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Abstract

This work deals with a class of Hilfer-Hadamard differential equations. Existence and stability of solutions
are presented. We use an appropriate fixed point theorem.

Keywords: Hilfer-Hadamard fractional derivative, Schauder fixed-point Theorem, uniformly locally
attracting.
2010 MSC: 26A33, 34A08.

1. Introduction

The beginning of the fractional calculus in 1695, the fractional differential equation has been used in fields
like mathematics, engineering, bioengineering, physics, etc.[16, 30], to see interesting results in the theory of
fractional calculus and fractional differential equations, the reader may consult the monographs by; Abbas
et al. [8, 9], Kilbas et al. [22], Oldham et al. [26], Podlubny [27], Samko et al. [28], Zhou et al. [33], and the
papers by Abbas et al. [3, 5], Benchohra et al. [12], Lakshmikantham et al. [23, 24, 25]. Other recent results
are provided in [11, 13, 17, 18, 19, 20, 21, 29, 31, 32]. Attractivity results for various classes of fractional
differential equations are considered in [1, 2, 4, 6, 10].
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In [7], Abbas et al. studied some existence and Ulam stability results of the following problem{
(HDτ,θ

1+
i)(t) = χ(t, i(t)); t ∈ [1, T ],

(HI1−ϱ
1+

i)(1) = d, ϱ = τ + θ(1− τ).

This work is devoted to the existence and attractivity of solutions of the following problem{
(HDτ,θ

c+
i)(t) = χ(t, i(t)); t ∈ [c,+∞), c > 0,

(HI1−ϱ
c+

i)(c) = d, ϱ = τ + θ(1− τ),
(1)

where d ∈ R, χ : [c,+∞)×R → R, HI1−ϱ
c+

is the left-sided Hadamard fractional of order τ > 0 and HDτ,θ
c+

is
the Hilfer-Hadamard derivative operator of order τ (0 < τ < 1) and type θ (0 ≤ θ ≤ 1).

2. Preliminaries

We will introduce some spaces. We denote by Cϱ,log[c, e], (0 < c < e < ∞), the space Cϱ,log[c, e] = {ι :
(c, e] → R : (log t

c)
1−ϱ ι(t) ∈ C[c, e]}, with the norm

∥ι∥Cϱ,log
= sup

t∈[c,e]

∣∣∣∣∣
(
log

t

c

)1−ϱ

ι(t)

∣∣∣∣∣ .
BC∗ := BC([c,+∞)) denotes the space continuous and bounded functions ι : [c,+∞) → R.

BCϱ = {ι : (c,+∞) → R: (log t
c)

1−ϱι(t) ∈ BC∗}, with the norm

∥ι∥BCϱ := sup
t∈[c,+∞)

∣∣∣∣∣
(
log

t

c

)1−ϱ

ι(t)

∣∣∣∣∣ .
Denote ∥ι∥BCϱ by ∥ι∥BC∗ .

Definition 2.1. [22]. Let (c, e) (0 ≤ c < e ≤ ∞) and τ > 0. The Hadamard left-sided fractional integral
HIτc+j of order τ > 0 is defined by

(
HIτc+j

)
(x) :=

1

Γ(τ)

∫ x

c

(
log

x

t

)τ−1 j(t)dt

t
, c < x < e.

When τ = 0, we set
HI0c+j = j.

Definition 2.2. [22] Let (c, e)(0 ≤ c < e ≤ ∞) be a finite or infinite interval of the half-axis R+ and let
τ > 0. The Hadamard right-sided fractional integral HIτe−j of order τ > 0 is defined by

(
HIτe−j

)
(x) :=

1

Γ(τ)

∫ e

x

(
log

t

x

)τ−1 j(t)dt

t
, c < x < e.

When τ = 0, we set
HI0e−j = j.

