
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

209

Design of 8-bit Dedicated Microprocessor for

Content Matching in NIDPS
Dejan Georgiev*

* Faculty of Electrical Engineering and Information Technologies - Skopje, Macedonia

e-mail: dejan@inbox.com

Abstract- Content or string matching is the core process of deep package inspection and pattern recognition used by the

Network Intrusion Detection and Prevention Systems (NIDPS). Although there are many sophisticated algorithms in software

it is an exhaustive process and still beneath the requirements of the high-speed network traffic. In this paper is presented a

flexible hardware solution i.e. microprocessor able to recognize known attack patterns and its variants to overcome the

software NIDPS outage caused by 1 Gbps (and beyond) throughputs on a single CPU core. Since many modified network

attacks use the so called evasion techniques, the presented approach is an 8-bit dedicated microprocessor for exact and

approximate string matching. To construct the design itself and to perform the simulation environment the Xilinx ISE Web

Pack simulator is used.

Keywords- Data path, control unit, register, NIDPS, pattern

1. Introduction

Enormous number of malicious bits and bytes

are spreading worldwide via Internet in form of

worms, viruses and hacking attacks with a speed of

beyond gigabit capacity networks. Identifying

those potential threats requires inspection of all the

single bits and bytes in the network packets, thus

performing an exhaustive process of the so-called

deep packet inspection. Deep package inspection

(DPI) is the foundation of packet sniffing software,

firewalls and network intrusion detection and

prevention (NIDPS) systems. Most of the modern

NIDPS as the open source Snort [1] is,

accomplish DPI method. Snort maintaince DPI

with content keyword in its rule option [2]

Software solutions and general-purpose processor

implementations have poor performances in term

of speed for DPI, therefore many commercial and

academic researches moved to hardware based

systems sacrificing the flexibility in trade of speed.

In this paper, an attempt to retain the speed and

flexibility is made as trade off the logical circuit

area. In the next chapter some existing hardware

solutions and related work is briefly observed. In

chapter 3 a dedicated microprocessor concept and

its basic elements is proposed and in the next sub-

chapters, a design of dedicated processor for exact

matching is presented. Some sophisticated network

attacks use slight modification in the pattern by

insertion, deletion or deletion of one or more

characters thus causing an evasion in the intrusion

detection systems, therefore a design with

expanded performances is explained in the next

sub-chapter 3.2. The process of load and reload

new patterns is explained in section 4. In chapter 5,

some results and simulation of the design are

presented. The goal of this paper is outlined in the

conclusion section 6.

2. Background

 Next generation network intrusion detection

systems perform DPI by default. Taking in

consideration the processing limitations of

software applications, in the recent years many

studies propose pattern matching in hardware. The

three main designs approaches are brute-force,

non- deterministic finite states automata (NFA)

and deterministic finite state automata (DFA)

realized on FPGA. The brute-force method

produces circuits that perform a full comparison of

every bit in the pattern against all the input bits.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

