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ABSTRACT

Objective: Vitamin D has antioxidant, anti-inflammatory and an-
tiglycation activities, and hepatoprotective potential. There is a 
relationship between vitamin D deficiency (VDD) and the severity 
of liver disorders. VDD has been proposed to contribute to the 
progression of nonalcoholic fatty liver disease (NAFLD). How-
ever, experimental results are not clear. Therefore, in this study, 
the effects of a VDD diet on high fructose (HFr) drinking-induced 
NAFLD was evaluated.

Material and Method: Male Wistar rats were divided into four 
groups as control, HFr, VDD+HFr, and VDD. Control and HFr 
groups were fed a control diet, and other groups with a VDD-di-
et for 12 weeks. HFr (30%; w/v; in drinking water) was given in the 
last 8 weeks. Insulin resistance (IR), serum lipids, hepatic triglycer-
ide, lipid peroxide, protein carbonyl, advanced glycation end 
products (AGEs) and inflammation (TNF-α and myeloperoxidase) 
parameters, and histopathological changes were investigated. 

Results: Increases in serum transaminases, hypertriglyceridemia, 
and IR were observed in HFr and VDD+HFr groups. Increased 
liver triglyceride, lipid and protein oxidation products, protein 
glycation and inflammation markers as well as microvesicular 
hepatic steatosis and hepatocyte ballooning were observed in 
both groups. Although IR and hepatic inflammation markers 
were higher in the VDD+HFr group, serum transaminases, hepat-
ic triglyceride, lipid and protein oxidation products, and glyca-
tion indicators in the liver did not alter between the two groups. 
However, Nrf2 mRNA expression and superoxide dismutase and 

ÖZET

Amaç: Vitamin D antioksidan, antiinflamatuvar ve antiglikasyon 
etkinliğe ve karaciğeri koruyucu potansiyele sahiptir. Vitamin D 
eksikliği/yetersizliği (VDD/VDI) ile karaciğer bozukluklarının cid-
diyeti arasında bir ilişki bulunmaktadır. VDD’nin alkole bağlı ol-
mayan yağlı karaciğer hastalığının (NAFLD) progresyonunda et-
kili olduğu bildirilmiştir. Fakat deneysel sonuçlar yeterli değildir. 
Bu nedenle, bu çalışmada VDD’nin yüksek fruktozlu (HFr) içme 
suyu uygulanarak oluşturulan NAFLD üzerine etkisi incelendi. 
Gereç ve Yöntemler: Erkek Wistar sıçanlar kontrol, HFr, VDD+Fr 
ve VDD olmak üzere 4 gruba ayrıldı. Kontrol ve HFr grupları Vit 
D3 içeren, diğerleri ise Vit D3 içermeyen yemle 12 hafta beslen-
diler. HFr (%30; w/v) içme suyu ile son 8 hafta uygulandı. İnsulin 
direnci (IR), serum lipitleri, hepatik trigliserit, lipit peroksit, prote-
in karbonil, ileri glikasyon ürünleri (AGEs) ve inflamasyon (TNF-α 
ve miyeloperoksidaz) göstergeleri tayin edildi.

Bulgular: HFR ve VDD+HFr gruplarında serumda transaminazlar 
arttı, hipertrigliseridemi, ve insülin direnci oluştu. Her iki grupta 
da karaciğerde trigliserit düzeyleri, lipit ve protein oksidasyon 
ürünleri, protein glikasyon ve inflamasyon göstergeleri arttı, mik-
roveziküler steatoz ve hepatosit balonlaşması saptandı. IR ve inf-
lamasyon göstergeleri VDD+HFr grubunda daha yüksek olma-
sına rağmen, iki grup arasında serum transaminazları, karaciğer 
trigliserit, lipit ve protein oksidasyon ürünleri ve glikasyon gös-
tergeleri düzeylerinde bir farklılık bulunmadı. Ancak Nrf2 mRNA 
ekspresyonu ile süperoksit dismutaz ve glutatyon peroksidazın 
mRNA ekspresyonları ve aktivitelerinin VDD+HFr grubunda 
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) refers to an ac-
cumulation of fat in the liver due to causes other than 
alcohol. NAFLD is accepted as the hepatic manifestation 
of the metabolic syndrome. NAFLD starts with simple 
steatosis and it can progress to more serious conditions, 
such as steatohepatitis (NASH), fibrosis and cirrhosis. Ac-
cording to a two-hit hypothesis, the presence of steatosis 
(first hit) makes the liver susceptible to some factors such 
as oxidative stress, endotoxemia, inflammation and mi-
tochondrial dysfunction as the second hit (1). Advanced 
glycation end products (AGEs) also play an important role 
as a contributing factor in the pathogenesis of NAFLD (2). 

