Advances in the Theory of Nonlinear Analysis and its Applications $\bf 5$ (2021) No. 1, 49–57. https://doi.org/10.31197/atnaa.848928 Available online at www.atnaa.org

Advances in the Theory of Nonlinear Analysis and its Applications

ISSN: 2587-2648

Peer-Reviewed Scientific Journal

Hilfer-Hadamard fractional differential equations; Existence and Attractivity

Fatima Si Bachir^a, Saïd Abbas^b, Maamar Benbachir^c, Mouffak Benchohra^d

Abstract

This work deals with a class of Hilfer-Hadamard differential equations. Existence and stability of solutions are presented. We use an appropriate fixed point theorem.

Keywords: Hilfer-Hadamard fractional derivative, Schauder fixed-point Theorem, uniformly locally

attracting.

2010 MSC: 26A33, 34A08.

1. Introduction

The beginning of the fractional calculus in 1695, the fractional differential equation has been used in fields like mathematics, engineering, bioengineering, physics, etc.[16, 30], to see interesting results in the theory of fractional calculus and fractional differential equations, the reader may consult the monographs by; Abbas et al. [8, 9], Kilbas et al. [22], Oldham et al. [26], Podlubny [27], Samko et al. [28], Zhou et al. [33], and the papers by Abbas et al. [3, 5], Benchohra et al. [12], Lakshmikantham et al. [23, 24, 25]. Other recent results are provided in [11, 13, 17, 18, 19, 20, 21, 29, 31, 32]. Attractivity results for various classes of fractional differential equations are considered in [1, 2, 4, 6, 10].

^aLaboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000, Algeria.

^bDepartment of Mathematics, University of Saïda–Dr. Moulay Tahar, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria.

^cDepartment of Mathematics, Saad Dahlab Blida1, University of Blida, Algeria.

^dLaboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, Sidi Bel-Abbès 22000, Algeria.

Email addresses: sibachir.fatima@univ-ghardaia.dz (Fatima Si Bachir), abbasmsaid@yahoo.fr, said.abbas@univ-saida.dz (Saïd Abbas), mbenbachir2001@gmail.com (Maamar Benbachir), benchohra@yahoo.com (Mouffak Benchohra)

In [7], Abbas et al. studied some existence and Ulam stability results of the following problem

$$\begin{cases} ({}^{H}D_{1+}^{\tau,\theta}i)(t) = \chi(t,i(t)); & t \in [1,T], \\ ({}^{H}I_{1+}^{1-\varrho}i)(1) = d, & \varrho = \tau + \theta(1-\tau). \end{cases}$$

This work is devoted to the existence and attractivity of solutions of the following problem

$$\begin{cases} ({}^{H}D_{c^{+}}^{\tau,\theta}i)(t) = \chi(t,i(t)); & t \in [c,+\infty), \ c > 0, \\ ({}^{H}I_{c^{+}}^{1-\varrho}i)(c) = d, & \varrho = \tau + \theta(1-\tau), \end{cases}$$
 (1)

where $d \in \mathbb{R}$, $\chi : [c, +\infty) \times \mathbb{R} \to \mathbb{R}$, ${}^HI^{1-\varrho}_{c^+}$ is the left-sided Hadamard fractional of order $\tau > 0$ and ${}^HD^{\tau, \theta}_{c^+}$ is the Hilfer-Hadamard derivative operator of order τ (0 < τ < 1) and type θ (0 $\leq \theta \leq$ 1).

2. Preliminaries

We will introduce some spaces. We denote by $C_{\varrho,\log}[c,e]$, $(0 < c < e < \infty)$, the space $C_{\varrho,\log}[c,e] = \{\iota : (c,e] \to \mathbb{R} : (\log \frac{t}{c})^{1-\varrho} \ \iota(t) \in C[c,e]\}$, with the norm

$$\|\iota\|_{C_{\varrho,\log}} = \sup_{t \in [c,e]} \left| \left(\log \frac{t}{c}\right)^{1-\varrho} \iota(t) \right|.$$

 $BC^* := BC([c, +\infty))$ denotes the space continuous and bounded functions $\iota : [c, +\infty) \to \mathbb{R}$. $BC_{\varrho} = \{\iota : (c, +\infty) \to \mathbb{R}: (\log \frac{t}{c})^{1-\varrho} \iota(t) \in BC^*\}$, with the norm

$$\|\iota\|_{BC_{\varrho}} := \sup_{t \in [c,+\infty)} \left| \left(\log \frac{t}{c} \right)^{1-\varrho} \iota(t) \right|.$$

Denote $\|\iota\|_{BC_{\varrho}}$ by $\|\iota\|_{BC^*}$.