210

Cho, et. al.[3] [2] presented simple design for

deep packet inspection i.e. simple string searching

engine and parallel and scalable design for 4-byte

brute-force algorithm. In similar manner extending

the brute force methods that includes matching

with offsets, the authors of [4] achieved 10 Gbps

throughput using parallelism. One of the main

issues of the brute-force approach is its rigidness

to detect patterns that are more complex, like for

example the regular expressions. . Efficient logic

NFA circuits for DPI with regular expressions that

are able to detect zero, one or more repetitions of a

character are observed by [5] . Furthermore they

are the first to introduce the 8-to-256 decoder,

yielding an increase of the area efficiency. Extra

detection flexibility in hardware compared to the

brute-force algorithm was implemented as NFA

and DFA in [6] . Although FPGA's provides

reconfiguration abilities, it still involves

reprogramming of the circuit board. In this paper

is presented significantly more flexible approach to

load and reload new pattern. In particular, the

dedicated processor design is combination of easy

implementation of the brute-force algorithm, the

extension capabilities of the NFA's and the

flexibility of the general-purpose processors and

software applications

3. Dedicated processor design

The simplest pattern matcher for deep packet

inspection in hardware is presented by [3] . Taking

in consideration the 8-bit ACSII presentation of

string characters it consists of several 8-bit

registers connected in pipeline or serial chain of

registers as shown in Figure 1, a comparators and

simple AND logical port. Since the simplest

implementation of a comparator is the 8-to-1

decoder it is straightforward to conclude that an 8-

input AND port is the most appropriate and area

efficient solution. This is true, but not if the

flexibility is the priority aspiration. Once

hardwired, there is no ability to change the content

of the comparator. A capable solution to load and

reload new value i.e. new character could be

implemented with 8-bit content addressable

memories (CAM) or simple 8-bit registers.

8-bit

register

8-bit

register

8

8

8

8
Comparator

A

Comparator

B

Comparator

C

8

Fig 1. Simple pattern "ABC" matching hardware

In those cases, the matching process is

accomplished with bit-by-bit comparison of the

incoming value shifted in the registry chain and the

value stored in the comparator i.e. the register.

Figure 2 represents hardware comparator of two 8-

bit characters stored in registers.


D Q D D DQ Q Q

Clock

Load

Clk Clk Clk Clk

E E E E


D Q D D DQ Q Q

Clock

Load

Clk Clk Clk Clk

E E E E

Input character 8-bit register

Stored character 8-bit register

8-bit Comparator

Fig 2 . Comparator of two 8-bit characters

implemented with registers

It could be seen on Figure 2. that each bit

comparison is performed by XNOR logical gate

where the value equals to logical "1" for two same

values bits and logical "0" is the bits are different

in the same position of the register. With every

clock cycle the value in the input registry changes

according the 8-bit representation of the input

character. The stored value waiting to be compared

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

211

remains the same. However, there is a possibility

to reload the same value with every clock cycle

and even more to load a new value with every

clock cycle. Thus, instead of designing a chain of

registers for the input sequence of character and a

chain of registers for the pattern that should be

recognized we can design an 8-bit comparator

composed of eight XNOR gates and one AND gate

synchronously comparing two input values i.e.

characters. The values in the comparator might be

loaded from real time input sequence or a pattern

stored in memories or register files. This concept is

the basic idea behind our dedicated microprocessor

design. The design of microprocessor whether it is

a general-purpose microprocessor or dedicated

microprocessor, can be divided in two main parts:

the Datapath and a Control unit as shown at the

block diagram in Figure 3. [7] . In this paper the

FSM+D (FSM plus data path) abstraction level

approach for designing microprocessor is used,

meaning that the datapath is manually constructed ,

and for constructing the control unit , in particular

the FSM we use VHDL code to describe its

operation. Afterword, the datapath and control unit

are connected to form enclosed functional unit.

ff

Next-

state

Logic

State

Memory

Output

Logic

1RX

2RX

1RY

2RY

Registry file Comparator

Control Unit

FSM

Datapath

8
Input

Control

signals

Status singals

Output

Control

input

Fig 3. Schematic of microprocessor (adopted from

[7])

The datapath part is composed of a registry file

and one or more 8-bit comparators. The pattern to

be recognized is stored in the L x 8 registry file as

a chain of characters represented in binary values,

where L is given by 1 NL and N is the length of

the pattern. The registry file gives flexibility to the

hardware design to load and reload new values and

modifications of the contents. With every clock

cycle i.e. at the rising edge of the clock cycle a

new character from the incoming stream is loaded

at the Input of the datapath. The process is

accomplished in the comparator by comparing the

synchronically loaded values from the

Datapath_Input and the character stored in the first

address location of the registry file. The outcome

result of the comparison is sent as a status signal

to the control unit. If match is registered, the status

signals named Next and Reset sends information to

the control unit if match was found or it sends

partial match or mismatch, as we will see later. If a

full match of the content is recognized the Output

of the datapath is set to a binary value '1' indicating

that the pattern was identified.

