spaces
are L-spaces:

Corollary 5.4. ([8]) Let (X,Γ) be an H-space, Y any topological space and F : X → Y a correspondence
such that:

(1) For every x ∈ X, F (x) is compactly closed in X.
(2) For some continuous map s : X → Y the correspondence G : X → X given by G(x) = s−1(F (x)) is

H-KKM.
(3) There exists an H-coercing family {(Ci,Ki)}i∈I for F.

Then
⋂

x∈X F (x) 6= ∅.

Proof. By switching the topology of X to the compactly generating one (as in k-spaces), all F (x) becomes
simply closed in (1). Since H-spaces are KKM spaces, the closed-valued KKM map G in (2) has the �nite
intersection property for its values. The condition (3) is an abstract form of [IV] in Section 3. Since [IV]
implies [I], The conclusion follows from Theorem 5.1.
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The following [[8], Theorem 3.2] is a simple consequences of the preceding one:

Corollary 5.5. ([8]) Let (X,Γ) be an H-space and F, G : X → X two correspondences such that:
(a) For every x ∈ X, G(x) is compactly closed and F (x) ⊂ G(x).
(b) For every x ∈ X, x ∈ F (x).
(c) For every x ∈ X, F ∗(x) is H-convex .
(d) There exists an H-coercing family {(Ci,Ki)}i∈I for F.

Then
⋂

x∈X G(x) 6= ∅.

In [8] this was used to prove results on minimax inequalities for Riesz spaces. Our original G-convex
space paper [38] was the origin of L-spaces, and is quoted in [8] for more details about generalized convexity.

The following extends Theorem 5.1 for the case E ⊃ D and the main result of Hammami [[17], Theorem
1.1] in 2007:

Theorem 5.2. Let (E ⊃ D; Γ) be an abstract convex space, Y an arbitrary topological space and and
F, G : D ( Y two correspondences such that:

(a) for every x ∈ D, F (x) is closed,
(b) for every x ∈ D, G(x) ⊂ F (x),
(c) there is a continuous function s : E → Y satisfying:

1. the correspondence R : D ( E de�ned by R(x) = s−1(F (x)) is KKM,
2. the coercivity condition [I] holds for s−1G.
3. for each compact Γ-convex set C in E:⋂

x∈C∩D
G(x) ∩ s(C) 6= ∅ ⇐⇒

⋂
x∈C∩D

F (x) ∩ s(C) 6= ∅

Then we have K ∩
⋂

x∈D F (x) 6= ∅.

Note that Theorem 5.2 for F = G reduces to Theorem 5.1 for the case E ⊃ D and that s : E → Y
belongs to KC(E, Y )

Proof. Since each F (x) is closed, it su�ces to show that for each �nite subset N of D,
⋂

x∈N F (x) ∩K 6= ∅.
Let N ∈ 〈D〉. Since (c.2) implies condition [I](C) for s−1G, there exists a compact Γ-convex subset LN

of E relative to some D′ ⊂ D such that N ⊂ D′ and

s(LN ) ∩
⋂
y∈D′

G(y) ⊂ K.

So, we may assume D′ = LN ∩D.
Consider now the correspondence RN : D′ ( LN de�ned by RN (x) = s−1F (x) ∩ LN for x ∈ D′. By

Hypothesis (c.1) and the Γ-convexity of LN , it is immediate that the correspondence RN is a KKM map.
Next, by the continuity of s, F (x)∩ s(LN ) is closed in s(LN ), and then RN (x) = s−1

0 (F (x)∩ s(LN )), where
s0 is the restriction of s to LN , is closed in LN and consequently RN (x) is compact. Since (LN , D

′; Γ|D′) is
also an abstract convex space and s|LN

∈ KC(LN , Y ), we deduce by Theorem 2.1(i) that
⋂

x∈D′ R
N (x) 6= ∅.