Definition 2.1. [22]. Let (c,e) $(0 \le c < e \le \infty)$ and $\tau > 0$. The Hadamard left-sided fractional integral ${}^HI_{c+}^{\tau}j$ of order $\tau > 0$ is defined by

$$\begin{pmatrix} {}^{H}I_{c+}^{\tau}j \end{pmatrix}(x) := \frac{1}{\Gamma(\tau)} \int_{c}^{x} \left(\log \frac{x}{t}\right)^{\tau-1} \frac{j(t)dt}{t}, \quad c < x < e.$$

When $\tau = 0$, we set

$$^{H}I_{c^{+}}^{0}j=j.$$

Definition 2.2. [22] Let $(c,e)(0 \le c < e \le \infty)$ be a finite or infinite interval of the half-axis \mathbb{R}_+ and let $\tau > 0$. The Hadamard right-sided fractional integral ${}^HI_{e^-}^{\tau}j$ of order $\tau > 0$ is defined by

$$\begin{pmatrix} H I_{e^-}^{\tau} j \end{pmatrix}(x) := \frac{1}{\Gamma(\tau)} \int_x^e \left(\log \frac{t}{x} \right)^{\tau - 1} \frac{j(t) dt}{t}, \quad c < x < e.$$

When $\tau = 0$, we set

$$^{H}I_{e^{-}}^{0}j=j.$$

Example 2.3. For each $\tau > 0$ and $\lambda \in \mathbb{R}$, we have

$$^{H}I_{1}^{\tau}(\log x)^{\lambda-1} := \frac{\Gamma(\lambda)}{\Gamma(\tau+\lambda)}(\log x)^{\tau+\lambda-1}; \ x \ge 1.$$

Definition 2.4. [22] The left-sided Hadamard fractional derivative of order $\tau(0 \le \tau < 1)$ on (c, e) is defined by

$$({}^{H}D_{c+}^{\tau}j)(x) = \frac{1}{\Gamma(1-\tau)} \left(x\frac{d}{dx}\right) \int_{c}^{x} \left(\log \frac{x}{t}\right)^{-\tau} \frac{j(t)dt}{t}, \quad c < x < e.$$

In particular, when $\tau = 0$ we have

$${}^{H}D_{a^{+}}^{0}j=j.$$

Definition 2.5. [22] The right-sided Hadamard fractional derivative of order $\tau(0 \le \tau < 1)$ on (c, e) is defined by

$$\begin{pmatrix} {}^{H}D_{e^{-}}^{\tau}j \end{pmatrix}(x) = -\left(x\frac{d}{dx}\right) \frac{1}{\Gamma(1-\tau)} \int_{x}^{e} \left(\log \frac{t}{x}\right)^{-\tau} \frac{j(t)dt}{t}.$$

In particular, when $\tau = 0$ we have

$${}^{H}D_{e^{-}}^{0}j=j.$$

Definition 2.6. Let (c,e) be a finite interval of the half-axis \mathbb{R}_+ . The fractional derivative ${}^{Hc}D_{c+}^{\tau}j$ of order τ $(0 < \tau < 1)$ on (c,e) defined by:

$${}^{Hc}D_{c^{+}}^{\tau}j = {}^{H}I_{c^{+}}^{1-\tau}\delta j,$$

where $\delta = x(d/dx)$, is called the Hadamard-Caputo fractional derivative of order τ .

Lemma 2.7. [22] Let $\tau > 0, \theta > 0$ and $0 \le \mu < 1$. If $0 < c < e < \infty$, then for $j \in C_{\mu,\log}[c,e]$ the equality ${}^HI_{c^+}^{\tau}{}^HI_{c^+}^{\theta}j = {}^HI_{c^+}^{\tau+\theta}j$ holds.

