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Emerging in the past few decades, Industry 4.0 has wide effects over production lines with an increasing 

number of novel applications. These applications implement more than one of the tools of Industry 4.0. 

These tools include but are not limited to internet of things (IoT), big data, cloud computing, artificial 

intelligence, augmented reality, virtual reality, machine to machine communication (M2M), smart robot 

applications, etc. The aim of these efforts is mainly to acquire smarter manufacturing systems. With 

spreading Industry 4.0 methodologies, the role of sensors became more important to respond to new 

demands. One of the most important sensor types in this sense is the camera which now has wide variants 

in different forms. Applying machine vision algorithms via cameras grants optimization of many critical 

processes. In this perspective, the quality of both product and process should be handled as a key 

performance indicator that may be continuously enhanced for excellence. Machine vision algorithms may 

be adapted to check and manage quality in designated control points on the production lines. This study 

focuses on the control of the quality of rotary switches that are widely used in household appliances like 

ovens and washing machines. Rotary switches are critical components of an appliance since they direct the 

flow of electricity within the product. A failure in the functionality of this component directly causes the 

failure of the main product. Hence, the quality rate of rotary switches should be calculated in defective parts 

per million (dppm) units. An intense quality control procedure is required to achieve low dppm rates during 

production. As a real-life application, a camera system is integrated into the rotary switch production line 

on a selected point. Classification algorithms are developed on a cost-effective platform to perform visual 

quality checks of the rotary switches and qualify as “Ok” or “Defective”. The selected point ensures a high 

percent check of quality criteria while enabling repair of the defective parts with minor interventions. This 

control aims to identify a defective rotary switch as soon as possible since most of the defects are irreversible 
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once the rotary switch is totally produced or even some processes are completed. In this case, the entire 

product should be set apart for scrap.  

Another originality of our study is applying both Process Failure Mode and Effect Analysis (PFMEA) and 

Design Failure Mode and Effect Analysis (DFMEA) together. There is almost no referenced study in the 

literature.  

Benchmark comparisons are conducted upon completing the integration of the new system to the production 

line. As a result, enhancements in the quality, cost, and production speed parameters are achieved with a 

cost-effective smart system. Additional capabilities are added to the system, namely data analyzing online 

data feeding.  

Keywords: Machine vision, Industry 4.0, Quality Control, FMEA, Poka-Yoke 

 

 
 

With rapidly developing technologies, consumer behavior has been exposed to changes concerning 

purchasing habits. The simplicity of the e-Commerce experience has especially increased the number of 

criteria that are considered during the selection of a product or a service [1]. With this change, manufacturers 

also updated their strategies to manage customer demand to enable them to compete in the market. For 

instance, agile manufacturing is a newly emerging methodology that is based on adding value to the 

customer with short-term and high-frequency sprints [2]. One of the key criteria considered is the 

customer’s perception of the brand on quality. Many firms spend their years increasing their loyalty by 

releasing high-quality end products. One of the aspects of this success is improving the quality control 

capabilities during the production process. Many soft and hard tools have been developed to ensure that 

products are manufactured within defined quality limits. Statistical Process Control, histograms, Poka-Yoke 

devices are widely used examples of control tools.  

Global technological developments force producers to perpetually enhance their key operational skills. 

Industrial revolutions have been providing key guidance for these technology-driven steps. The up-to-date 

concept of Industry 4.0 is mainly based on data and knowledge-related tools. Recent advances in sensors 

and computational power encourage developers to implement novel applications developed with complex 

algorithms. Machine vision-supported classification algorithms are widely used to have more robust quality 

inspections to avoid defective parts during the process.  

A rotary switch is an electrical component with multiple positions that provides the requested 

terminal sequence in accordance with the corresponding function diagram. Rotary switches are widely used 

for the manufacturing of household appliances like ovens and washing machines. Accoupled with a control 

knob, rotary switches shift the electrical functioning state of the appliance once the knob is rotated by the 

user. Hence, rotary switches are critical elements that directly affect the performance of the appliance. As 

a result, intensive care should be spent during the production phase of switches to avoid any functional 

defect.  

In this study, we describe a low-cost machine vision Poka-Yoke (Mistake Proofing) application that 

is empowered by a Decision Tree Classifier algorithm to detect defective parts during the rotary switch 

production process. The hardware consists of a Raspberry Pi-based computing system, touch panel for 

operators, camera, lighting, and custom interface PCB for the connection to the production system. OpenCV 

library is deployed to handle machine vision operations and classification algorithms are coded in Python 

language. The distinguishing approach of this study is the utilization of FMEA methods. This application 

is assessed by both PFMEA and DFMEA during the development phase. To the best of the authors' 

knowledge, this is the first study that integrates PFMEA and DFMEA in a visual quality control application. 