Example 2.3. For each τ > 0 and λ ∈ R, we have

HIτ1 (log x)
λ−1 :=

Γ(λ)

Γ(τ + λ)
(log x)τ+λ−1; x ≥ 1.
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Definition 2.4. [22] The left-sided Hadamard fractional derivative of order τ(0 ≤ τ < 1) on (c, e) is defined
by (

HDτ
c+j

)
(x) =

1

Γ(1− τ)

(
x
d

dx

)∫ x

c

(
log

x

t

)−τ j(t)dt

t
, c < x < e.

In particular, when τ = 0 we have
HD0

c+j = j.

Definition 2.5. [22] The right-sided Hadamard fractional derivative of order τ(0 ≤ τ < 1) on (c, e) is
defined by (

HDτ
e−j

)
(x) = −

(
x
d

dx

)
1

Γ(1− τ)

∫ e

x

(
log

t

x

)−τ j(t)dt

t
.

In particular, when τ = 0 we have
HD0

e−j = j.

Definition 2.6. Let (c, e) be a finite interval of the half-axis R+. The fractional derivative HcDτ
c+j of order

τ (0 < τ < 1) on (c, e) defined by:
HcDτ

c+j =
HI1−τ

c+
δj,

where δ = x(d/dx), is called the Hadamard-Caputo fractional derivative of order τ .

Lemma 2.7. [22] Let τ > 0, θ > 0 and 0 ≤ µ < 1. If 0 < c < e < ∞, then for j ∈ Cµ,log[c, e] the equality
HIτc+

HIθc+j =
HIτ+θ

c+
j holds.

Theorem 2.8. [22] Let 0 < τ < 1 and 0 < c < e < ∞. If j ∈ Cµ,log[c, e](0 ≤ µ < 1) and HI1−τ
c+

j ∈ C1
δ,µ[c, e]

then (
HIτc+

HDτ
c+j

)
(x) = j(x)−

(
HI1−τ

c+
j
)
(c)

Γ(τ)

(
log

x

c

)τ−1
,

holds at any point x ∈ (c, e]. If j ∈ C[c, e] and HI1−τ
c+

j ∈, C1
δ [c, e], then the relation holds at any point

x ∈ [c, e].

Definition 2.9. (Hilfer-Hadamard fractional derivative). The left sided fractional derivative of order τ
(0 < τ < 1) and type 0 ≤ θ ≤ 1 with respect to x is defined by(

HDτ,θ
c+

j
)
(x) =

(
HI

θ(1−τ)
c+

HDτ+θ−τθ
c+

j
)
(x).

Corollary 2.10. [21] Let σ ∈ Cϱ,log(I). Then the problem{
(HDτ,θ

c+
i)(t) = σ(t), t ∈ I := [c, e]

(HI1−ϱ
c+

i)(c) = d,

admits the following unique solution

i(t) =
d

Γ(ϱ)

(
log

t

c

)ϱ−1

+
(
HIτc+σ

)
(t). (2)

Lemma 2.11. Let χ : (c, e] × R → R be a function such that χ(·, i(·)) ∈ BCϱ for any i ∈ BCϱ. Then the
problem (1) is equivalent to the integral equation

i(t) =
d

Γ(ϱ)

(
log

t

c

)ϱ−1

+
(
HIτc+χ(·, i(·))

)
(t). (3)

Let ∅ ̸= H ⊂ BC∗ and let T : H → H. Let the equation

(Ti)(t) = i(t). (4)
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Definition 2.12. Solutions of equation (4) are locally attractive if there exists a ball B (i0, δ) in the space
BC∗ such that, for any solutions w = w(t) and Θ = Θ(t) of equations (4) that belong to B (i0, δ) ∩ H, we
can write

lim
t→∞

(w(t)−Θ(t)) = 0. (5)

If limit (5) is uniform with respect to B (i0, δ) ∩H, then (4) is uniformly locally attractive.