A high-fructose (HFr) diet affects glucose and lipid me-
tabolism and causes various metabolic disorders such as 
insulin resistance (IR), hypertriglyceridemia and NAFLD 
(3). A HFr diet is one of the good dietary models of NA-
FLD in animals (4). Increased lipogenesis, oxidative stress 
and inflammation, and decreased β-oxidation are strong-
ly associated with HFr-induced NAFLD (5). Increases in 
non-enzymatic protein glycation result in the accumula-
tion of advanced glycation end products (AGEs) in HFr 
rats (6). These products are known to affect structures 
and functions of proteins and cause further increased ox-
idative stress and inflammation by interacting with their 
receptors (2, 6). Therefore, AGEs were accepted to be 
effective in the progression of NAFLD (6). 

There are two main forms of Vitamin D: Vit D2 (ergocalcif-
erol) and Vit D3 (cholecalciferol). Vit D2 is derived from the 
diet, but Vit D3 is both derived from diet and synthesized 
from 7-dehydrocholesterol with the effect of ultraviolet 
light on the human skin. Dietary or synthesized Vit D are 
hydroxylated in the liver to 25-hydroxyvitamin D [25(OH)
D]. It is subsequently hydroxylated in the kidney into 
1,25-dihydroxyvitamin D [1,25(OH)2 D] which is the bio-
logically active form of Vit D (7). 

1,25(OH)2 D induces biological effects by binding to a vi-
tamin D receptor (VDR) located in the nucleus of target 
cells. Its classical role is in calcium/phosphate homeosta-
sis. Additionally, it has multiple functions and target or-
gans and influences the expression of several genes and 
plays important roles in the regulation of cell proliferation 
and differentiation, immune function, oxidative stress, 

protein glycation, inflammation, and apoptosis (7-9). 
Therefore, Vit D has been reported to be effective in pre-
venting many diseases such as diabetes, hypertension, 
cardiovascular and hepatic diseases and cancer (10-12). 

Vit D deficiency (VDD) is quite common in the world. 
Sedentary lifestyle, inadequate sunlight exposure and 
the lack of Vit D in the food has resulted in VDD (13,14). 
Serum 25(OH)D levels are used as an indicator of Vit D 
stores. Although there are some differences in clinical 
guidelines, the Institute of Medicine (Washington; USA) 
defines VDD as a 25(OH)D level of <20 ng/mL and se-
vere VDD as <10 ng/mL (15). VDD alone may induce IR, 
oxidative stress, inflammation, and mitochondrial dys-
function (8, 10, 14). However, epidemiological and lab-
oratory evidence have shown that VDD may be associ-
ated with some common diseases such as tumors, bone 
diseases, immune disorders, cardiovascular diseases, 
diabetes mellitus, and chronic liver disorders (12-14). 
VDD has also been reported to be a secondary factor in 
the onset and progression of NAFLD, but a clear result 
has not been reached in clinical and experimental stud-
ies (7, 10, 11, 16, 17). 

In this study, we aimed to examine whether a diet de-
ficient in VitD3 has a progressive effect on HFr-induced 
NAFLD in rats. For this reason, parameters affecting the 
progression of NAFLD such as IR, hepatic prooxidant and 
antioxidant parameters, protein glycation and inflamma-
tion markers together with histopathological changes 
were evaluated in the liver.

MATERIAL AND METHOD

Chemicals
Fructose (Fr) and other chemicals were purchased from 
Sigma-Aldrich (Saint-Louise, MI, USA). 

Animals 
Male Wistar rats (140-160 g) were provided from the Aziz 
Sancar Experimental Medical Research Institute of Istan-
bul University. The animals were supplied with food and 
water ad libitum. They were kept in polypropylene cages 
(three to four per cage) at 22°C, with 12-h light and 12-h 
darkness without shielding from ultraviolet B radiation 
(290-320 mn). 

daha yüksek olduğu bulundu.