Section 2 includes a literature review of similar applications. Section 3 describes the proposed methodology. 

The results are shared in Section 4. Final remarks and conclusions are included in Section 5. 

 

 

1. INTRODUCTION 
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Machine Vision Supported Quality Control 

 

For the sake of rapidly improving technology, Commercial off-the-shelf (COTS) products are 

widely preferred to include in cost-effective optimization solutions. One of these fields is the optical process 

and quality control during production. This study suggests a Raspberry Pi-based application for quality 

control on a production line. Similar approaches exist in the literature for production lines. Louw and 

Droomer [3] proposed a Raspberry Pi-based hardware system to defects on toy trains in which OpenCV 

has been implemented for machine vision operations and Python has been selected for coding statistical 

classifiers. Würschinger et al. [4] applied Convolutional Neural Networks (CNN) algorithm on Raspberry 

Pi to suggest an enhanced and low-cost deep learning solution for manufacturing lines where they try to 

detect chips on piston rods via a deep learning algorithm with two classes. In another application by Ardhy 

and Hariadi [5], Raspberry Pi, Python, and OpenCV integration has been utilized to inspect Printed Circuit 

Board (PCB) defects and authors suggested Adaptive Gaussian Threshold as the best defect identifier. The 

study for welding visual inspection by Gong et al. [6] also suggests a low-cost system where they inspect 

the quality of welding on circuits via a Support Vector Machine Algorithm. Korodi et al. [7] deploy another 

low-cost visual system to control quality Electronic Control Unit (ECU) control in the automotive industry. 

The proposed system checks the missing or defective pins, clips, cracks on electronic boards, etc. with the 

help of a visual control system. Merging the data by a parallel acquisition and parallel processing the 

information methodology, they provide a robust defect detection system where the produced components 

are safety-critical. Adamo et al. [8] joined several CMOS cameras to acquire the image of satin glass in 

production lines. The acquired image was processed via the Canny edge detection algorithm. Frustaci et al. 

[9] suggested another embedded machine vision system for geometric inspection for planar or rotational 

shifts on the product in the context of Industry 4.0. The target product for quality control is the catalytic 

converter on which they applied image processing steps as image acquisition, conversion from RGB to 

grayscale, Region of interest (ROI) filtering for removing noise, Canny edge detection algorithm, Contour 

selection, Morphological filtering, and Center detection. Without having integrated to production lines, 

Parakontan and Sawangsri [10] designed another Raspberry-Pi-based system to control the quality of 

printed circuit boards (PCB) against copper leakages by transforming RGB images to binary images. Leo 

et al. [11] developed a two-camera vision system to detect multiple types of defects about dimensions and 

shapes on electromechanics part production and integrated the system into the production line. The 

proposed architecture of the study includes the integration of two cameras to a Programmable logic 

controller (PLC) via an industrial PC where data acquisition algorithms run. The system was managed by 

Labview software. Moru and Borro [12] developed a custom application on Machine Vision to control 

dimensions of produced gears on production lines. To avoid measuring errors as much as possible and 

provide enhanced tolerances, their proposed system includes the acquisition of the image with telecentric 

lenses and intense calibration operations. Another contribution of their study is the methodological 

approach for determining uncertainty associated with their proposed measurement process. 

Revealing the literature shows that many studies have been proposed with different configurations 

according to the application area, size of the project, demand for computational power, the budget of the 

project, integrability to the production line, etc. Many requirements could be met by Raspberry Pi-based 

low-cost systems, where a moderate hardware performance with an open-source image 

processing/classification algorithm may provide the necessary performance. For more demanding 

computations like deep learning or integration requirements, a common combination is the integration of 

industrial cameras to PLCs via industrial PCs. Independent from the hardware, OpenCV is the most 

widespread image processing software that is applied for image acquisition and processing purposes like 

binarization, converting, filtering, etc. in these projects. The current trend of studies advises that machine 

2. LITERATURE REVIEW 
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vision applications will drastically increase to be integrated into automated systems where intense quality 

control activities are required. 

 

Decision Tree Classifier (DTC) 

 

 Classification methodology is the systematic process of categorizing entities according to the 

defined criteria. A Decision Tree Classifier stays among many alternatives of multistage classifiers [13]. 