In general, the control units inside microprocessors

are finite state machines (FSM). By moving in

sequences of states, control units sends signal

named control signal to the datapath thus

controlling the operations performed by the

datapath. With every state in the control unit there

is a control signal associated. Since the control unit

is a FSM , its states could be described with a

simple state diagrams, where every state in FSM

represents the node of the deterministic graph. The

input signals to the FSM are status signals from the

datapath and the output signals are equivalent to

the control signals distributed to the datapath.

Figure 4. shows the concept of FSM state diagram

of the control unit of proposed microprocessor.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

212

0s 1s

2s 3s

Status signal =1

Status signal =1

Status signal =1

Status signal =1

Status signal =0

Status signal =0

Status signal =0Status signal =0

Control Signal=00 Control Signal=01

Control Signal=10Control Signal=11

Fig 4. State diagram of simple control unit

As it is presented in Figure 4. the control unit has

four states labeled as: 3210 ,,, ssss , one-bit status

signal and two bits control signal associated with

an appropriate state. It should be noticed that the

value of the control signal is increased by 1 for

every next state. It is normal behavior since the

control unit should trigger loading successive

characters stored in the registry file. Thus, the

simplest control unit with the specified function

could be designed as binary up counter where the

count up signal is represented by the status signal

and the control signals are equivalent to the

address line of character in the registry file that

will be compared.

3.1 Dedicated microprocessor for exact content

matching

Content matching consists in finding one, or more

generally, all the occurrences of a pattern in

an input stream. Let the pattern be denoted

by x=x[0 .. n-1] where its length is equal to n. The

stream is denoted by y=y[0 .. m-1] and its length is

equal to m. Both strings are built over a finite set

of characters called an alphabet denoted by .

The simplest algorithm is a single pattern

algorithm known as a naive or brute-force

algorithm where the comparison is performed

character-by-character at each position of the input

stream. The exact matching dedicated processor

uses the above method. Character x[i] and the

character y[i] , where ni0 are successively

compared until mismatch is found. If mismatch

occurs the process restarts from the first position

i.e. i=0. The main issue of brute-force exact

matchig appears if a mistmatch occures when the

input stream character is identical with the first

character of the pattern i.e.][][iyix  but

][]0[iyx  . In such a case the search process

restarts from the second position i.e. i=1.

 The process of exact content matching could be

described with the following algorithm:

Repeat wtih every clock cycle:

1: i:=0; Load x[i], Load y[i]

 2: Next =][][iyix  , Restart =][]0[iyx 

 3: if Next=1 then i:=i+1;

 elsif Restart=1 then i:=1;

 else i:=0;

 4: if x[i]=end then Output:=1; i:=0

where x[i] is the (i+1)-th character of the pattern

stored at i-th address line of the registry file and its

content is presented on ReadA port of the registry

file whenever the i is equal to its address line. The

input character from the stream is presented with y.

The result of Comparator A is named as Next and

the result of the Comparator B is named as Restart

or Jump in case of approximate string matching as

it will be seen later. In fact these are the status

signals from datapath to the control unit. It is

worth noting that ReadB port always presents the

first character of the pattern x[0]. According to the

above explaination we can design the logical

circuit of the dedicated microprocessor. It is shown

in Figure 5.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

213

0RA

1RA

2RA

3RA

0RB

1RB

2RB

3RB

PortA PortB

Lx8

Registry

File

Comparator

A

Comparator

B

Next
Restart

end

Clock

FSM

Binary up

counter

0

0

0

0

Control Unit Datapath

Datapath_input

Datapath_output

Fig 5. Dedicated microprocessor for exact content

matching

.

3.2 Dedicated microprocessor for approximate

content matching

Some of the sofisticated network attacks are using

the so called "evasion" techniquies to avoid

firewalls and NIDP systems. Deleting or replacing

an existing character in the signature of the attack

or inserting a new one may cause a baypass of the

defending system. Enhancement of the software

system to detect approximate variants of signature

in the attack is possible but still exhausting

process. Fisible solution in hardware was

presented in [6] , but with limited flexibilty

though. In this chapter a fully flexible hardware

solution is presented able to detect approximate

content matching.