Sonuç: Sonuçlarımız VDD’nin HFr ile oluşturulan karaciğer hasarı ve 

glikooksidatif streste bir değişiklik oluşturmadığını göstermektedir. 

Anahtar Kelimeler: Vitamin D yetersizliği, yüksek fruktozlu di-

yet, alkolik olmayan karaciğer hastalığı, glikooksidatif stres, anti-

oksidanlar, inflamasyon

glutathione peroxidase mRNA expression and activities were 
significantly higher in the VDD+HFr group. 

Conclusion: Our results show that VDD did not augmented 
HFr-induced hepatotoxicity and glycooxidative stress in the liver 
of rats.

Keywords: Vitamin D deficiency, high fructose diet, nonalcohol-
ic liver disease, glycooxidative stress, antioxidant, inflammation

https://orcid.org/0000-0002-6432-3541
https://orcid.org/0000-0002-1797-5889
https://orcid.org/0000-0002-3336-4332
https://orcid.org/0000-0003-4062-9519
https://orcid.org/0000-0003-3467-9763
https://orcid.org/0000-0002-8802-8766


362

Vitamin D deficiency and fatty liver disease
İstanbul Tıp Fakültesi Dergisi • J Ist Faculty Med 2021;84(3):360-8

Diets and experimental design
Rats were randomly assigned into four groups as control 
(n=6), HFr (n=7), HFr+VDD (n=8) and VDD (n=8) groups. 
Control and HFr groups were fed on PicoLab Rodent diet 
5053 (2300 IU Vit D3/kg added); however, VDD+HFr and 
VDD groups were fed on Modified LabDiet 5053 (Vit D3 
not added) for 12 weeks. These diets were supplied from 
LabDiet (St. Louis-Missouri, USA). Fructose (30%, w/v) 
was added to drinking water for the last 8 weeks to HFr 
and VDD+HFr groups. 

Samples
The animals were fasted overnight and anesthetized with 
ketamine (35 mg/kg, i.p., Pfizer, USA) and xylazine HCl (15 
mg/kg, i.p., Bioveta, Czech Republic). Blood was collect-
ed into dry tubes by cardiac puncture and centrifuged at 
1,500xg for 10 min to get serum.

Liver tissues were removed, washed with ice-cold 0.9% 
NaCl and homogenized in ice-cold PBS (phosphate-buff-
ered saline; 0.01M, pH:7.4). Liver homogenates were 
centrifuged at 600 g for 10 min at 4°C to obtained the 
postnuclear fraction (PNF). Serum and postnuclear frac-
tion of liver were stored at –80°C until they were ana-
lyzed. The liver index was calculated as liver weight /body 
weightx100.

Determinations in serum
Serum fasting glucose, triglyceride (TG), calcium and in-
organic phosphorus levels, and alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) activities were 
measured using a Cobas Integra 800 autoanalyzer (Roche 
Diagnostics, Mannheim, Germany). Serum 25(OH)D3 and 
insulin levels were determined by ELISA kits (Abbkine, 
Wuhan-China). Homeostasis model assessment (HOMA) 
index was used to evaluate insulin resistance (IR) and cal-
culated using the formula: fasting insulin concentration 
(pmol/L)xfasting glucose concentration (mmol/L)/135. 
High HOMA scores indicate IR (low insulin sensitivity). 

Determinations in the liver

TG, hydroxyproline (Hyp), tumor necrosis factor-alfa 
(TNF-α) levels and myeloperoxidase (MPO) activity 
TG levels were determined in hepatic lipid extracts by 
using kits provided by Biolabo Biochemistry and Coagu-
lation (Maizy, France). Liver tissues were homogenized in 
10 volumes of PBS with a glass homogenizer on ice. Tis-
sue homogenates were sonicated, and then centrifuged 
at 5,000 g for 5 min to get the supernatants. Hyp (Bioas-
say Technology Laboratory, Shanghai, China) and TNF-α 
(USCN, Wuhan, China) levels were determined in these 
supernatants by using ELISA kits.

To determine MPO activity, liver tissue was homoge-
nized in 0.5% hexadecyltrimethylamine bromide in 50 
mM phosphate buffer, pH 6. The homogenates were 

sonicated, freeze-thawed three times and centrifuged at 
10,000xg. MPO activity was measured in the supernatant 
samples (18).