The process is used to predict a target variable [14]. The target variable may be continuous or categorical. 

The method has many applications in production systems. Wang et al. suggested a new approach that can 

identify patterns of control charts [15]. Matsko et al. proposed an adaptive fuzzy classifier that has a 

dynamic structure that can be adapted to control Automatic Process Control Systems [16]. Putri et al. 

prepared a decision tree that reflects the methodology of identifying defects on a grinding wheel [17].  

 Integration of Visual Quality Control and Decision Tree Classifiers are also common in production. 

Cheng et al. implemented an online machine vision-supported decision tree algorithm to ease the decision-

making process of combine harvesters on impurities of rice grain [18]. Zhou et al. suggested another 

machine vision system that can detect surface defects of automobiles during their production [19]. Lin et 

al. developed a machine vision-supported decision tree classifier that can reveal defects of optic lenses in 

their manufacturing phase [20]. There are many different examples in the literature for various types of 

productions since the methodology can manage to identify many types of “defects”. In this study, the 

Classification and Regression Trees (CART) classification algorithm which was proposed by Breiman et 

al. [21] preferred since the algorithm is appropriate to manage binary or categorical parameters and 

variables. 

 

Failure Mode and Effect Analysis (FMEA) 

 

With a wide definition, FMEA is a systematic approach to evaluate a process, system, design, or 

service to explore in which way failures can occur [22]. The method may be applied to reveal shortcomings 

of an ongoing process or risks on a design of a product in the development phase. The method has originated 

in a Military Procedure of the United States Department of Defense with some shortcomings [23]. It has 

been widely applied to many National Aeronautics and Space Administration (NASA) space programs [24]. 

Today, FMEA has many applications in manufacturing industries. It is among the most powerful tools to 

determine the lack of a product design or production process. Maddalena et al. applied DFMEA in the 

feasibility phase of Automotive CMOS Image Sensors development [25]. Klochkov et al. assessed the 

process of can stock production by a detailed PFMEA [26]. Since there are numerous studies, many 

literature review papers can be encountered in the literature. Sharma and Srivastava surveyed FMEA 

methods with a scope basis and included many studies and their contributions [27]. Spreafico et al have 

introduced a state-of-the-art survey of 220 papers and supported the review with 109 relevant patent 

information [28]. Huang et al. represented a systematic literature review and gave insights regarding the 

future of FMEA [29]. Ng et al. provided information on a more capable deployment of FMEA by integrating 

to other tools such as inventive problem-solving methodology (TRIZ), Quality Function Deployment 

(QFD), and Root Cause Analysis (RCA) [30]. 

 Combining our literature review on Machine Vision-based Quality control and FMEA discloses that 

there is a lack of integrating DFMEA and PFMEA at the application level. According to our research, we 

have not found any research about combining PFMEA and DFMEA. DFMEA reflects the risks on the 

product design where PFMEA helps to manage risks on the manufacturing of a product. As a contribution 

of this study, combining both FMEAs provides a more robust insight to determine the most critical risks on 

the quality of the produced product since the combination contains both risks that can be met on product 

and risks that can be occurred during the production of the product. Another originality is the representation 

of both DFMEA and PFMEA in a common FMEA table. 
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The firm AN-EL A.S. is an electromechanics component producer for household appliances in 

Turkey. Rotary Switch in Figure 1 is a wide product family which is manufactured by AN-EL A.S. and sold 

to household appliance producers especially to be assembled to cooking devices. Since the firm exports 85 

percent of products to worldwide plants, especially to global production sites, the quality of the final product 

has utmost importance for a sustainable commercial relationship.  

 
 

 
Figure 1. Rotary Switch (Bottom View) 

 
Table 1. Severity, Probability, and Detectability Criteria 

Rank Severity Probability Detectability 

10 

May endanger machine or assembly operator. Very high 

severity ranking when a potential failure mode affects 

safe product operation and/or involves noncompliance 

with regulations without a warning. 

≥ 100 per thousand 

(1,000) pieces 
≥ 1 in 10 

Absolute certainty of 

non-detection. 

9 

May endanger machine or assembly operator. Very high 

severity ranking when a potential failure mode affects 

safe product operation and/or involves noncompliance 

with regulations with a warning. 

50 per thousand 

(1.000) pieces 
1 in 20 

Controls will probably 

not detect. 

8 

Major disruption to the production line. Product/item 

inoperable (loss of primary function). 100 % of products 

should be scrapped.  