Lemma 2.13. [14] Let P ⊂ BC∗. Then P is relatively compact in BC∗ if the following conditions are
satisfied:

(a) P is uniformly bounded in BC∗;

(b) the functions belonging to P are almost equicontinuous in R+, i.e., equicontinuous on every compact
set in R+

(c) the functions from P are equiconvergent, i.e., given ς > 0, there exists M(ς) > 0 such that∣∣∣i(t)− lim
t→∞

i(t)
∣∣∣ < ς,

for any t ≥ M(ς) and i ∈ P.

Theorem 2.14. (Schauder Fixed-Point Theorem [15]). Let X be a Banach space, let D be a nonempty
bounded convex and closed subset of X, and let L : D → D be a compact and continuous map. Then L has
at least one fixed point in D.

3. Existence and Attractivity Results

Definition 3.1. A measurable function i ∈ BCϱ is a solution of (1) if it verifies (HI1−ϱ
c+

i)(c) = d, and the
equation (HDτ,θ

c+
i)(t) = χ(t, i(t)) on [c,+∞).

We will give the following hypotheses:

(H1) The function t 7→ χ(t, i) is measurable on [c,+∞) for each i ∈ BCϱ, and i 7→ χ(t, i) is continuous.

(H2) There exists a continuous function l : [c,+∞) → [0,+∞) such that

|χ(t, i)| ≤ l(t)

1 + |i|
for a.e. t ∈ [c,+∞) and each i ∈ R,

and

lim
t→∞

(
log

t

c

)1−ϱ (
HIτc+ l

)
(t) = 0.

Set

l∗ = sup
t∈[c,+∞)

(
log

t

c

)1−ϱ (
HIτc+ l

)
(t).

Theorem 3.2. If (H1) and (H2) hold, then (1) has at least one solution which is uniformly locally attractive.

Proof. Define the operator L by

(Li)(t) =
d

Γ(ϱ)

(
log

t

c

)ϱ−1

+
1

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

χ(s, i(s))
ds

s
.
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We can prove that the operator L maps BCϱ into BCϱ. Indeed; the map L(i) is continuous on [c,+∞), and
for any i ∈ BCϱ and, for each t ∈ [c,+∞), we have∣∣∣∣∣

(
log

t

c

)1−ϱ

(Li)(t)|

∣∣∣∣∣ ≤ |d|
Γ(ϱ)

+

(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

|χ(s, i(s))|ds
s

≤ |d|
Γ(ϱ)

+

(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

l(s)
ds

s

≤ |d|
Γ(ϱ)

+ l∗

:= R∗,

so
∥L(i)∥BCϱ ≤ R∗. (6)

Therefore, L(i) ∈ BCϱ, which proves that the operator L (BCϱ) ⊂ BCϱ. Equation (6) implies that L maps

BR∗ := B(0, R∗) =
{
v ∈ BCϱ : ∥v∥BCϱ ≤ R∗}

into itself.

Step 1. L is continuous.

Let {in}n∈N be a sequence converging to i in BR∗ . Then,∣∣∣∣∣
(
log

t

c

)1−ϱ

(Lin) (t)−
(
log

t

c

)1−ϱ

(Li)(t)

∣∣∣∣∣
≤ 1

Γ(τ)

∫ t

c

(
log

t

s

)τ−1
∣∣∣∣∣
(
log

t

c

)1−ϱ

χ (s, in(s))−
(
log

t

c

)1−ϱ

χ(s, i(s))

∣∣∣∣∣ dss . (7)

Case 1. If t ∈ [c, T ], T > 0, then, since in → i as n → ∞ and from the continuity of χ, we get

∥L (in)− L(i)∥BCϱ
→ 0 as n → ∞.

Case 2. If t ∈ (T,∞), T > 0, then (7) implies that∣∣∣∣∣
(
log

t

c

)1−ϱ

(Lin) (t)−
(
log

t

c

)1−ϱ

(Li)(t)

∣∣∣∣∣ ≤ 2

(
log t

c

)1−ϱ

Γ(τ)

×
∫ t

c

(
log

t

s

)τ−1

l(s)
ds

s
, (8)

since in → i as n → ∞ and
(
log t

c

)1−ϱ (HIτc+ l
)
(t) → 0 as t → ∞, it follows from (8) that

∥L (in)− L(i)∥BCϱ
→ 0 as n → ∞.