Theorem 2.8. [22] Let $0 < \tau < 1$ and $0 < c < e < \infty$. If $j \in C_{\mu,\log}[c,e] (0 \le \mu < 1)$ and ${}^HI_{c^+}^{1-\tau}j \in C_{\delta,\mu}^1[c,e]$ then

$$\left({^HI_{c^+}^{\tau}}^HD_{c^+}^{\tau}j \right)(x) = j(x) - \frac{\left({^HI_{c^+}^{1-\tau}j} \right)(c)}{\Gamma(\tau)} \left(\log\frac{x}{c}\right)^{\tau-1},$$

holds at any point $x \in (c, e]$. If $j \in C[c, e]$ and ${}^HI^{1-\tau}_{c^+}j \in C^1_{\delta}[c, e]$, then the relation holds at any point $x \in [c, e]$.

Definition 2.9. (Hilfer-Hadamard fractional derivative). The left sided fractional derivative of order τ $(0 < \tau < 1)$ and type $0 \le \theta \le 1$ with respect to x is defined by

$$\begin{pmatrix} {}^{H}D_{c^{+}}^{\tau,\theta}j \end{pmatrix}(x) = \begin{pmatrix} {}^{H}I_{c^{+}}^{\theta(1-\tau)} \ {}^{H}D_{c^{+}}^{\tau+\theta-\tau\theta}j \end{pmatrix}(x).$$

Corollary 2.10. [21] Let $\sigma \in C_{\varrho,\log}(I)$. Then the problem

$$\begin{cases} ({}^HD^{\tau,\theta}_{c^+}i)(t) = \sigma(t), & t \in I := [c,e] \\ ({}^HI^{1-\varrho}_{c^+}i)(c) = d, \end{cases}$$

admits the following unique solution

$$i(t) = \frac{d}{\Gamma(\varrho)} \left(\log \frac{t}{c} \right)^{\varrho - 1} + \left({}^{H}I_{c^{+}}^{\tau} \sigma \right) (t). \tag{2}$$

Lemma 2.11. Let $\chi:(c,e]\times\mathbb{R}\to\mathbb{R}$ be a function such that $\chi(\cdot,i(\cdot))\in BC_{\varrho}$ for any $i\in BC_{\varrho}$. Then the problem (1) is equivalent to the integral equation

$$i(t) = \frac{d}{\Gamma(\varrho)} \left(\log \frac{t}{c} \right)^{\varrho - 1} + \left({}^{H}I_{c+}^{\tau} \chi(\cdot, i(\cdot)) \right)(t). \tag{3}$$

Let $\emptyset \neq H \subset BC^*$ and let $T: H \to H$. Let the equation

$$(Ti)(t) = i(t). (4)$$

Definition 2.12. Solutions of equation (4) are locally attractive if there exists a ball $B(i_0, \delta)$ in the space BC^* such that, for any solutions w = w(t) and $\Theta = \Theta(t)$ of equations (4) that belong to $B(i_0, \delta) \cap H$, we can write

$$\lim_{t \to \infty} (w(t) - \Theta(t)) = 0. \tag{5}$$

If limit (5) is uniform with respect to $B(i_0, \delta) \cap H$, then (4) is uniformly locally attractive.

Lemma 2.13. [14] Let $P \subset BC^*$. Then P is relatively compact in BC^* if the following conditions are satisfied:

- (a) P is uniformly bounded in BC^* ;
- (b) the functions belonging to P are almost equicontinuous in \mathbb{R}_+ , i.e., equicontinuous on every compact set in \mathbb{R}_+
- (c) the functions from P are equiconvergent, i.e., given $\varsigma > 0$, there exists $M(\varsigma) > 0$ such that

$$\left| i(t) - \lim_{t \to \infty} i(t) \right| < \varsigma,$$

for any $t \geq M(\varsigma)$ and $i \in P$.

Theorem 2.14. (Schauder Fixed-Point Theorem [15]). Let X be a Banach space, let D be a nonempty bounded convex and closed subset of X, and let $L: D \to D$ be a compact and continuous map. Then L has at least one fixed point in D.

3. Existence and Attractivity Results

Definition 3.1. A measurable function $i \in BC_{\varrho}$ is a solution of (1) if it verifies $({}^{H}I_{c+}^{1-\varrho}i)(c) = d$, and the equation $({}^{H}D_{c+}^{\tau,\theta}i)(t) = \chi(t,i(t))$ on $[c,+\infty)$.