The problem of approximate string matching can

be described as finding a pattern myyyy ...21 of

length m that with pattern nxxxx ...21 of lenght n

differs by at most k characters or the distance

between x and y , D(x,y) is equal or less then k

characters. In context of approximate string

matching also known as k-differentiates problem,

there are three basic operators: deletion,insertion

and substitution. Since typical registry file has one

write and two read ports (PortA and PortB) the

processor design performs comparation of the two

neighboring characters x[i] and x[i+1] agaianst the

character y[i] from the input stream as it is

described with the algorithm :

Repeat wtih every clock cycle:

1: i=0; j=i+1, k=0, Load x, Load y

2: Next=][][iyix  ; Jump=][][iyjx 

 3: If Next =1 then i=i+1, j=i+1;k=0;

 else

 if Jump=1 then i=i+2; j=i+1;k=1;

 elsif (Jump =0 and k=0) then i=i; j=i+1;k=1;

 elsif (Jump=0 and k=1) then i=0;k=0

4: if x[i]=end then Output:=1; i:=0

Similar with the exact matching the x[i] character,

where i is the address of the stored character in the

registry file is presented on PortA. Now on PortB

we have the successive character stored in the

memory i.e. the character located at j=i+1 address

line. Next and Jump are the status signals coming

from comparator A and comprator B respectively.

If a regular match was detected, the Next signal is

set to 1, thus increasing the address lines i and j,

otherwise the Jump signal is set to '1' indicating

that "jump" for one character will be considered or

delete operation occurred. The whole pattern that

will be matched will differ in one position i.e. k=1.

For simplicity, the designed microprocessor will

detect only for 1k . Insertion operation is

performed by repeating the address line of the

character where the mismatch occurs and in the

next cycle the comparison is accomplished over

the next coming character from the input stream.

In similar manner, the substitution function is

executed by combination of repetition so-called

deletion function. The logical circuit for

approximate processor is similar to circuit shown

in Figure 5.

The two new components are the FSM for k and

the adder at control unit as presented in Figure 6.

In fact, the k FSM has three states: 21_00 ,, sss . The

state of 1_0s is intermediate state when only

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

214

repetition is executed. It is important to note the

omission of the Restart signal for simplicity

reasons. In reality our microprocessor design

will contain third comparator where the current

incoming character from the stream will be

compared with the very first character from the

pattern as it was described with the processor for

exact matching in the previous chapter. The full

functional design will include this component as

well.

0RA

1RA

2RA

3RA

0RB

1RB

2RB

3RB

PortA PortB

Lx8

Registry

File

Comparator

A

Comparator

B

Next
Jump

end

Clock

FSM

Binary up

counter

Control Unit Datapath

Datapath_input

Datapath_output

FSM

k

Adder

+1

Fig 6. Dedicated micprocessor for approximate

content matching with k=1

4. The flexibility of the design

Hardware solutions of NIDIPS are embedded on

circular board or implemented on FPGA's. While

the first are non-flexible designs the second offer

reconfiguration by downloading the bit stream.

The total time required by FPGA to execute the

desired task of the detection , according [8] is:

ERM TTTT 

where MT represents the time required to map the

design into FPGA, RT is the reconfiguration time if

some changes in the patterns occur and the

matching process time is represent by ET .

Whenever a change in the content of the pattern is

on demand or the number of the patterns increases

a full or partial board reconfiguration will take ET

time interval of interruption.

The dedicated processor presented here is aimed as

a module for content matching of an individual

pattern. By setting write enable input of the registry

file a pattern can be loaded, changed or delete

obsolete patterns without affecting the matching

process of the others patterns. Despite the FPGA

reconfiguration, reloading of the new pattern in the

registry file will be done in real time without

interruption, except for that particular pattern. The

number of empty and ready to load matching units

is predicted by the update frequency of the order of

days.