20 per thousand 

(1.000) pieces 
1 in 50 

Controls may 

seldomly detect. 

7 

Minor disruption to the production line. Product/item 

operable but at a reduced level of performance. Customer 

very dissatisfied. A high portion of the product should be 

scrapped. 

10 per thousand 

(1.000) pieces 
1 in 100 

Controls have a poor 

chance of detection. 

6 

Minor disruption to the production line. 

Product/item operable but Convenience/Feature item(s) 

inoperable. Customer dissatisfied. A low portion of the 

product should be scrapped. 

2 per thousand 

(1.000) pieces 
1 in 500 

Controls may detect 

case by case. 

5 

Minor disruption to the production line. 

Product/item operable but Convenience/Feature item(s) 

operable at a reduced level of performance. 

The product should be sorted and reworked. 

1 per thousand 

(1.000) pieces 
1 in 1.000 

Controls may detect. 

4 

Minor disruption to the production line. 

Fit and Finish/Squeak and Rattle item does not conform. 

Defect noticed by most customers (greater than 75%). 

The product should be sorted, and a high portion should 

be reworked. 

0.5 per thousand 

(1.000) pieces 
1 in 2.000 

Controls may have a 

good chance to detect. 

3 

Minor disruption to the production line. 

Fit and Finish/Squeak and Rattle item does not conform. 

Defect noticed by 50% of customers. The product should 

be sorted, and a moderate portion should be reworked. 

0.1 per thousand 

(1.000) pieces 
1 in 10.000 

Controls have a good 

chance to detect. 

2 

Minor disruption to the production line. 

Fit and Finish/Squeak and Rattle item does not conform. 

Defect noticed by discriminating customers (less than 

25%). The product should be sorted, and a low portion 

should be reworked. 

≤ 0.1 per thousand 

(1.000) pieces 
Controls almost 

certain to detect. 

3. PROPOSED METHODOLOGY 
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1 No effect.  

Failure is eliminated 

through preventative 

control 

Controls certain to 

detect. 

 

The rotary switch can be produced by assembling multiple semi-products in a production line. Most 

of the parts are sensitive to external factors such as humidity and pressure. Hence, an intense production 

process is required to acquire precise final products. Such a process requires continuous improvement 

actions to assure a high level of quality. An appropriate way to ensure this quality is periodically analyzing 

the product and production process with analytical tools.  
 

Table 2. PFMEA for Rotary Switch Production 

Process 

Step 

Failure 

Mode 
Failure Effect Sev. Prob. Det. RPN Prevention/Action 

Assembly 

of Moving 

Terminals 

by Press 

Wrong 

Sequence 

Wrong 

functionality, 

should be 

scrapped 

9 5 4 180 

- Increasing the number of workers for 

control 

- A Poka-Yoke Device that checks the 

sequence electrically. 

- A Machine Vision supported Poka-Yoke 

device 

Assembly 

of Moving 

Terminals 

by Press 

Wrong 

types of 

moving 

terminal 

Wrong 

functionality, 

should be 

scrapped 

9 5 3 135 

- Increasing the number of workers for 

control 

- A Poka-Yoke Device that checks the 

sequence electrically. 

- A Machine Vision supported Poka-Yoke 

device 

Assembly 

of Fixed 

Terminals 

by Press 

Wrong 

types of 

fixed 

terminal 

Wrong 

functionality, 

should be 

scrapped 

6 5 3 90 

- Increasing the number of workers for 

control 

- A Poka-Yoke Device that checks the 

sequence electrically. 

- A Machine Vision supported Poka-Yoke 

device 

Pressing 

Fixed 

Terminals 

Missing 

Number of 

Fixed 

Terminals 

Wrong 

functionality, 

should be 

reworked 

7 4 3 84 

- Can be checked visually before pressing 

- A Machine Vision supported Poka-Yoke 

device 

- Missing terminals should be pressed 

Camshaft 

integration  

Use of the 

wrong 

camshaft 

Wrong 

functionality, 

should be 

reworked 

7 3 3 63 

- Can be checked visually before pressing 

- A Poka-Yoke Device for functionality test 

- Eliminating different types of the camshaft 

from the feeder with an additional process 

- Camshaft should be reassembled.  

Nut 

assembly 

Mis-

assembly of 

nuts to body 

Switch cannot 

be assembled to 

main appliance 

5 4 3 60 

-Can be checked by the operator. 

- A Poka-Yoke device for alignment. 