Since s(RN (x)) ⊂ F (x) ∩ s(LN ) for all x ∈ D′, we have
⋂

x∈D′ F (x) ∩ s(LN ) 6= ∅. Then by (c.3) with
C = LN ,

⋂
x∈D′ G(x) ∩ s(LN ) 6= ∅. To �nish the proof, we will show that⋂

x∈D′
G(x) ∩ s(LN ) ⊂

⋂
x∈N

F (x) ∩K

with D′ = LN∩D. Indeed, it is clear by (b) that
⋂

x∈LN∩DG(x)∩s(LN ) ⊂
⋂

x∈N F (x), and by the conclusion

of [I](C) for s−1G we have
⋂

x∈LN∩DG(x) ∩ s(LN ) ⊂ K. Hence, the theorem is proved.
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The main result of Hammami [[17], Theorem 1.1] in 2007 is the following consequence of Theorem 5.2:

Corollary 5.6. ([17]) Let Z be an arbitrary set in the L-space (X; Γ), Y an arbitrary topological space and
F, G : Z ( Y two correspondences such that:

(a) for every x ∈ Z, F (x) is strongly compactly closed,
(b) for every x ∈ Z, G(x) ⊂ F (x),
(c) there is a continuous function s : X → Y satisfying:

1. the correspondence R : Z ( X de�ned by R(x) = s−1(F (x)) is L-KKM,
2. there exists an L-coercing family {(Ca,K)}a∈X for G with respect to s,
3. for each quasi-compact L-convex set C in X:⋂

x∈C∩Z
G(x) ∩ s(C) 6= ∅ ⇐⇒

⋂
x∈C∩Z

F (x) ∩ s(C) 6= ∅

Then
⋂

x∈Z F (x) 6= ∅; more precisely K ∩
⋂

x∈Z F (x) 6= ∅.
Proof. Note that (X ⊃ Z; Γ) is a G-convex space and hence an abstract convex space, and F is closed-valued
by switching the topology of X to the strongly compactly generated topology (as for k-spaces). Moreover,
R = s−1F is KKM and Condition (c.2) implies the coercivity condition [I] for R = s−1G by Proposition 4.3
Then by Theorem 5.2, we have the conclusion.

Comments on Corollary 5.6:
(1) Corollary 5.6 is extremely arti�cial and its usefulness is doubtful because of the following observations.
(2) Note that (X ⊃ Z; Γ) is an abstract convex space. More precisely it is a G-convex space, contrary to

the routine claim of the L-space theorists. Traditionally L-spaces are pairs not triples; see our [38].
(3) Switching the topology of Y to compactly generated one (like k-spaces), each T (x) can be simply

closed.
(4) Existence of L-coercing family is the same to [II] which implies the more reasonable ordinary coercivity

[I] in Section 4. In fact, Condition (ii) of Theorem 2.1 is the origin of [I] and has scores of applications in
the KKM theory.

(5) The author gives no example of his own L-coercing family.
(6) The author should give an example satisfying (c.3) and other requirements.

The following is rather arti�cial KKMF theorem:

Corollary 5.7. ([11]) Let (X,Γ) be an L-space, Z a nonempty subset of X and F : Z ( X an L-KKM
correspondence with strongly compactly closed values. Suppose that for some z ∈ Z, the correspondence F (z)
is quasi-compact, then

⋂
x∈Z F (x) 6= ∅.

Note that (X ⊃ Z; Γ) is a G-convex space.
In 2018, Altwaijry-Ounaies-Chebbi [1] claimed that the KKMF principle can be extended to L-spaces as

follows:

Corollary 5.8. ([1]) Let (E,Γ) be an L-space, X a nonempty subset of E and F : X → E a set-valued map
satisfying:

(1) For all x ∈ X, F (x) is a closed subset of E.
(2) For all A ∈ 〈E〉, Γ(A) ⊂

⋃
x∈A F (x).

(3) For some z ∈ X, F (z) is compact.
Then

⋂
x∈X F (x) 6= ∅.

Proof. This is a simple consequence of Theorem 2.1(i). Moreover, this is one of the simplest cases of Corollary
5.6 when

(X,Z,Γ) = (E,X; Γ), R = F = G, Y = E, s = 1E , I = X,

Ca = {a} ∀a ∈ I = X, and K = F (z) in (3).

Then the conclusion follows from Corollary 5.6
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Remark 5.2. 1. The authors of [1] gave a proof using the KKM theorem and stated that this generalizes
several well-known previous theorems. However, this is already known and they did not mention any of
plenty of proper generalizations of this theorem.