Hepatic reactive oxygen species (ROS), lipid peroxide 
and protein oxidation products 
ROS generation was determined by the method de-
scribed by Wang and Joseph (19). After excitation at 485 
nm, the fluorescence emission of 2‘,7‘-dichlorofluoresce-
in at 538 nm was recorded using a microplate fluorometer 
and luminometer (Fluoroskan Ascent FL, Thermo Scien-
tific Inc, USA). 

Thiobarbituric acid reactive substances (TBARS) and di-
ene conjugate (DC) levels were measured to assess he-
patic lipid peroxidation. TBARS levels were determined 
according to Buege and Aust and calculated from ab-
sorption at 532 nm by using the molar extinction coef-
ficient of 1.56x105M-1 (20). DC levels were determined 
spectrophotometrically at 233 nm. For this assay, liver 
lipids were extracted in chloroform/methanol (2:1; v/v) 
mixture, and then the extracted lipids were dissolved in 
cyclohexane. DC levels were calculated using a molar ex-
tinction coefficient of 2.52×104 M-1.cm-1 (20). 

PC levels were evaluated according to the method of 
Reznick and Packer, which is based on the measurement 
of protein hydrazones (21). Results were calculated from 
the maximum absorbance (360 nm) using a molar extinc-
tion coefficient of 22,000 M− 1 cm− 1. 

Protein glycation products in liver and serum
Hepatic advanced oxidation products of protein (AOPP) 
levels were measured spectrophotometrically at 340 nm 
(22). AGEs levels were determined spectrofluometrically 
in the liver and serum. For this reason, liver homogenates 
or serum were diluted with PBS (pH 7.4) and the fluores-
cence intensity (λemission: 440 nm; λexcitation: 350 nm) was de-
termined (23). Nε-(carboxymethyl)lysine (CML) levels were 
measured using ELISA kits (Abbkine, Wuhan, China). 

Determination of antioxidant system parameters 
Hepatic ferric reducing anti-oxidant power (FRAP) levels 
were determined spectrophotometrically to evaluate an-
tioxidant power in liver. Reducing a ferric-tripyridyltriazine 
complex to the ferrous form by the antioxidants in liver 
homogenates is monitored by measuring the change in 
absorption at 593 nm (24). Hepatic glutathione (GSH) lev-
els were determined by using 5,5-dithiobis-(2-nitroben-
zoate) at 412 nm (25). 

Superoxide dismutase (SOD) activity was determined ac-
cording to Mylorie et al., and calculated using a standard 
curve prepared by bovine SOD (26). Glutathione per-
oxidase (GSH-Px) activity was measured using cumene 
hydroperoxide as a substrate (27). The reaction was fol-
lowed spectrophotometrically (340 nm) at 37°C, and ac-
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tivity was calculated using the extinction coefficient of 
NADPH (6.22x103 M-1cm-1). Catalase (CAT) activity was 
measured spectrophotometrically at 240  nm by using 
hydrogen peroxide (H2O2) as substrate (28). One unit of 
CAT was considered as the activity of enzyme needed to 
degrade 1 μmol H2O2 per min at 25°C.

Determination of mRNA expressions of nuclear eryth-
roid factor 2-related factor (Nrf2) superoxide dis-
mutase (SOD), glutathione peroxidase (GSH-Px) and 
catalase (CAT) 
In order to obtain mRNA expressions of Nrf2, SOD, 
GSH-Px and CAT in liver, the tissue was homogenized 
using a handheld homogenizer (SCILOGEX D160, 
USA). Total RNA was isolated using an RNA isola-
tion kit (NucleoSpin RNA Kit, #740955, Macherey-Na-
gel, Germany). cDNA was synthesized with a SCRIPT 
cDNA Synthesis Kit (Jena Bioscience, GmbH, Jena, 
Germany) by using 5 ng RNA. Nrf2 (F: 5’-GTGGATCT-
GTCAGCTACTCCC-3’; R: 5’-CTGGGAATATCCAGGG-
CAAGC-3’), SOD (F: 5’-GGTCCAGCGGATGAAGAG-3’; 
R: 5’-GGACACATTGGCCACACC-3’), GSH-Px (F: 
5’-CGACATCGAACCCGATATAGA-3’; R: 5’-ATGCCT-
TAGGGGTTGCTAGG-3’), CAT (F: 5’-AGGTGCTTTTG-
GATACTTTGAGG-3’; R: 5’-CGACTGTGGAGAATC-
GGACGG-3’) primers, and the housekeeping gene 
GAPDH (F: 5’-CAGGGCTGCCTTCTCTTGTG-3’; R: 
5’-AACTTGCCGTGGGTAGAGTC-3’) were purchased 
from LGC Biosearch Technologies (Denmark). Quanti-
tative real-time polymerase chain reaction (qPCR) was 
performed using qPCR Green Master with UNG (Jena 
Bioscience, GmbH, Jena, Germany) in a real-time PCR 
system (Biorad CFX Connect, California, USA). The ex-
pression levels of mRNAs were quantified using the 2 
-∆∆Ct method. 