We will give the following hypotheses:

- (H_1) The function $t \mapsto \chi(t,i)$ is measurable on $[c,+\infty)$ for each $i \in BC_{\varrho}$, and $i \mapsto \chi(t,i)$ is continuous.
- (H_2) There exists a continuous function $l:[c,+\infty)\to[0,+\infty)$ such that

$$|\chi(t,i)| \le \frac{l(t)}{1+|i|}$$
 for a.e. $t \in [c,+\infty)$ and each $i \in \mathbb{R}$,

and

$$\lim_{t \to \infty} \left(\log \frac{t}{c}\right)^{1-\varrho} \left({}^H I_{c^+}^{\tau} l\right)(t) = 0.$$

Set

$$l^* = \sup_{t \in [c, +\infty)} \left(\log \frac{t}{c} \right)^{1-\varrho} ({}^H I_{c+}^{\tau} l) (t).$$

Theorem 3.2. If (H_1) and (H_2) hold, then (1) has at least one solution which is uniformly locally attractive.

Proof. Define the operator L by

$$(Li)(t) = \frac{d}{\Gamma(\varrho)} \left(\log \frac{t}{c} \right)^{\varrho - 1} + \frac{1}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau - 1} \chi(s, i(s)) \frac{ds}{s}.$$

We can prove that the operator L maps BC_{ϱ} into BC_{ϱ} . Indeed; the map L(i) is continuous on $[c, +\infty)$, and for any $i \in BC_{\varrho}$ and, for each $t \in [c, +\infty)$, we have

$$\begin{split} \left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) \right| &\leq \frac{|d|}{\Gamma(\varrho)} + \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau-1} |\chi(s, i(s))| \frac{ds}{s} \\ &\leq \frac{|d|}{\Gamma(\varrho)} + \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s} \\ &\leq \frac{|d|}{\Gamma(\varrho)} + l^{*} \\ &:= R^{*}, \end{split}$$

so

$$||L(i)||_{BC_o} \le R^*. \tag{6}$$

Therefore, $L(i) \in BC_{\varrho}$, which proves that the operator $L(BC_{\varrho}) \subset BC_{\varrho}$. Equation (6) implies that L maps

$$B_{R^*} := B(0, R^*) = \{ v \in BC_{\varrho} : ||v||_{BC_{\varrho}} \le R^* \}$$

into itself.

Step 1. L is continuous.

Let $\{i_n\}_{n\in\mathbb{N}}$ be a sequence converging to i in B_{R^*} . Then,

$$\left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li_n) (t) - \left(\log \frac{t}{c} \right)^{1-\varrho} (Li) (t) \right|$$

$$\leq \frac{1}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau - 1} \left| \left(\log \frac{t}{c} \right)^{1 - \varrho} \chi\left(s, i_{n}(s)\right) - \left(\log \frac{t}{c} \right)^{1 - \varrho} \chi(s, i(s)) \right| \frac{ds}{s}. \tag{7}$$

Case 1. If $t \in [c,T], T > 0$, then, since $i_n \to i$ as $n \to \infty$ and from the continuity of χ , we get

$$||L(i_n) - L(i)||_{BC_{\varrho}} \to 0$$
 as $n \to \infty$.

Case 2. If $t \in (T, \infty), T > 0$, then (7) implies that

$$\left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li_n)(t) - \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) \right| \le 2 \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)}$$

$$\times \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s}, \tag{8}$$

since $i_n \to i$ as $n \to \infty$ and $\left(\log \frac{t}{c}\right)^{1-\varrho} \left({}^H I_{c^+}^{\tau}l\right)(t) \to 0$ as $t \to \infty$, it follows from (8) that

$$\|L(i_n) - L(i)\|_{BC_{\varrho}} \to 0$$
 as $n \to \infty$.

Step 2. $L(B_{R^*})$ is uniformly bounded and equicontinuous.