2. Note that Theorems 5.1 and 5.2 can be applied to all subclasses of abstract convex spaces in Section
4. Recall that, for the last two decades, the L-space theorists have insisted that their L-spaces (X,Γ)
generalize our generalized (G-convex) spaces (E,D; Γ); and could not recognize the existence of various
types of extensions of their obsolete L-spaces such as G-convex spaces, φA-spaces, KKM spaces, partial
KKM spaces, and abstract convex spaces; see [38], where we declared the fall of L-spaces.

6. Generalizations of the Fan-Browder �xed point theorems

In [34], we deduced the better form of the Fan-Browder �xed point theorems in [5] and [11] from the
KKM theorem 2.1 on abstract convex spaces. In this section, we add up more better forms of the theorems.

Theorem 6.1. ([34]) (E,D; Γ) be a partial KKM space, and S : E ( D, T : E ( E maps satisfying
(1) S−(y) is open for each y ∈ D;
(2) T (x) ⊃ coΓ S(x) for each x ∈ E.

Suppose that there exists a nonempty compact subset K of E satisfying
(3) for each N ∈ 〈D〉, there exist D′ ⊂ D containing N and a compact Γ-convex subset LN of E relative

to D′ such that
LN ∩

⋂
{E \ S−(y) | y ∈ D′} ⊂ K.

Then either (a) S has a maximal element x0 ∈ K, that is, S(x0) = ∅; or (b) T has a �xed point x1 ∈ E,
that is, x1 ∈ T (x1).

Proof. Suppose T has no �xed point. De�ne a map G : D ( E by

G(y) := E \ S−(y) = {x ∈ E | y /∈ S(x)}, y ∈ D.

Then G is closed-valued. Moreover, G is a KKM map.
In fact, suppose on the contrary that there exists an N ∈ 〈D〉 such that ΓN 6⊂ G(N); that is, there exists

an x ∈ ΓN such that x /∈ G(y) for all y ∈ N . In other words, N ∈ 〈D \G−(x)〉 and

y /∈ G−(x)⇔ x /∈ G(y) = E \ S−(y)⇔ x ∈ S−(y)⇔ y ∈ S(x)

for all y ∈ N . Hence N ⊂ S(x) and, by (2), we have x ∈ ΓN ⊂ T (x). This is a contradiction.
Note that (3) implies condition (ii) of Theorem 2.1 with E = D and s = 1E ∈ KC(E,D,E) since (E,D; Γ)

is a partial KKM space. Therefore, by Theorem 2.1, we have K ∩
⋂

y∈DG(y) 6= ∅.
Then we have an x0 ∈ K and x0 ∈ G(y) = E \S−(y) or y /∈ S(x0) for all y ∈ D. Hence S has a maximal

element x0 ∈ K.

From Theorem 6.1, we obtain a �xed point result [[5], Theorem 3.2] as a Corollary:

Corollary 6.1. ([5]) Let X be a non-empty convex subset of a Hausdor� topological vector space and let
Φ : X ( X be a map with open �bers (in X) and non-empty values. If Φ admits a single coercing family in
the sense of [IV] satisfying (iii)′, then the map co(Φ) has a �xed point.

Proof. We will use Theorem 6.1 with E = D = X, Γ = co, S = Φ, T = co(Φ). Since Φ has non-empty values,
it does not have a maximal element. Now it su�ces to show that (iii)′ implies condition (3) of Theorem 6.1.

SupposeK is a compact subset of X and C is contained in a compact convex subset L of X. Let N ∈ 〈X〉.
Since X is a convex subset of a Hausdor� topological vector space, there exists a compact convex subset LN

of X containing D′ := L ∪N . Note that Φ(x) ∩D′ ⊃ Φ(x) ∩ C 6= ∅ for all x ∈ X \K by (iii)′, that is,

x ∈ X \K ⇒ Φ(x) ∩D′ 6= ∅ ⇒ ∃y ∈ Φ(x) ∩D′ ⇒ x ∈ Φ−(y), ∃y ∈ D′.
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Now we have

x ∈ LN ∩
⋂
y∈D′

(X \ Φ−(y))⇒ x ∈ X \ Φ−(y), ∀y ∈ D′ ⇒ x /∈ Φ−(y), ∀y ∈ D′.