Press of 

Fixed 

Terminals  

Low 

pressing 

pressure 

Loose 

terminals, risk 

of removal 

6 3 3 54 

- Can be checked with a pneumatic device 

- Terminals should be pressed again. 

Protective 

Cover 

Assembly 

Missing 

Cover 

Moving 

terminals may 

be harmed 

7 3 2 42 

- Visual control by the operator 

- Machine vision supported Poka-Yoke 

device 
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Assembly 

of Spring 

Wrong 

spring 

selection 

Rotation torque 

may differ 
4 3 3 36 

-Can be checked with a Torque meter. 

- A Poka-Yoke device with torque 

measurement capability. 

D Profile 

Assembly 

Unoriented 

D Profile 

angle 

Bad visual 

effect for final 

customer 

4 3 3 36 

- Can be checked visually by the operator. 

- A Poka-Yoke device with angle 

measurement capability. 

Nut 

Assembly 

Missing 

Nuts 

Switch cannot 

be assembled to 

main appliance 

5 2 2 20 

-Can be checked by the operator. 

- A Poka-Yoke device for nut control. 

 

One of the most important tools for these analyses is FMEA. The classical FMEA process with 

Severity, Probability, and Detectability criteria is applied to determine the most critical risks. Severity, 

Probability, and Detectability determining criteria for this study are shown in Table 1. The criteria in Table 

1 have been prepared in line with the FMEA Handbook by Automotive Industry Action Group (AIAG) 

[31]. 

Upon identifying the scores of each risk, the Risk Priority Number (RPN) should be calculated with 

the formula in Equation 1 as the product of Severity, Probability, and Detectability [31]. An RPN value 

may change between 1 and 1.000 since Severity, Occurrence, and Detection may take values between 1 and 

10. 

RPN = Severity x Occurrence x Detection            (1) 

 

 Table 2 contains the risks of the production process by scoring their severity, probability, and 

detectability scores, failure mode, possible effect, and preventive actions. The PFMEA list has been sorted 

in descendant order concerning RPN values.  

Table 3 indicates five items of DFMEA. The remarkable point for both DFMEA and PFMEA is 

having the risks for moving terminal on the top of the list. Since the FMEA items are recalculated in the 

Results section after integration of the proposed system, selected action and results are not included in Table 

2 and Table 3. 

 
Table 3. DFMEA for Rotary Switch Production 

Related 

Part 
Failure Mode Failure Effect Sev. Prob. Det. RPN Prevention/Action 

Moving 

Terminal 

Deformed 

moving 

terminal 

Avoiding 

functionality, 

should be 

scrapped 

8 4 5 160 

- Increasing the number of 

workers for control 

- A Machine Vision supported 

Poka-Yoke device 

- A new selection process for 

deformed terminals 

Switch 

Body 

Soft housing 

for terminals 

The terminal 

may be 

removed 

8 3 3 72 

- Change on pressing process 

- Mould modification 

- New raw material mixture for a 

harder body 

Switch 

Body / 

Terminal 

Incompatible 

tolerances 

Inappropriate 

assembly of 

terminals 

6 4 3 72 

- Controlling product tolerances  

- Change of production process 

for more precise tolerances 
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D Profile 

Assembly 

Size based 

assembly 

problem 

Cannot 

assembly D 

Profile 

5 3 4 60 

- Update tolerances on mold 

- Use of cutters for reducing size 

on non-conforming D profiles. 

All 

Plastics 

Observation 

of burr 
Visual  4 4 2 32 

- Can be perceived as a quality 

problem by customers. 

- Burrs should be removed. 

- Update on mold design. 

 

Moving terminals that are used for this production have various types as shown in Figure 2. 

According to DFMEA and PFMEA analysis, the quality requirements in concern of this study consist of 

the use of correct types, correct sequence, and correct assembly of moving terminals that don’t have any 

deformation.  
 

 
Figure 2. Various Types of Moving Terminals 

 

Pareto Analysis has been completed by aggregating both PFMEA and DFMEA risks in descending 

order according to their RPN values and selecting the most critical risks in concern. Three out of 16 risks 

have been selected upon evaluation of the Pareto Chart in Figure 3 which have distinctly higher values 

compared to the remaining risks and are equal to nearly 20 percent (16 x 20 % = 3.2) of the total risks.  