Since $L(B_{R^*}) \subset B_{R^*}$ and B_{R^*} is bounded, then $L(B_{R^*})$ is uniformly bounded. Next let $t_1, t_2 \in [c, T], t_1 < t_2$, and let $i \in B_{R^*}$. This yields

$$\left| \left(\log \frac{t_2}{c} \right)^{1-\gamma} (Li) (t_2) - \left(\log \frac{t_1}{c} \right)^{1-\varrho} (Li) (t_1) \right|$$

$$\leq \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} \left[\frac{d}{\Gamma(\varrho)} \left(\log \frac{t_2}{c} \right)^{\varrho-1} + \frac{1}{\Gamma(\tau)} \int_c^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right] \right|$$

$$- \left(\log \frac{t_1}{c} \right)^{1-\varrho} \left[\frac{d}{\Gamma(\varrho)} \left(\log \frac{t_1}{c} \right)^{\varrho-1} + \frac{1}{\Gamma(\tau)} \int_c^{t_1} \left(\log \frac{t_1}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right]$$

$$\leq \left| \frac{\left(\log \frac{t_2}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_c^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right|$$

$$- \frac{\left(\log \frac{t_1}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_c^{t_1} \left(\log \frac{t_1}{s} \right)^{\tau-1} \chi(s, i(s)) \frac{ds}{s} \right| .$$

Then, we get

$$\begin{split} & \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} (Li) \left(t_2 \right) - \left(\log \frac{t_1}{c} \right)^{1-\varrho} (Li) \left(t_1 \right) \right| \\ & \leq \frac{\left(\log \frac{t_2}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} |\chi(s,i(s))| \frac{ds}{s} \\ & + \frac{1}{\Gamma(\tau)} \int_{c}^{t_1} \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} \left(\log \frac{t_2}{s} \right)^{\tau-1} - \left(\log \frac{t_1}{c} \right)^{1-\varrho} \left(\log \frac{t_1}{s} \right)^{\tau-1} \right| |\chi(s,i(s))| \frac{ds}{s} \\ & \leq \frac{\left(\log \frac{t_2}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} l(s) \frac{ds}{s} \\ & + \frac{1}{\Gamma(\tau)} \int_{c}^{t_1} \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} \left(\log \frac{t_2}{s} \right)^{\tau-1} - \left(\log \frac{t_1}{c} \right)^{1-\varrho} \left(\log \frac{t_1}{s} \right)^{\tau-1} \right| l(s) \frac{ds}{s}. \end{split}$$

Thus, we obtain

$$\left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} (Li) (t_2) - \left(\log \frac{t_1}{c} \right)^{1-\varrho} (Li) (t_1) \right|$$

$$\leq \frac{l_* \left(\log \frac{t_2}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\tau-1} \frac{ds}{s}$$

$$+ \frac{l_*}{\Gamma(\tau)} \int_{c}^{t_1} \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} \left(\log \frac{t_2}{s} \right)^{\tau-1} - \left(\log \frac{t_1}{c} \right)^{1-\varrho} \left(\log \frac{t_1}{s} \right)^{\tau-1} \right| \frac{ds}{s}$$

$$\leq \frac{l_* \left(\log \frac{T}{c} \right)^{1-\varrho}}{\Gamma(\tau+1)} \left(\log \frac{t_2}{t_1} \right)^{\tau}$$

$$+ \frac{l_*}{\Gamma(\tau)} \int_{c}^{t_1} \left| \left(\log \frac{t_2}{c} \right)^{1-\varrho} \left(\log \frac{t_2}{s} \right)^{\tau-1} - \left(\log \frac{t_1}{c} \right)^{1-\varrho} \left(\log \frac{t_1}{s} \right)^{\tau-1} \right| \frac{ds}{s}.$$

As $t_1 \to t_2$, the right-hand side of the inequality tends to zero.

Step 3. $L(B_{R^*})$ is equiconvergent.

Let $t \in [c, +\infty)$ and let $i \in B_{R^*}$. We have

$$\begin{split} \left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) \right| &\leq \frac{|d|}{\Gamma(\varrho)} + \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau-1} |\chi(s, i(s))| \frac{ds}{s} \\ &\leq \frac{|d|}{\Gamma(\varrho)} + \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_{c}^{t} \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s} \\ &\leq \frac{|d|}{\Gamma(\varrho)} + \left(\log \frac{t}{c} \right)^{1-\varrho} \binom{H}{I_{c}^{\tau} l} (t). \end{split}$$

Since

$$\left(\log \frac{t}{c}\right)^{1-\varrho} \left({}^{H}I_{c+}^{\tau}l\right)(t) \to 0 \ as \ t \to +\infty,$$

we find

$$|(Li)(t)| \le \frac{|d|}{\left(\log \frac{t}{c}\right)^{1-\varrho} \Gamma(\varrho)} + \frac{\left(\log \frac{t}{c}\right)^{1-\varrho} \binom{H}{I_{c+}^{\tau}} l\right)(t)}{\left(\log \frac{t}{c}\right)^{1-\varrho}} \to 0 \quad \text{as} \quad t \to +\infty.$$

Hence

$$|(Li)(t) - (Li)(+\infty)| \to 0$$
 as $t \to +\infty$.