Therefore, x /∈ X \K and hence x ∈ K. So condition (3) of Theorem 6.1 holds.

The following equivalent variant of Theorem 6.1 is given as [[34], Theorem 5.3]:

Theorem 6.2. ([34]) Let (E,D; Γ) be a partial KKM space, Z an arbitrary topological space and G : D ( Z,
H : E ( Z multimaps. Suppose that there exists a continuous map s : E → Z such that:

(1) G(y) is open for each y ∈ D;
(2) s−1H(x) ⊃ coΓG

−s(x) for each x ∈ E.
Suppose that there exists a nonempty compact subset K of E satisfying

(3) for each N ∈ 〈D〉, there exist D′ ⊂ D containing N and a compact Γ-convex subset LN of E relative
to D′ such that

s(LN ) ∩
⋂
{Z \ s−1G(y) | y ∈ D′} ⊂ K.

Then either (a) G−s has a maximal element x0 ∈ E, that is, G−s(x0) = ∅; or (b) s−1H has a �xed point
x1 ∈ E, that is, s(x1) ∈ H(x1).

Proof. In view of Propositions 4.1 and 4.2, (Z,D; sΓ) is a partial KKM space and s(LN ) is a compact
sΓ-convex subset relative to D′. We apply Theorem 6.1 replacing (E,D; Γ) by (Z,D; sΓ), S := G−s and
T := s−1H. Then

(1) S− = s−1G is open-valued since so is G and s is continuous.
(2) T (x) = s−1H(x) ⊃ coΓG−s(x) = coΓS(x) for each x ∈ E.
(3) Condition (3) of Theorem 6.1 with S− = s−1G holds.

Therefore, by Theorem6.1, the conclusion follows.

Remark 6.1. Note that we deduced Theorem 6.2. from Theorem 6.1. Conversely, Theorem 6.2 for E = Z
and s = 1E reduces to Theorem 6.1.

As a corollary of Theorem 6.2, we obtain [[11], Theorem 2].

Corollary 6.2. ([11]) Let (X; Γ) be an L-space, Z an arbitrary topological space, s : X → Z a continuous
map and S : X ( Z a multimap such that:

(i) for each x ∈ X, S(x) is quasi-compactly open in Z;
(ii) for each z ∈ Z, S−1(z) is nonempty and L-convex;
(iii) there exists an L-coercing family {(Cx,K)}x∈X for the map Q(x) = Z \ S(x) with respect to s.
Then there exists x0 ∈ X such that s(x0) ∈ S(x0). In particular, if s is the identity map, then S has a

�xed point.

Proof. Put E = D = X and G = H = S in Theorem 6.2

As was noted in [5], Theorems in Sections 5 and 6 can be used to extend existing results on various
equilibrium problems, solvability of complementarity problems, existence of zero on non-compact domains,
and existence of equilibria for qualitative games and abstract economies.

We have another variant of Corollary 6.2 given by Chebbi [[8], Proposition 4.1] as follows:

Corollary 6.3. ([8]) Let (X,Γ) be an H-space, Y a topological space and S : X → Y a correspondence such
that:

(i) For each x ∈ X, S(x) is compactly open in Y.
(ii) For each y ∈ X, S−1(y) is nonempty and H-convex.
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(iii) There exists an H-coercing family {(Ci,Ki)}i∈I for the correspondence F : X → Y de�ned by
F (x) = Y \ S(x), ∀x ∈ X.

Then, for each continuous function s : X → Y , there exists an x0 ∈ X such that s(x0) ∈ S(x0). In
particular, S has a �xed point.