 

 

Figure 3. Pareto Analysis Chart of RPN Values of DFMEA and PFMEA 

 

Selected risks that have a high impact on quality prove that the most critical items in the process are 

moving terminals. This conclusion is not surprising since moving terminals are assembled to the body of 

the rotary switch by an irreversible pressing operation. Moving terminals cannot be removed from the body 

after pressing, hence any failure results in a scrap of body and moving terminals. Moving terminals are the 

most expensive components among semi-products. Scrapping moving terminals and body sources a 

burdensome quality cost to the whole production.  
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Severity over 8 should be handled carefully. Since severity cannot be improved without design 

modification, a process enhancement is intended to improve probability and detectability values. The most 

common suggestion is to avoid risks with mistake-proofing (Poka-Yoke) [32]. The final decision to avoid 

any production risks has been determined as integrating a Poka-Yoke device into the production line. After 

evaluating several alternatives, the conclusion was developing a machine vision-supported Poka-Yoke 

Device. To achieve this quality control capability by machine vision, multiple low-cost alternatives are 

examined.  Raspberry Pi-4 has been selected to provide sufficient computational power. Raspberry Pi-4 has 

been integrated into a touch screen as shown in Figure 4.  

 

 

Figure 4. Inner Structure of the System 

 

The configuration for the optical quality control system has been completed by adding lighting, 

camera, and interfaces. The resulting system is demonstrated in Figure 5. The new system is designed to be 

operated by a single operator. Additionally, the system can check two rotary switches simultaneously. 

Helping to increase the accuracy of the classification, it is also intended to decrease the processing time of 

the control since there has been detected a bottleneck for the process. 

 

 

Figure 5. Integrated Quality Control System to Check Moving Terminals 
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Image operations of this process are conducted via OpenCV. A single switch has 9 circuit lines on 

its body. Analyzing the construction and alternatives of the combinations, it has been determined that 4 

features for each line suffice to determine the type and the condition of the moving terminal. Additional 8 

features between lines help to determine if a shunt exists between two adjacent lines. A total of 44 discrete 

lines on the rotary switches are checked during the image processing phase for robust classification. These 

lines are indicated in Figure 6 with blue color including their enumeration.  

 

 

Figure 6. 44 Features on Rotary Switch for Classification 

  

The feature points in Figure 6 are used to determine the type of the terminal and the connection 

between each terminal. Possible 6 types of terminal alternatives are shown in Figure 7. From left to right, 

the first line has a complete moving terminal with a fixed terminal on the opposite side, the second line has 

a semi terminal, the third line has a shunt that is used to connect to adjacent terminals, the fourth line has 

only a fixed terminal on the opposite side, the fifth line has a semi terminal that has a fixed terminal on the 

opposite side, and the sixth line has a shunt that has a fixed terminal on the opposite side.  

 
Figure 7. Types of the Possible Terminals 

 

The types of terminals have been enumerated from 1 to 6 from left to right. If the line contains no 

terminals, the type is valued with 0. The connection between terminals is also considered to have the value 

1 if there is a shunt between two adjacent terminals, 0 otherwise. Hence, a vector with size 9 can identify 

the terminals on the lines while a vector with size 8 can define the connections between terminals. The 

combined vector with 17 digits can define the connection type of a rotary switch.  

The existence of metal parts can be detected and evaluated according to RGB values.  The target 

variable for the classification algorithm is the connection vector with 44 digits which is converted according 

to the connection vector with 17 digits. The digit of the target variable is 0 if the feature should be metal 
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and 0 if otherwise. 9 digits of the connection vector can take the values from 0 to 7. The last 8 digits are 

binaries with 0 and 1. Hence the number of possible connection types is over 10 billion. Supplying the RGB 

values of 44 points to the classification algorithm enables it to determine the connection vector. The vector 

has been compared to the actual vector as training data. To achieve a smooth image processing process, a 

LED lighting has been mounted on the rotary switches in the line. Hence, a better contrast between plastic 

and metal parts can be acquired, since metal parts shine under lighting where plastic parts remain dark. 

3.500 trials have been carried out to train classification algorithm on threshold values over which it is 

assessed that the underlying surface is metal with a smooth form. It has been also assured by lighting that 

the RGB values of deformed metal parts also remain below the threshold value. Most bright RGB value in 

feature lines has been selected for further evaluations on metal component existence. Figure 8 summarizes 

the overall process. 

 

 

Figure 8. Machine Vision Supported Quality Control Process Flow 

 

The classification algorithm suggests the threshold intervals for RGB values for each vector as in 

Table 4 where X is the clusters of numbers from 1 to 9 for F, B, C, and D, from 0 to for S.  