As a consequence of Steps 1 – 3, we conclude that $L: B_{R^*} \to B_{R^*}$ is compact and continuous. Applying Schauder's fixed point theorem, we get that L has a fixed point i, which is a solution of problem (1) on $[c, +\infty)$.

Step 4. Assume that i_0 is solution of (1). Set $i \in B(i_0, 2l^*)$, we have

$$\begin{split} & \left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) - \left(\log \frac{t}{c} \right)^{1-\varrho} i_0(t) \right| \\ & = \left| \left(\log \frac{t}{c} \right)^{1-\varrho} (Li)(t) - \left(\log \frac{t}{c} \right)^{1-\varrho} (Li_0)(t) \right| \\ & \leq \frac{\left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} |\chi(s,i(s)) - \chi(s,i_0(s))| \frac{ds}{s} \\ & \leq \frac{2 \left(\log \frac{t}{c} \right)^{1-\varrho}}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s} \right)^{\tau-1} l(s) \frac{ds}{s} \\ & \leq 2l^*. \end{split}$$

We get

$$||L(i) - i_0||_{BC_o} \le 2l^*.$$

So, we conclude that L is a continuous function such that

$$L(B(i_0, 2l^*)) \subset B(i_0, 2l^*)$$
.

Moreover, if i is a solution of problem (1), then

$$\begin{aligned} |i(t) - i_0(t)| &= |(Li)(t) - (Li_0)(t)| \\ &\leq \frac{1}{\Gamma(\tau)} \int_c^t \left(\log \frac{t}{s}\right)^{\tau - 1} |\chi(s, i(s)) - \chi(s, i_0(s))| \frac{ds}{s} \\ &\leq 2 \left({}^H I_{c^+}^{\tau} l\right)(t). \end{aligned}$$

Therefore,

$$|i(t) - i_0(t)| \le \frac{2\left(\log\frac{t}{c}\right)^{1-\varrho} \binom{H}{c} I_{c^+}^{\tau} l\right)(t)}{\left(\log\frac{t}{c}\right)^{1-\varrho}}.$$
(9)

By (9) and

$$\lim_{t \to \infty} \left(\log \frac{t}{c}\right)^{1-\varrho} \left({}^H I_{c^+}^{\tau} l\right)(t) = 0,$$

we get

$$\lim_{t \to \infty} |i(t) - i_0(t)| = 0.$$

Hence, solutions of (1) are uniformly locally attractive.

4. An Example

Consider the problem

$$\begin{cases} ({}^{H}D_{1}^{\frac{1}{2},\frac{1}{2}}i)(t) = \chi(t,i(t)); & t \in [1,+\infty), \\ ({}^{H}I_{1}^{\frac{1}{4}}i)(1) = 1, \end{cases}$$
 (10)

where

$$\begin{cases} \chi(t,i) = \frac{(t-1)^2(\log t)^{-1}\cos t}{64(t^2+1)(1+|i|)}, & t \in (1,\infty), \quad i \in \mathbb{R}, \\ \chi(1,i) = 0, & i \in \mathbb{R}. \end{cases}$$
(11)

Clearly, the function χ is continuous, and (H_2) is satisfied with

$$\begin{cases} l(t) = \frac{(t-1)^2(\log t)^{-1}|\cos t|}{64(t^2+1)}; & t \in (1,\infty), \\ l(1) = 0, \end{cases}$$
 (12)

and

$$(\log t)^{\frac{1}{4}} I_1^{1/2} l(t) = \frac{(\log t)^{1/4}}{\Gamma(\frac{1}{2})} \int_1^t \left(\log \frac{t}{s}\right)^{-1/2} \frac{l(s)}{s} ds$$

$$\leq \frac{(\log t)^{1/4}}{\Gamma(\frac{1}{2})} \int_1^t \left(\log \frac{t}{s}\right)^{-1/2} \frac{(\log s)^{-1}}{s} ds$$

$$\leq \frac{1}{\sqrt{\pi}} (\log t)^{-1/4} \to 0 \quad \text{as} \quad t \to \infty.$$

Hence, problem (10) has at least one solution which is uniformly locally attractive.