Step 2. L (BR∗) is uniformly bounded and equicontinuous.
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Since L (BR∗) ⊂ BR∗ and BR∗ is bounded, then L (BR∗) is uniformly bounded.
Next let t1, t2 ∈ [c, T ], t1 < t2, and let i ∈ BR∗ . This yields∣∣∣∣∣

(
log

t2
c

)1−γ

(Li) (t2)−
(
log

t1
c

)1−ϱ

(Li) (t1)

∣∣∣∣∣
≤

∣∣∣∣∣
(
log

t2
c

)1−ϱ
[

d

Γ(ϱ)

(
log

t2
c

)ϱ−1

+
1

Γ(τ)

∫ t2

c

(
log

t2
s

)τ−1

χ(s, i(s))
ds

s

]

−
(
log

t1
c

)1−ϱ
[

d

Γ(ϱ)

(
log

t1
c

)ϱ−1

+
1

Γ(τ)

∫ t1

c

(
log

t1
s

)τ−1

χ(s, i(s))
ds

s

]∣∣∣∣∣
≤

∣∣∣∣∣
(
log t2

c

)1−ϱ

Γ(τ)

∫ t2

c

(
log

t2
s

)τ−1

χ(s, i(s))
ds

s

−
(
log t1

c

)1−ϱ

Γ(τ)

∫ t1

c

(
log

t1
s

)τ−1

χ(s, i(s))
ds

s

∣∣∣∣∣ .
Then, we get ∣∣∣∣∣

(
log

t2
c

)1−ϱ

(Li) (t2)−
(
log

t1
c

)1−ϱ

(Li) (t1)

∣∣∣∣∣
≤

(
log t2

c

)1−ϱ

Γ(τ)

∫ t2

t1

(
log

t2
s

)τ−1

|χ(s, i(s))|ds
s

+
1

Γ(τ)

∫ t1

c

∣∣∣∣∣
(
log

t2
c

)1−ϱ(
log

t2
s

)τ−1

−
(
log

t1
c

)1−ϱ(
log

t1
s

)τ−1
∣∣∣∣∣ |χ(s, i(s))|dss

≤
(
log t2

c

)1−ϱ

Γ(τ)

∫ t2

t1

(
log

t2
s

)τ−1

l(s)
ds

s

+
1

Γ(τ)

∫ t1

c

∣∣∣∣∣
(
log

t2
c

)1−ϱ(
log

t2
s

)τ−1

−
(
log

t1
c

)1−ϱ(
log

t1
s

)τ−1
∣∣∣∣∣ l(s)dss .

Thus, we obtain ∣∣∣∣∣
(
log

t2
c

)1−ϱ

(Li) (t2)−
(
log

t1
c

)1−ϱ

(Li) (t1)

∣∣∣∣∣
≤

l∗
(
log t2

c

)1−ϱ

Γ(τ)

∫ t2

t1

(
log

t2
s

)τ−1 ds

s

+
l∗

Γ(τ)

∫ t1

c

∣∣∣∣∣
(
log

t2
c

)1−ϱ(
log

t2
s

)τ−1

−
(
log

t1
c

)1−ϱ(
log

t1
s

)τ−1
∣∣∣∣∣ dss

≤
l∗
(
log T

c

)1−ϱ

Γ(τ + 1)

(
log

t2
t1

)τ

+
l∗

Γ(τ)

∫ t1

c

∣∣∣∣∣
(
log

t2
c

)1−ϱ(
log

t2
s

)τ−1

−
(
log

t1
c

)1−ϱ(
log

t1
s

)τ−1
∣∣∣∣∣ dss .

As t1 → t2, the right-hand side of the inequality tends to zero.