 

Table 4. RGB Threshold values for Metal Detection 

Vector\Component Red Green Blue 

FX (140,255) (110,255) (110,255) 

SX (155,255) (120,255) (110,255) 

BX (155,255) (120,255) (110,255) 

CX (115,255) (110,255) (95,255) 

DX (150,255) (130,255) (130,255) 

 

CART classification algorithm has been applied in this study since the algorithm is capable of 

handling binary parameters and variables. Providing RGB values of 44 features, the algorithm predicts the 

connection type of the rotary switch with a 17-digit vector. During the real production phase, The operator 

is informed about the prediction of the classification algorithm via touch screen as shown in Figure 9. For 

defective parts, additional information on defect points is highlighted with an enumeration to inform 

defective points on the rotary switch. 

 

 

Figure 9.  Pass Warning (on the left) and Defective Warning (on the right) by System 
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5.000 rotary switches have been allocated for training, validation, and test of the classification 

algorithm. Rotary switches were processed by both human operators and the proposed system. To enhance 

the accuracy of the process, two operators have been visually checking for defects before the installation of 

the system. Hence, the accuracy of the operators shows the result of classification by two consecutive 

control of two operators. The main classification error of operators is the false identification of defective 

switches. More clearly, the operators usually could not detect defects on rotary switches. Since the switch 

is safety-critical, any “defective” identification by any of the operators results to classify the switch as 

“defective”. We have checked the reliability of the decisions of operators with Kappa Statistics [33]. Table 

5 includes the classifications by both operators concerning the condition of 5.000 rotary switches.  

 
Table 5. Classification Matrix of Human Operators 

  Operator 2 
  Accept Defect 

Operator 1 
Accept 4244 193 

Defect 199 364 

 

Considering the rates in Table 5, Kappa Statistics has been calculated according to the formula in 

Equation 2, 

 

                                                   𝜅 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
                                        (2) 

 

where 𝜅 is the Kappa statistics, 𝑝𝑜 is the observed agreement between operators, 𝑝𝑒 is the hypothetical 

probability of chance agreement. The scale for Kappa Statistics [34] in Table 6 suggests the current 

classification performance of operators results in substantial agreement with a Kappa value of 61 %. 

 
Table 6. Agreement Scale for Kappa Statistics 

Kappa Agreement 

< 0   Less than chance agreement 

0.01–0.20  Slight agreement 

0.21–0.40  Fair agreement 

0.41–0.60  Moderate agreement 

0.61–0.80  Substantial agreement 

0.81–1.00  Almost perfect agreement 
 

The results in Table 7 prove that the proposed methodology and system improve the process by 

nearly 1 percent compared to the cumulative classification performance of both operators which cannot be 

ignored where defects are evaluated with dppm rates. Support Vector Machine (SVM) classification method 

has been also applied for benchmarking the proposed Decision Tree Algorithm. The results show that the 

proposed algorithm performs better both in the means of accuracy and runtime. For image processing, 

Canny Edge detection on the binarized image has been tried to be classified to compare our proposed 

methodology. The matching accuracy on a single image did not pass the level of 91 percent. Therefore, five 

images per classification have been tried to increase accuracy. The accuracy could only catch an average of 

95 percent and the average runtime increased to 4.5 seconds. Besides, the match difference between 

4. RESULTS AND DISCUSSION 
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defective and acceptable rotary switches had a very low resolution with an average of 1 percent. The method 

was ignored for further evaluation. 
 

Table 7. Results of The Classification Process 

Type of 

Data 

# of 

Items 

Accuracy of  

Operators 

Accuracy 

of Decision 

Tree 

Average 

Runtime of 

Decision Tree 

Accuracy 

of SVM 

Average 

Runtime 

of SVM 

Training 3500 98,80 % 99,98 % 140 ms 97,08 1,316sec 

Validation 750 98,53 % 99,46 % 135 ms 95,88 1,418 sec 

Test 750 98,40 % 99,60 % 135 ms 96,14 1,395 sec 

 

Apart from featuring aspects like cost, integrability, simplicity, accessibility, etc, the proposed 

system should be also compared to similar systems for its performance concerning accuracy and runtime. 