Protein levels
Protein levels were determined spectrophotometrically 
using bicinchoninic acid (29).

Histopathologic examination
Livers were fixed in 10% buffered  formalin, embed-
ded in  paraffin, sectioned and stained with  hematoxy-
lin and eosin (H&E) for histologic examinations. Masson’s 
trichrome (MTC) staining was also performed to show re-
ticulin fibers of fibrotic areas. Steatosis, liver damage and 
fibrosis scores were made according to the protocol pro-
posed by Goodman, as previously described in detail in 
our previous study (30, 31).

Statistical analysis
Statistical analysis was evaluated by using the Statistical 
Package for The Social Sciences program (21.0; SPSS Inc., 
Chicago, IL, USA) program. All variables were expressed 
as mean±standard deviation (SD). Data distributions 
and test of normality were investigated by Kolmogor-
ov-Smirnov test. One-way ANOVA test (post-hoc Tukey’s 
test) was used to assess the parameters with normal dis-
tribution. Homogeneity of variances was evaluated with 
Levene test. Kruskal-Wallis test (post-hoc Mann Whit-
ney-U test) was used to compare the parameters without 
normal distribution. In all cases, a difference was consid-
ered significant when p<0.05.

RESULTS

Final body weight did not change, but liver weight and 
liver index were elevated in HFr and VDD+HFr groups as 
compared to control group. Serum 25(OH)D3 levels did 
not alter in the HFr group, but it decreased (47.3%) in 
the VDD+HFr group. Calcium and inorganic phosphorus 
levels remained unchanged in both groups as compared 
to the control (Table 1). 

Significant increases in glucose, TG and HOMA levels, 
ALT and AST activities were detected in the HFr and 
VDD+HFr groups as compared to the control. Howev-
er, insulin levels remained unchanged in both groups. 
Glucose and HOMA levels were higher in the VDD+HFr 
group than the HFr group (Table 2). 

Table 1: The effect of vitamin D deficiency (VDD) on body weight, liver weight, and liver index* values and serum 
levels of 25(OH)D3, calcium, and phosphorus in high fructose (HFr)-treated rats (Mean±SD)

Control
(n=6)

VDD
(n=8)

HFr
(n=7)

VDD+HFr
(n=8)

Body weight (g) 299.5±16.1 315.5±29.8 312.1±31.5 336±16.5

Liver weight (g) 8.25±0.93 7.55±0.70 10.3±1.46a2 10.9±0.83a1

Liver index (%) 2.75±0.21 2.41±0.36 3.28±0.27a2 3.22±0.21a3

25(OH)D3 (ng/mL) 28.4±3.09 15.7±1.07a2 25.3±5.88 15.0±1.51a2,b1

Calcium (mmol/L) 2.42±0.16 2.50±0.18 2.36±0.12 2.39±0.15

Phosphorus (mmol/L) 2.55±0.18 2.58±0.26 2.30±0.16 2.40±0.29
a1p<0.001, a2p<0.01, a3p<0.05 as compared to control; b1p<0.001 HFr vs VDD+HFr
*Liver index= Liver weightx100/body weight

https://www.sciencedirect.com/topics/medicine-and-dentistry/formaldehyde
https://www.sciencedirect.com/topics/medicine-and-dentistry/paraffin
https://www.sciencedirect.com/topics/medicine-and-dentistry/haematoxylin
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In hematoxylin and eosin (H&E) and Masson’s trichrome 
(MTC) staining of liver sections, the HFr group exhibited 
marked microvesicular steatosis and hepatocyte balloon-
ing without fibrotic changes. Some alleviations in histo-
pathological findings were obtained in the VDD+HFr 
group (Figure 1). Steatosis score decreased significant-
ly in the VDD+HFr (1.63±0.52) group as compared to 
HFr (3.00±0.00). However, the ballooning score did not 
change significantly in the VDD+HFr (1.63±0.52) as com-
pared to HFr (2.00±0.00) group. 