The last conclusion should be �In particular, if X = Y and s = 1X , then S has a �xed point.�
Corollary 6.3 was also given as Chebbi [[10], Proposition 3.1] in 2015. The following result of Chebbi

[[10], Proposition 3.2] is a geometrical formulation of Corollary 6.3:

Corollary 6.4. ([10]) Let (X,Γ) be an H-space, Y a topological space, Z an arbitrary set and s : X → Y a
continuous function. Let A ⊂ Z and g : X × Y → Z be a function such that:

(a) For every x ∈ X, the set {y ∈ Y | g(x, y) ∈ A} is compactly open.
(b) For every y ∈ Y , the set {x ∈ X | g(x, y) ∈ A} is nonempty and H-convex.
(c) There exists a family {(Ci,Ki)}i∈I satisfying conditions (i) and (ii) of [V] and the following one: For

all i ∈ I, there exist k ∈ I such that {y ∈ Y | g(x, y) /∈ A ∀x ∈ Ck} ⊂ Ki.
Then g satis�es at least one of the following properties:
(1) There exists ŷ ∈ Y such that g(x, ŷ) /∈ A for all x ∈ X.
(2) There is x̂ ∈ X such that g(x̂, s(x̂)) ∈ A.

As in the case of classical convexity, we can deduce from Corollary 5.8 the following Fan-Browder type
�xed point result [[1], Proposition 3.2]:

Corollary 6.5. ([1]) Let X be a nonempty compact L-convex subset of an L-space (E,Γ), F, G : X ( X
two set-valued maps satisfying the following:

(i) For each x ∈ X, F (x) 6= ∅ and F (x) ⊂ G(x).
(ii) For each x ∈ X, G(x) is L-convex.
(iii) For each y ∈ X, F−1(y) is open in X.

Then G admits a �xed point, that is a point x̂ ∈ X such that x̂ ∈ G(x̂).

The authors of [1] gave a proof using their KKM theorem and stated that this generalizes several well-
known previous theorems. However, they did not mention any of so many proper generalizations of this
theorem.

Then the authors continue: �The concept of KF-majorization due to Borglin and Keiding is then easily
extended to L-spaces and a result on the existence of a maximal element for such correspondence is deduced.
As an application, we prove an equilibrium existence result for qualitative games de�ned in an L-space and
an equilibrium result for an abstract economy.�

Note that such arguments were already given by many authors for much more general convexity structure
than L-structures.

7. On general minimax inequalities and applications

It is well-known that any KKM type theorem can be reformulated equivalently to the Fan-Browder type
�xed point theorems, matching theorems, minimax inequalities, and so on.

In this section, we indicate that results of Chebbi in [7, 9] and Gourdal-Hammami in [16] can be improved
following our preceding arguments.

The following is a KKM type minimax inequality given as [[32], Theorem 5.3]:

Theorem 7.1. ([32]) Let (E,D; Γ) be a partial KKM space. Let f : E ×D → R be an extended real-valued
function and γ ∈ R such that

(1) for each y ∈ D, {x ∈ E | f(x, y) ≤ γ} is intersectionally closed [resp. transfer closed];
(2) for each N ∈ 〈D〉 and x ∈ ΓN , min{f(x, y) | y ∈ N} ≤ γ; and
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Suppose that there exists a nonempty compact subset K of E satisfying
(3) for each N ∈ 〈D〉, there exist D′ ⊂ D containing N and a compact Γ-convex subset LN of E relative

to D′ such that
LN ∩

⋂
y∈D′
{x ∈ E | f(x, y) ≤ γ} ⊂ K.

Then (a) there exists a x̂ ∈ E [resp. x̂ ∈ K] such that

f(x̂, y) ≤ γ for all y ∈ D; and

(b) if E = D and γ = supx∈E f(x, x), then we have the minimax inequality:

inf
y∈E

sup
x∈E

f(x, y) ≤ sup
x∈E

f(x, x).

Corollary 7.1. (Chebbi [7]) Let X be a nonempty convex subset of a t.v.s. E, and f : X × X → R be a
function satisfying

(i) f is l.s.c. in the �rst variable on each compact convex subsets of X;
(ii) for each A ∈ 〈X〉, supx∈coA miny∈A f(x, y) ≤ 0; and
(iii) the coercivity condition (IV) with X = Z and

F (y) := {x ∈ X | f(x, y) ≤ 0} for y ∈ X.

Then there exists an x0 ∈ X such that f(x0, y) ≤ 0 for all y ∈ X.

Proof. Note that X can be regarded a convex space in the sense of Lassonde [20] and endowed the compactly
generated extension of of its original topology. Then (i) becomes simply `f is l.s.c.' and hence, condition (1)
of Theorem 7.1 is satis�ed. Moreover, it is clear that (ii) implies (2) of Theorem 7.1. Further, (iii) implies the
coercivity condition (I) in Section 4 with s = 1E and G(y) := {x ∈ E | f(x, y) ≤ γ} for y ∈ D. Therefore,
the conclusion of Corollary 7.1 follows from Theorem 7.1(a) with γ = 0.