Step 3. L (BR∗) is equiconvergent.
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Let t ∈ [c,+∞) and let i ∈ BR∗ . We have∣∣∣∣∣
(
log

t

c

)1−ϱ

(Li)(t)

∣∣∣∣∣ ≤ |d|
Γ(ϱ)

+

(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

|χ(s, i(s))|ds
s

≤ |d|
Γ(ϱ)

+

(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

l(s)
ds

s

≤ |d|
Γ(ϱ)

+

(
log

t

c

)1−ϱ (
HIτc l

)
(t).

Since (
log

t

c

)1−ϱ (
HIτc+ l

)
(t) → 0 as t → +∞,

we find

|(Li)(t)| ≤ |d|(
log t

c

)1−ϱ
Γ(ϱ)

+

(
log t

c

)1−ϱ (HIτc+ l
)
(t)(

log t
c

)1−ϱ → 0 as t → +∞.

Hence
|(Li)(t)− (Li)(+∞)| → 0 as t → +∞.

As a consequence of Steps 1 − 3, we conclude that L : BR∗ → BR∗ is compact and continuous. Applying
Schauder’s fixed point theorem, we get that L has a fixed point i, which is a solution of problem (1) on
[c,+∞).

Step 4. Assume that i0 is solution of (1). Set i ∈ B (i0, 2l
∗), we have∣∣∣∣∣

(
log

t

c

)1−ϱ

(Li)(t)−
(
log

t

c

)1−ϱ

i0(t)

∣∣∣∣∣
=

∣∣∣∣∣
(
log

t

c

)1−ϱ

(Li)(t)−
(
log

t

c

)1−ϱ

(Li0)(t)

∣∣∣∣∣
≤

(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

|χ(s, i(s))− χ(s, i0(s)) |
ds

s

≤
2
(
log t

c

)1−ϱ

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

l(s)
ds

s

≤ 2l∗.

We get
∥L(i)− i0∥BCϱ

≤ 2l∗.

So, we conclude that L is a continuous function such that

L (B (i0, 2l
∗)) ⊂ B (i0, 2l

∗) .

Moreover, if i is a solution of problem (1), then

|i(t)− i0(t)| = |(Li)(t)− (Li0) (t)|

≤ 1

Γ(τ)

∫ t

c

(
log

t

s

)τ−1

|χ(s, i(s))− χ (s, i0(s))|
ds

s

≤ 2
(
HIτc+ l

)
(t).
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Therefore,

|i(t)− i0(t)| ≤
2
(
log t

c

)1−ϱ (HIτc+ l
)
(t)(

log t
c

)1−ϱ . (9)

By (9) and

lim
t→∞

(
log

t

c

)1−ϱ (
HIτc+ l

)
(t) = 0,

we get
lim
t→∞

|i(t)− i0(t)| = 0.

Hence, solutions of (1) are uniformly locally attractive.

4. An Example

Consider the problem (HD
1
2
, 1
2

1+
i)(t) = χ(t, i(t)); t ∈ [1,+∞),

(HI
1
4

1+
i)(1) = 1,

(10)

where {
χ(t, i) = (t−1)2(log t)−1 cos t

64(t2+1)(1+|i|) , t ∈ (1,∞), i ∈ R,
χ(1, i) = 0, i ∈ R.

(11)

Clearly, the function χ is continuous, and (H2) is satisfied with{
l(t) = (t−1)2(log t)−1| cos t|

64(t2+1)
; t ∈ (1,∞),

l(1) = 0,
(12)

and

(log t)
1
4 HI

1/2
1 l(t) =

(log t)1/4

Γ
(
1
2

) ∫ t

1

(
log

t

s

)−1/2 l(s)

s
ds

≤ (log t)1/4

Γ
(
1
2

) ∫ t

1

(
log

t

s

)−1/2 (log s)−1

s
ds

≤ 1√
π
(log t)−1/4 → 0 as t → ∞.

Hence, problem (10) has at least one solution which is uniformly locally attractive.
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