Hepatic TG and TNF-α levels and MPO activity were ele-
vated, but Hyp levels remained unchanged in the HFr and 

VDD+HFr groups as compared to the control. TNF-α lev-
els and MPO activity, but not TG and Hyp levels were high-
er in the VDD+HFr group than the HFr group (Figure 2).

Hepatic ROS, TBARS, DC and PC levels were elevated 
in both groups. However, the TBARS levels were high-
er in the VDD+HFr group than the HFr group (Figure 
3). Hepatic AGEs and AOPP together with serum AGE 
and CML levels were increased in the HFr and VDD+HFr 
groups as compared to the control (Table 3).

There were no changes in FRAP and GSH levels in the 
HFr and VDD+HFr groups. Hepatic SOD and GSH-Px ac-
tivities diminished significantly, but CAT activity did not 
alter in the HFr group as compare to the control. The VD-
D+HFR and control groups did not differ in terms of anti-
oxidant enzymes activities. When the HFr and VDD+HFr 

Table 2: The effect of vitamin D deficiency (VDD) on some biochemical parameters in serum of high fructose 
(HFr)-treated rats. (Mean±SD)

Control
(n=6)

VDD
(n=8)

HFr
(n=7)

VDD+HFr
(n=8)

Glucose (mmol/L) 7.53±1.44 9.76±1.04a3 12.2±1.09a1 14.3±1.67a1,b3

Insulin (mmol/L) 29.2±4.37 29.3±2.98 24.5±2.01 27.9±5.29

HOMA-IR 1.61±0.33 2.10±0.21a2 2.21±0.23a2 2.96±0.68a2,b3

TG (mmol/L) 0.48±0.09 1.13±0.26a2 0.79±0.18a2 0.71±0.05a3 

ALT (U/L) 43.3±13.1 53.6±8.53 58.0±4.86a3 67.9±10.3a1

AST (U/L) 108.0±10.2 114.6±19.0 139.6±22.1a2 148.8±27.1a2

a1p< 0.001, a2p< 0.01, a3p< 0.05 as compared to control; b3p<0.05 HFr vs VDD+HFr

Figure 1: The effect of vitamin D deficiency (VDD) on his-
topathological changes in liver tissues of high fructose 
(HFr)-treated rats (H&E and MTC, x100)

Figure 2. The effect of vitamin D deficiency (VDD) on 
hepatic triglyceride (TG), hydroxyproline (Hyp), tumor 
necrosis factor-alpha (TNF-α) levels and myeloperoxi-
dase (MPO) activities in high fructose (HFr)-treated rats 
(Mean±SD). a1p< 0.001, a2p< 0.01, a3p< 0.05 as compared 
to control; b1p<0.001, b3p<0.05 HFr vs VDD+HFr 
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groups were compared, increases in SOD (30.8%), GSH-
Px(16.6%) and CAT (20.7%) activities were increased in 
the VDD+HFr group. However, increases in GSH-Px and 
CAT activities were not significant (Table 4). 

mRNA expressions of Nrf2, SOD, GSH-Px, and CAT were 
decreased in the HFr group. In the VDD+HFr group, 

mRNA expression of SOD increased significantly as com-
pared to the control, and Nrf2 and GSH-Px mRNA ex-
pressions returned to control levels. However, Nrf2, SOD 
and GSH-Px expressions were significantly higher than 
the HFr group. mRNA expression of CAT did not alter 
among the groups (Figure 4). 