Recall that Condition (ii) in [IV] is redundant.
Corollary 7.1 is applied to some equilibrium problems in [7] and to some quasi-variational inequalities in

[9]. Note that Corollary 7.1 can be improved by adopting more general conditions [I]�[III] with s = 1E and
Z = E. Moreover, any interested reader can check that all results in [7] and [9] can be improved by applying
Theorem 7.1 instead of Corollary 7.1.

In 2007, Gourdal-Hammami [16] applied a form of Ky Fan's matching theorem to minimax and variational
inequalities. As usually some of the L-space theorists do, they listed our [38] in the references, but nothing
was quoted from it.

For any subset A of R and every z ∈ R, A ≤ z denotes for all a ∈ A, a ≤ z and A 6≤ z means that there
exists a ∈ A such that a > z.

De�nition 7.1. ([16]) Let X be a topological space. A correspondence Q : X ( R is said to be weakly
lower semi-continuous (weakly l.s.c) on X if for each p ∈ R, the set {x ∈ X | Q(x) ≤ p} is closed in X or
equivalently, the set {x ∈ X | Q(x) ∩ ]p,+] 6= ∅} is open in X.

Proposition 7.1. ([16]) If Q is a lower semi-continuous correspondence then it is weakly lower semi-
continuous.

The Ky Fan minimax inequality can be extended in the following way:
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Theorem 7.2. Let (E; Γ) be an abstract convex space and z ∈ R. Let F and G be two correspondences from
E × E to R satisfying the following condition:

(a) for every x ∈ E, G(x, x) ≤ z,
(b) for each �xed y ∈ E, {x ∈ X | G(x, y) ≤ z} is Γ-convex,
(c) for each �xed x ∈ E, y 7→ F (x, y) is weakly l.s.c on the compact subsets of E,
(d) for every (x, y) ∈ E × E, F (x, y) ⊂ G(x, y),
(e) there exists a family {(Cx,K)}x∈E of pairs of sets satisfying:

(1) K is a compact subset of E,
(2) for each N ∈ 〈E〉, there exists a compact Γ-convex set LN containing N such that:

x ∈ LN ⇒ Cx ⊂ LN ,

(3) {y ∈ X : F (x, y) ≤ z for all x ∈ Cy} ⊂ K.

Then there exists y0 ∈ X such that F (x, y0) ≤ z ∀x ∈ X.

Proof. For each x ∈ X, let F̃ (x) = {y ∈ F (x) : F (x, y) ≤ z} and G̃(x) = {y ∈ X : G(x, y) ≤ z}. Then by (c),
the correspondence F̃ has closed values. By (b), the set G̃∗(y) = {x ∈ X : G(x, y) 6≤ z} is a Γ-convex subset
of X. By (d), for each x ∈ X, G̃(x) ⊂ F̃ (x). Note that, by (a), for each x ∈ X, x ∈ G̃(x) and {(Cx,K)}x∈X
is a coercing family of F̃ . Then all the requirements of Corollary 5.3 with s the identity function are satis�ed,
hence

⋂
x∈X F̃ (x) 6= ∅ and the corollary is proved.

The following is [[16], Theorem 2.4]:

Corollary 7.2. ([16]) Let (X,Γ) be an L-space and z ∈ R. Let F and G be two correspondences from X×X
to R satisfying the following condition:

(a) for every x ∈ X, G(x, x) ≤ z,
(b) for each �xed y ∈ X, {x ∈ X | G(x, y) ≤ z} is L-convex,
(c) for each �xed x ∈ X, y 7→ F (x, y) is weakly l.s.c on the quasi-compact subsets of X,
(d) for every (x, y) ∈ X ×X, F (x, y) ⊂ G(x, y),
(e) there exists a family {(Cx,K)}x∈X of pairs of sets satisfying:

(1) K is a quasi-compact subset of X,
(2) for each A ∈ 〈X〉, there exists a quasi-compact L-convex set DA containing A such that:

x ∈ DA ⇒ Cx ⊂ DA,

(3) {y ∈ X : F (x, y) ≤ z for all x ∈ Cy} ⊂ K.