Several similar studies have been also compared to the proposed methodology. The proposed classification 

algorithms by Chauhan and Surgenor [35] uses motions instead of images on a high-speed O-ring assembly 

line. Although having the processing power of a PLC behind, the fastest algorithm requires 5.88 seconds to 

process a 10-seconds video which exceeds the limit for the cycle of operation in rotary switch production 

line. The system should receive a defective or acceptable signal before fixing the moving terminals. Hence, 

it can be assessed that motion analysis for defect detection would have a risk to create a bottleneck on the 

production line. In another study by Kunakornvong and Sooraksa [36], the assembly of the Air Bearing 

Surface (ABS) is controlled via a Machine Vision System on a Hard Disk Drive (HDD). With the help of 

an industrial camera and industrial PC with Intel Core i7 CPU, they process the surface image of a DD by 

detecting defects with Fuzzy Dynamic Histogram Equalization. The average runtime for the proposed 

system is 2 seconds on the industrial PC. Shen et al. [37] developed a machine vision system to check 

defects of bearings. Their Support Vector Machine (SVM) based methodology provides also nearly 99 

percent accuracy without including the runtime information. The image processing algorithm checks the 

smoothness and text on the body of the bearing. Edinbarough et al [38] suggested an inspection system that 

controls IC of PCB with a Neural Network-based algorithm. Without providing exact runtime, they provide 

training time as 8 – 20 minutes and 99 percent accuracy for classification.  

It can be deducted from the survey that many studies focus on providing detailed information on 

algorithms avoiding to include runtime or accuracy statistics. As another aspect, the performance may 

drastically change depending on the aim of the application, required results, software and hardware 

environment, the number of features, type of classification, and image processing algorithms. Hence, it is 

assessed that the best way for developing an effective is trying to achieve the required accuracy with the 

simplest possible algorithm.  

After integrating the visual system into the manufacturing system, the production process has been 

observed for one month to have more concrete results. RPN values for the risks have been updated as shown 

in Table 8 after attaining a stable process. Severity value could not be updated since the design of the 

product has not been changed. Better probability and detectability scores provided from the proposed 

system helped to improve overall RPN scores of the corresponding risks.  

 
Table 8. Updated FMEA Items 

P/D 

Process 

Step/Related 

Part 

Failure 

Mode 
Failure Effect Sev. Prob. Det. RPN 

P 

Assembly of 

Moving 

Terminals by 

Press 

Wrong 

Sequence 

Wrong electrical 

functionality, should 

be scrapped 

9 3 2 54 
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P 

Assembly of 

Moving 

Terminals by 

Press 

Wrong 

types of 

moving 

terminal 

Wrong electrical 

functionality, should 

be scrapped 

9 2 2 36 

D 
Moving 

Terminal 

Deformed 

moving 

terminal 

Avoiding 

functionality, should 

be scrapped 

8 2 2 32 

 

 The presentation of the P/D column in the FMEA table is another contribution of this study, where 

P stands for Process and D stands for Design. Hence, both Design and Process items can be displayed in 

the same table without any confusion. Although not changing the severity, a new Poka-Yoke Device helped 

to improve Probability and Detection values. 

 

 
 

With technological improvements, the number of cost-effective systems in the industry has been 

drastically increased to provide benefits on quality costs. In this study, a Raspberry Pi-based low-cost 

Machine Vision System that is integrated into a rotary switch manufacturing system has been presented. 

The system was installed to detect the type, sequence, and form defects of moving terminals before pressing 

on the rotary switch body. Hence, the scrap of the rotary switch was avoided by detecting the failure before 

pressing which is an irreversible process.  

Results show that the vector inquired by thresholding and binarization operations on the image of 

the rotary switch was sufficient to compare default values and detect defects. Raspberry Pi-operated 

OpenCV software can provide the vector accurately under appropriate lighting. Classification algorithm 

coded on Python improves the quality control process early 1 percent compared to human operators with 

regards to training, validating, and testing results. 1 percent improvement on the quality control process 

cannot be ignored where the defect of the product is calculated with dppm level. Additionally, the same 

process can be completed with one operator instead of two. 

The distinguishing part of the study is a combination of PFMEA and DFMEA analysis. To the best 

of the authors’ knowledge, this is the first study that applies both PFMEA and DFMEA to determine the 

improvements in the quality of a manufacturing system. Another originality is the new “P/D” column for 

FMEA analysis which distinguishes the FMEA items as “Process” or “Design”. In this way, both Process 

and Design items may be displayed in the same FMEA table without any confusion. During FMEA analysis, 

failure modes scored according to Severity, Probability, and Detectability dimensions. For future study, a 

new dimension as “Scope” is suggested to be added to FMEA studies for a more robust decision process. 

This dimension may determine the degree of relevance of failure mode to the application area.  
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