Figure 3. The effect of vitamin D deficiency (VDD) on he-
patic reactive oxygen species (ROS), thiobarbituric acid 
reactive substances (TBARS), diene conjugates (DC) and 
protein carbonyl (PC) levels in high fructose (HFr)-treated 
rats (Mean±SD). a1p<0.001, a2p<0.01 as compared to con-
trol; b3p<0.05 HFr vs VDD+HFr 

Figure 4. The effect of vitamin D deficiency (VDD) on he-
patic mRNA expressions of nuclear erythroid factor 2-relat-
ed factor (Nrf2) superoxide dismutase (SOD), glutathione 
peroxidase (GSH-Px) and catalase (CAT) in high fructose 
(HFr)-treated rats (Mean±SD). a1p<0.001, a2p<0.01 as com-
pared to control; b1p<0.001, b3p<0.05 HFr vs VDD+HFr 

Table 3: The effect of vitamin D deficiency (VDD) on serum advanced glycation end products (AGE) and 
carboxymethyllysine (CML) levels as well as hepatic advanced oxidized protein products (AOPP) and AGE in high 
fructose (HFr)-treated rats (Mean±SD)

Control
(n=6)

VDD
(n=8)

HFr
(n=7)

VDD+HFr
(n=8)

Serum AGE (RFU) 186.3±15.4 185.1±17.3 250.6±29.8a1 260.5±17.6a1

Hepatic AGE (RFU) 351.3±18.1 330.5±20.7 549.5±22.8a2 589.5±82.4a2

Hepatic AOPP (nmol/mg protein) 22.8±0.96 24.5±1.89 28.7±3.02a1 30.6±2.46a1

Serum CML (µg/L) 12.3±1.75 13.7±4.35 17.34±3.00a3 16.9±1.20a3

a1p< 0.001, a2p< 0.01, a3p< 0.05 as compared to control

Table 4: The effect of vitamin D deficiency (VDD) on hepatic ferric reducing antioxidant power (FRAP), and 
glutathione (GSH) levels as well as hepatic superoxide dismutase (SOD), glutathione peroxidase (GSHPx), and 
catalase (CAT) activities in high fructose (HFr)-treated rats (Mean±SD)

Control
(n=6)

VDD
(n=8)

HFr
(n=7)

VDD+HFr
(n=8)

FRAP ((nmol/mg protein) 80.3±11.9 76.9±15.8 65.6±12.4 77.5±11.8

GSH (nmol/mg protein) 23.9±3.02 24.0±6.30 19.4±4.02 17.3±4.16

SOD (U/mg protein) 20.1±2.89 18.7±1.43 16.4±1.78a3 21.47±2.98b2

GSH-Px (nmol/min/mg protein) 520.9±64.1 433.0±71.9 383.7±32.5a2 447.4±60.5

CAT (µmol/min/mg protein) 352.6±47.7 366.3±76.2 314.4±36.4 379.4±44.7
a2p< 0.01, a3p< 0.05 as compared to control, b2p<0.01 HFr vs VDD+HFr
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In the VDD group, there were significant decreases in 
serum 25(OH)D3 and TG levels and significant increases 
in glucose and HOMA values as compared to the con-
trols. In addition, hepatic TG and TNF-α levels and MPO 
activity were also increased. There were no changes in 
oxidative stress and protein glycation parameters and 
histopathological findings remained unchanged. 

DISCUSSION 

Several dietary models such as high fat, HFr, western- 
and methionine choline deficiency are used to produce 
NAFLD/NASH (4). Some investigators have reported 
that the HFr diet resulted in increased oxidative stress, 
increases in cytokines and AGEs levels in serum and liver 
(32-36). This diet caused hepatic lesions such as fatty liver, 
hepatocyte ballooning and lobular inflammation (32-36). 
Therefore, in this study, the role of the VDD diet in the 
pathogenesis of NAFLD was investigated by examining 
hepatic glycooxidative stress, inflammation and histopa-
thology together with IR in a HFr-induced NAFLD model.

In the current study, rats received 30% fructose contain-
ing drinking water for eight weeks as previously reported 
(35, 36). Prooxidant status was evaluated by determining 
ROS, oxidation products of lipids (TBARS and DC) and 
proteins (PC and AOPP). AGEs are heterogenous prod-
ucts, and fluorescent AGEs and non-fluorescent CML 
levels were determined as protein glycation indicators 
(6). AOPP was reported to have some homologies with 
AGEs and to reflect protein glycooxidation (37). Deter-
minations of TNF-α levels and MPO activity were used to 
examine hepatic inflammation. According to our results, 
the HFr diet caused IR, hypertriglyceridemia, increases in 
glycooxidative stress and inflammation together with his-
topathological changes (marked microvesicular steato-
sis, hepatocyte ballooning and no fibrosis) in rats. These 
findings indicate that the hepatic lesions were produced 
successfully in the HFr-induced NAFLD model. 