5. Simulation and results

Dedicated microprocessor designs observed in this

paper are able to process one inputcharacter at

clock cycle. In order to present the accurance of

the designs, the Xilinx ISE WebPack software was

used. For experimental enviorement the registry

file is of dimesion 816 thus the address space is
n2 , n=4. The pattern to be recognized is "abcd"

and it is stored on address lines "0000",

"0001","0010" and "0011" respectively. Address

line "0100" stores a NULL value or customly

chosen to indicate the end sequenece, in our case it

is “11111111” Every time when content match

will be detected, the Datapath_output value will be

set to logical '1' for one period of time of the clock

cycle. The performances of the exact matchig are

trivial. In case of approximate content matching,

the processor should detect the exact value of the

pattern i.e. "abcd" and all the variations achieved

by insertion, deletion or substitution of a character.

For example the sequences "acd" and "abd" are

derivates of “abcd” with character deletion. In the

same manner, the sequences “axcd”, “abxd”,

“aybcd”, “abycd” etc. are modifications when

supstitution or insertion operation is performed.

Simulation results of approximate matcing are

shown in Figure 7 .

Although the microprocessor is configured to detect the

exact pattern i.e. “abcd” it will also recognize its k-

differentiate variants. Figure 7 show detection of

“axcd” meaning that the character “b” was replaced.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
D. Georgiev, Vol. 3, No. 3

215

Fig .7 Simulation results for approximate content matching

6. Conclusion

Hardware components for string matching are an actual

topic in the recent years. Many of the authors of the

research papers use NFA/DFA or CAM's for their

designs. NFA/DFA is efficient designs with low logical

circuit area used, but unable to load new values of the

pattern set.

If once is hardwired it needs to redesign the FPGA

circular board. On the other hand, content matching

hardware designs with CAM's are very flexible and

most similar to the microprocessor designs presented

here. Since the comparison is performed over the all

memory elements, CAM's designs are poor in term of

power dissipation.

As the author of this paper is aware, there is no similar

approach as the one presented here. The proposed

design , compared to the others hardware designs is not

as efficient in term of the number of the logical circuits

used or the speed performances, but it is far more

configurable and flexible to load and reload new

patterns. Although it is functional design, there is

possibility for future enhancement of its features, for

example an approximate matching with k>1 or

including the transposition as an operation.

References

[1] SNORT official web site: (http://www.snort.org)

[2] Roesch, M.: Snort - lightweight intrusion detection

for networks. In: Proceedings of LISA’99: 13th

Administration Conference. (1999) Seattle

Washington, USA.

[3] Cho, Young H., and William H. Mangione-Smith.

"Deep network packet filters design for

reconfigurable devices." ACM Transactions on

Embedded Computing Systems (TECS) 7.2 (2008):

21.

[4] Sourdis, Ioannis, and Dionisios Pnevmatikatos.

"Fast, large-scale string match for a 10Gbps FPGA-

based network intrusion detection system." Field

Programmable Logic and Application. Springer

Berlin Heidelberg, 2003. 880-889.

[5] Clark, Christopher R., and David E. Schimmel.

"Efficient reconfigurable logic circuits for matching

complex network intrusion detection

patterns." Field Programmable Logic and

Application. Springer Berlin Heidelberg, 2003. 956-

959.

[6] Georgiev, Dejan, and Aristotel Tentov. "FSM

Circuits Design for Approximate String Matching in

Hardware Based Network Intrusion Detection

Systems."International Journal of Information

Technology & Computer Science 6.1 (2013).

[7] Hwang, Enoch O. "Digital Logic and

Microprocessor Design." La Sierra University,

Riverside (2005).

[8] Christopher R. Clark "Design of Efficient FPGA

Circuits for Matching Complex Patterns in Network

Intrusion Detection Systems", Georgia Institute of

Technologies , December 2003