References

- [1] S. Abbas, W. Albarakati and M. Benchohra, Existence and attractivity results for Volterra type nonlinear multi-delay Hadamard-Stieltjes fractional integral equations, *PanAmer. Math. J.* **26** (2016), 1-17.
- [2] S. Abbas and M. Benchohra, Existence and attractivity for fractional order integral equations in Fréchet spaces, *Discuss. Math. Differ. Incl. Control Optim.* **33** (2013), 1-17.
- [3] S. Abbas and M. Benchohra, Existence and stability of nonlinear fractional order Riemann-Liouville, Volterra-Stieltjes multi-delay integral equations, *J. Integ. Equat. Appl.* **25** (2013), 143-158.
- [4] S. Abbas, M. Benchohra, and T. Diagana, Existence and attractivity results for some fractional order partial integrodifferential equations with delay, Afr. Diagona J. Math. 15 (2013), 87-100.
- [5] S. Abbas, M. Benchohra and J. Henderson, Asymptotic attractive nonlinear fractional order Riemann-Liouville integral equations in Banach algebras, Nonlin. Stud. 20 (2013), 1-10.
- [6] S. Abbas, M. Benchohra and J. Henderson, Existence and attractivity results for Hilfer fractional differential equations, J. Math. Sci. 243 (2019), 347-357.

- [7] S. Abbas, M. Benchohra, J.-E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type, Adv. Difference Equ. 180 (2017), 1-14.
- [8] S. Abbas, M. Benchohra and G. M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Sci. Publ., New York, 2014.
- [9] S. Abbas, M. Benchohra, and G. M.N' Guérékata, Topics in Fractional Differential Equations, Dev. Math., 27, Springer, New York, 2015.
- [10] S. Abbas, M. Benchohra, and J. J. Nieto, Global attractivity of solutions for nonlinear fractional order Riemann-Liouville Volterra-Stieltjes partial integral equations, *Electron. J. Qual. Theory Differ. Equat* 81 (2012), 1-15.
- [11] H. Afshari, E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ -Hilfer fractional derivative on b-metric spaces. Adv. Difference Equ. 2020, 616.
- [12] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340-1350.
- [13] N. Bouteraa, S. Benaicha, The uniqueness of positive solution for higher-order nonlinear fractional differential equation with fractional multi-point boundary conditions, Adv. Theory Nonl. Anal. Appl. 2 (2) (2018), 74-84.
- [14] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Acad. Press, New York, 1973.
- [15] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [16] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
- [17] R. Hilfer, Threefold introduction to fractional derivatives, R. Klages et al. (editors), Anomalous Transp.: Found. Appl., WileyVCH, Weinheim, pp. (2008), 17-73.
- [18] R. Kamocki and C. Obcz?nski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ. (2016), No. 50, 1-12.
- [19] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Difference Equ. 2019, Paper No. 421, 25 pp.
- [20] M.D. Kassim, K.M. Furati, N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal. (2012), Article ID 391062.
- [21] M.D. Kassim, N.E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal. 1 (2013), 1-12.
- [22] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- [23] V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math. 1 (2008), 38-45.
- [24] V. Lakshmikantham and A.S. Vatsala, Basic theory of fractional differential equations, Nonlin. Anal. 69 (2008), 2677-2682.
- [25] V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, *Appl. Math. Lett.* **21** (2008), 828-834.
- [26] K. Oldham, J. Spanier, The Fractional Calculus, Acad. Press, New York, 1974.
- [27] Podlubny, Fractional Differential Equations, in: Mathematics in Science and Engineering, 198, Acad. Press, New York, 1999.
- [28] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon Breach, Tokyo-Paris-Berlin, 1993.
- [29] S. Muthaiah, M. Murugesan, N. G. Thangaraj, Existence of solutions for nonlocal boundary value problem of Hadamard fractional differential equations, Adv. Theory Nonl. Anal. Appl. 3 (3) (2019), 162-173.
- [30] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to the Dynamics of Particles, Fields and Media, Springer, Beijing-Heidelberg, 2010.
- [31] Z. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler-type functions, *Integral Transforms Spec. Funct.* 21 (2010), No. 11, 797-814.
- [32] J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 (2015), 850-859.
- [33] Y. Zhou, J.-R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Second edition. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.