Nrf2 is a transcription factor that is the main regulator of 
the antioxidant system. It regulates redox homeostasis by 
increasing the expression of many antioxidant enzymes 
such as SOD, GSH-Px, and CAT and plays a key role in 
combating oxidative stress (12, 14). The antioxidant po-
tential of 1,25(OH)2D3 is related to its direct antioxidant 
potential and the upregulation of Nrf2 and its target an-
tioxidant genes (8, 12, 14, 38). It has a suppressive effect 
against oxidative stress in dietary NAFLD models due to 
these properties (39-41). 

On the other hand, VDD was reported to have an ad-
ditional effect in the experimental dietary model of NA-
FLD as a second hit (42-45). However, some contradictory 
results are also available (46, 47). VDD diet exacerbated 
high fat diet (HFD)- (42, 43) or HFD+HFr (44)-induced 
metabolic changes and progressed NAFLD into NASH 

by increasing IR, inflammation and lipogenesis and de-
creasing β-oxidation. Similarly, long term feeding of VDD 
plus HFr-diet was reported to cause progression of NA-
FLD into NASH by increasing hepatic steatosis, inflamma-
tory lesions and interstitial fibrosis (45). Contrarily, VDD 
alleviated HFD-induced overweight, hyperinsulinemia, 
and hepatic steatosis through promoting fatty acid β-ox-
idation (46). It has also been reported that there was no 
difference between HFr and VDD+HFr groups in terms of 
inflammation, steatosis and expressions of genes related 
to lipogenesis and β-oxidation (47). However, there is not 
enough information about how VDD affects glycooxida-
tive stress and antioxidant system parameters in dietary 
NAFLD models. For this reason, this subject was focused 
on in our study.

Serum 25(OH)D levels were reported as 27-30 ng/ml in 
normal mice fed on standard rodent chow containing 
Vit D3 (1,500 IU/kg). In the same study, it was reported 
that the administration of a diet containing low doses of 
Vit D3 (50 and 250 IU/kg, respectively) resulted in serum 
25(OH)D levels compatible with severe VDD and VDD, 
respectively, as early as four weeks, and these levels were 
maintained for 3-4 months (48). Therefore, in our study, 
HFr drinking was started four weeks after VDD diet appli-
cation and continued for eight weeks and then serum Vit 
(OH)D levels were found between 10-20 ng/ml in rats fed 
on a diet to which Vit D3 is not added (48).

Some authors have reported that VDD diet alone result-
ed in moderate steatosis, inflammation, IR together with 
upregulation of genes related to lipogenesis and inflam-
mation in the liver of rodents (43, 47). However, some 
investigators have found that there were no changes in 
metabolic parameters and liver damage markers due to 
a VDD diet (46). There is limited knowledge about prooxi-
dant-antioxidant status due to VDD (49, 50). In this study, 
the VDD diet alone was observed not to alter hepatic 
prooxidant-antioxidant balance, mRNA expressions of 
Nrf2 and antioxidant enzymes, protein glycation param-
eters and histopathological findings despite increased 
inflammation, liver TG levels and IR.

In this study, when VDD and HFr diets were combined, 
the VDD diet did not augment HFr-induced oxidative 
stress, protein glycation, and hepatic damage. How-
ever, IR and inflammation parameters were higher in 
the VDD+HFr group than HFr. There was no difference 
in GSH and FRAP levels and CAT activity between the 
VDD+HFr and HFr groups. Although SOD and GSH-Px 
activities decreased in the HFr group, these activities re-
turned to normal in the VDD+HFr group. This situation 
may be related to increases in gene expressions of these 
enzymes. Indeed, interestingly, Nrf2, SOD and GSH-Px 
mRNA expressions were significantly higher in the VD-
D+HFr group than the HFr group. These changes in the 
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antioxidant system may provide a protection against an 
additional increase in prooxidant status and HFr-induced 
liver damage in the VDD+HFr group. 

CONCLUSION

Our results indicate that VDD augmented HFr-induced in-
sulin resistance and hepatic inflammation, and upregulated 
Nrf2 and antioxidant enzymes while exhibiting no change 
in glycooxidative stress and histopathological changes. 
These results suggest that more studies are necessary to 
elucidate the effect of VDD on NAFLD progression. 
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