Then there exists y0 ∈ X such that F (x, y0) ≤ z ∀x ∈ X.

8. Historical remarks

In this section, we give some remarks on the history of L-spaces:

(1) In 1993 [39], we introduced the generalized convex (G-convex) space (E,D; Γ) with the monotonicity
condition. In 1998, we gave the new de�nition removing the condition; see [21, 25].

(2) Apparently motivated by our G-convex spaces, in 1998, the L-space (E,Γ) was appeared in [4], where
it was stated that the G-convex space (E,Γ) in [39] with the monotonicity was particular to L-space. This
false statement in�uenced the L-space theorists, who used to refer [39] until 2018 for twenty years; e.g. see
[1] in 2018. They did not mind that G-convex spaces are triples (E,D; Γ) in [39]. Moreover, according to
the de�nition of L-spaces, the original KKM example [19] in 1929 and the 1961 Fan example [13] can not be
L-spaces. See Section 3.
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(3) Consequently, as we have seen in Part I, there have been many mathematicians who can not distinguish
pairs and triples. Some of them are concentrating only L-spaces in the KKM theory. So that such peoples
can be adequately called the L-space theorists in this paper.

(4) The L-space theorists mainly work for L-spaces and their subclasses, e.g., H-spaces and topological
vector spaces, as can be seen in Sections 5�7. Sometimes, they also work for triples; e.g. Corollaries 5.1, 5.2,
5.6, 5.7, and 5.8. Consequently, they work for G-convex spaces unconsciously. They could not recognize the
existence of much more broad world of abstract convex spaces for the KKM theory.

(5) The L-space theorists use inadequate concepts like quasi-compactly closed, compactly closed, strongly
compactly closed, qusi-compactly open, compactly open, etc. These concepts are arti�cial, hard to use, not
practical, and can be eliminated by adopting new topology by elementary topological method; see [22, 36].

(6) The L-space theorists introduced several coercing families. However, all of them are simple conse-
quences of known coercivity condition (ii) in Theorem 2.1 originated from S. Y. Chang [6] in 1989.

(7) After two decades of enduring the falsehood of L-spaces, we declared that �The rise and fall of L-
spaces� in Part I. Moreover, we have to also destroy the works on coercing families which are not elegant
and full of arti�cial things. This is why we write this Part II.

From now on, we introduce some inadequate statements given by other authors:

(8) [12] �The following generalization of KKM principle obtained in [5] will be used in the proof of the
main result of this paper.�

Since the result in [5] was already improved in this paper, so the paper [12] needs to improve.

(9) [2] �The concept of an L-space is actually a small re�nement of that of a c-space of Horvath. The
original G-convex spaces of Park and Kim [39] are L-spaces (with an auxiliary set D much as in the way of
Lassonde convex spaces) where, in addition, the L-structure Γ is isotone. Later, Park removed the isotony
condition in his de�nition of G-convexity.�

This is a false statement. The original G-convex space of Park and Kim [39] is a triple and L-space is a
pair. How could a triple be a pair? Moreover Lassonde convex space [20] is a pair without D. The triple on
convex spaces was �rst introduced by ourselves; see Section 3 and [25, 35]. Further, no one of the L-space
theorists seems to give examples of L-spaces not satisfying the isotonicity.

(10) [1] �We note also that to de�ne the structure of L-convexity, we do not require that Γ satis�es a
monotony type condition, i.e. if A ⊂ B, then Γ(A) ⊂ Γ(B) as it is used by Park and Kim in [39] to de�ne
G-convex spaces and by many other papers in the literature dealing with G-convex spaces.�

Since 1998, no papers on G-convex spaces by ourselves adopt the monotonicity. The authors' claim �many
other papers · · · � is a blu�ng. It is doubtful that all of the L-space theorists quoting [39] actually read it.
Because they stated false statements for two decades continuously. As we have seen in Section 3, L-spaces
theory can not applicable to the KKM theorem, the 1961 KKMF principle, and many other important results
in the KKM theory; see [35]. Therefore, we conclude again that L-spaces should be destroyed.
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